首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Based on a strategy combining extensive segregation analyses and tests for allelism with allele-specific re-sequencing an Hv-eIF4E allele exclusively effective against BaMMV was identified and closely linked markers for BaYMV resistance were developed.

Abstract

Soil-borne barley yellow mosaic disease is one of the most important diseases of winter barley. In extensive screenings for resistance, accession ‘HOR4224’ being resistant to three strains of Barley mild mosaic virus (BaMMV-ASL1, BaMMV-Sil, and BaMMV-Teik) and two strains of Barley yellow mosaic virus (BaYMV-1 and BaYMV-2) was identified. Analyses using Bmac29, being to some extent diagnostic for the rym4/5 locus, gave hint to the presence of the susceptibility-encoding allele at this locus. Therefore, 107 DH lines derived from the cross ‘HOR4224’ × ‘HOR10714’ (susceptible) were screened for resistance. Genetic analyses revealed an independent inheritance of resistance to BaMMV and BaYMV ( $\chi_{1:1:1:1}^{2}$  = 5.58) both encoded by a single gene (BaMMV $\chi_{1:1}^{2}$  = 0.477; BaYMV $\chi_{1:1}^{2}$  = 0.770). Although Bmac29 indicated the susceptibility-encoding allele, BaMMV resistance of ‘HOR4224’ co-localized with rym4/rym5. The BaYMV resistance was mapped to chromosome 5H in the region of rym3. Sequencing of full length cDNA of the Hv-eIF4E gene displayed an already sequenced allele described to be efficient against BaMMV and BaYMV. However, the F1 progenies of crosses involving ‘HOR4224’ and rym4/rym5 donors were all resistant to BaMMV but susceptible to BaYMV. Therefore, this is the first report of an allele at the rym4/rym5 locus exclusively efficient against BaMMV. Changes in the specificity are due to one non-synonymous amino acid substitution (I118K). Results obtained elucidate that combining extensive segregation analyses and tests for allelism involving different strains of BaMMV/BaYMV in combination with allele-specific re-sequencing is an efficient strategy for gene and allele detection in complex pathosystems.  相似文献   

2.

Key message

Unlocking allelic diversity of the bymovirus resistance gene rym11 located on proximal barley chromosome 4HL and diagnostic markers provides the basis for precision breeding for BaMMV/BaYMV resistance.

Abstract

The recessive resistance gene rym11 on barley chromosome 4HL confers broad-spectrum and complete resistance to all virulent European isolates of Barley mild mosaic virus and Barley yellow mosaic virus (BaMMV/BaYMV). As previously reported, rym11-based resistance is conferred by a series of alleles of naturally occurring deletions in the gene HvPDIL5-1, encoding a protein disulfide isomerase-like protein. Here, a novel resistance-conferring allele of rym11 is reported that, in contrast to previously identified resistance-conferring variants of the gene HvPDIL5-1, carries a single non-synonymous amino acid substitution. Allelism was confirmed by crossing to genotypes carrying previously known rym11 alleles. Crossing rym11 genotypes with a cultivar carrying the recessive resistance gene rym1, which was reported to reside on the same chromosome arm 4HL like rym11, revealed allelism of both loci. This allelic state was confirmed by re-sequencing HvPDIL5-1 in the rym1 genotype, detecting the haplotype of the rym11-d allele. Diagnostic PCR-based markers were established to differentiate all seven resistance-conferring alleles of the rym11 locus providing precise tools for marker-assisted selection (MAS) of rym11 in barley breeding.  相似文献   

3.
Soil-borne barley yellow mosaic virus disease, caused by different strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), is one of the most important diseases of winter barley (Hordeum vulgare L.) in Europe and East Asia. The recessive resistance gene rym11 located in the centromeric region of chromosome 4HL is effective against all so far known strains of BaMMV and BaYMV in Germany. In order to isolate this gene, a high-resolution mapping population (10,204 meiotic events) has been constructed. F2 plants were screened with co-dominant flanking markers and segmental recombinant inbred lines (RILs) were tested for resistance to BaMMV under growth chamber and field conditions. Tightly linked markers were developed by exploiting (1) publicly available barley EST sequences, (2) employing barley synteny to rice, Brachypodium distachyon and sorghum and (3) using next-generation sequencing data of barley. Using this approach, the genetic interval was efficiently narrowed down from the initial 10.72 % recombination to 0.074 % recombination. A marker co-segregating with rym11 was developed providing the basis for gene isolation and efficient marker-assisted selection.  相似文献   

4.
Ninety-three F(1)-derived doubled haploid (DH) lines from a complex breeders' cross involving the Japanese genotype 'Chikurin Ibaraki 1', which is resistant to barley mild mosaic virus (BaMMV) and two strains of barley yellow mosaic virus (BaYMV and BaYMV-2), three susceptible varieties ('Hamu', 'Julia' and a breeding line) and cv. 'Carola', which carries rym4 conferring resistance to BaMMV and BaYMV, were analysed for resistance to BaMMV, BaYMV and BaYMV-2. The DH lines fell into four phenotypic classes. In addition to completely resistant and susceptible genotypes, DHs were observed which were either resistant to BaMMV and BaYMV or to BaYMV and BaYMV-2. For BaMMV and BaYMV-2 resistance, segregation ratios approaching 1r:1s were observed, suggesting the presence of single resistance genes. In contrast, the segregation ratio for BaYMV fits a 3r:1s segregation ratio, suggesting the presence of two independently inherited genes. From the genetic analysis, we conclude that a resistance locus effective against BaYMV and BaYMV-2 originates from Chikurin Ibaraki 1 and segregates independently from the Carola-derived rym4 resistance that is effective against BaYMV and BaMMV. The BaMMV resistance in Chikurin Ibaraki 1 has probably been lost during population development. This hypothesis was tested using a simple-sequence repeat (SSR) marker (Bmac29) linked to rym4. All BaMMV-resistant DH lines supported amplification of the rym4-resistance diagnostic allele. To identify the genetic location of the Chikurin Ibaraki 1-derived resistance against BaYMV/BaYMV-2, bulked DNA samples were constructed from the four resistance classes, and bulked segregant analysis was performed using a genome-wide collection of SSRs. Differentiating alleles were observed at two linked SSRs on chromosome 5H. The location of this BaYMV/BaYMV-2 resistance locus was confirmed and further resolved by linkage analysis on the whole population using a total of five linked SSRs.  相似文献   

5.
Soil-borne barley yellow mosaic virus disease – caused by a complex of at least three viruses, i.e. Barley mild mosaic virus (BaMMV), Barley yellow mosaic virus (BaYMV) and BaYMV-2 – is one of the most important diseases of winter barley in Europe. The two genes rym4, effective against BaMMV and BaYMV, and rym5, additionally effective against BaYMV-2, comprise a complex locus on chromosome 3HL, which is of special importance to European barley breeding. To provide the genetic basis for positional cloning of the Rym4/Rym5 locus, two high-resolution maps were constructed based on co-dominant flanking markers (MWG838/Y57c10 - MWG010/Bmac29). Mapping at a resolution of about 0.05% rec., rym4 has been located 1.07% recombination distal of marker MWG838 and 1.21% recombination proximal to marker MWG010. Based on a population size of 3,884 F2 plants (0.013% recombination) the interval harbouring rym5 was delimited to 1.49±0.14% recombination. By testing segmental recombinant inbred lines (RILs) for reaction to the different viruses at a resolution of 0.05% rec. (rym4) and 0.019% rec. (rym5), no segregation concerning the reaction to the different viruses could be observed. AFLP-based marker saturation for rym4, using 932 PstI+2/MseI+3 primer combinations only resulted in three markers with the closest one linked at 0.9% recombination to the gene. Two of these markers detected epialleles arising from the differential cytosine methylation of PstI sites. Regarding rym5, profiling of 1,200 RAPD primers (about 18,000 loci) and 2,048 EcoRI+3/MseI+3 AFLP primer combinations (about 205,000 loci) resulted in one RAPD marker and seven AFLP markers tightly linked to the resistance gene. Flanking markers with the closest linkage to rym5 (0.05% and 0.88% recombination) were converted into STS markers. These markers provide a starting point for chromosomal walking and may be exploited in marker-assisted selection for virus resistance based on rym5.  相似文献   

6.
7.
Barley yellow mosaic disease caused by the bymoviruses barley mild mosaic virus (BaMMV) and barley yellow mosaic virus (BaYMV) is one of the economically most important diseases of winter barley in Europe. In European barley breeding programmes, resistance is currently due to only two genes—rym4, which is effective against viruses BaMMV and BaYMV-1, and rym5, which is effective against BaYMV-2. Diversification of resistance is therefore an important task. Because the accession PI1963 confers immunity against all European strains of barley yellow mosaic disease and is not allelic to rym5, we have attempted to develop closely linked markers in order to facilitate the efficient introgression of this resistance into adapted germplasm. By means of restriction fragment length polymorphism analysis, we located a gene locus for resistance to BaMMV, BaYMV-1 and BaYMV-2 of PI1963 on chromosome 4HL using a mapping population (W757) comprising 57 doubled haploid (DH) lines. Subsequent tests for allelism indicated that the BaMMV resistance gene in PI1963 is allelic to rym11. Two DH populations, IPK1 and IPK2, comprising 191 and 161 DH lines, respectively, were derived from the initial mapping population W757 and used for further analysis. As random amplified polymorphic DNA development did not facilitate the identification of more closely linked markers, simple sequence repeat (SSR) analyses were conducted. For population IPK1, the closest SSRs detected were Bmac181 and Bmag353, which flank the gene at 2.1 cM and 2.7 cM, respectively. For the IPK2 population, the SSR markers HVM3 and Bmag353 are located proximally at 2.5 cM and distally at 8.2 cM, respectively. In order to develop markers more tightly linked to rym11, a targeted amplified fragment length polymorphism (AFLP) marker identification approach was adopted using bulks comprising lines carrying recombination events proximal and distal to the target interval. Using this approach we identified six AFLP markers closely linked to rym11, with the two markers, E56M32 and E49M33, co-segregating with rym11 in both populations. The SSRs and AFLPs identified in this study represent useful tools for marker-assisted selection.  相似文献   

8.
9.
In field plots at Yancheng, Jiangsu, China, a range of European and Asian barley cultivars was grown in soil from three sites in China infested with barley yellow mosaic virus (BaYMV). Most of the cultivars resistant to the common European strain of BaYMV were susceptible to the Chinese isolates but cv. Energy remained disease-free. Barley mild mosaic virus (BaMMV) was also detected in one of these soils but affected only one Chinese cultivar and not those susceptible to BaMMV in Europe. This is the first report of BaMMV in China. Inoculation experiments confirmed the different cultivar response to UK and Chinese isolates of BaYMV and showed that resistance was to the virus and not to the vector. A range of Chinese cultivars selected for resistance to BaYMV were also resistant to a UK isolate of BaMMV.  相似文献   

10.
In winter and early spring 2004 unequivocal mosaic symptoms were detected for the first time in Germany on six plants of the barley cv. ‘Tokyo’ carrying the resistance gene rym5. By serological and electron microscopic investigations Barley mild mosaic virus (BaMMV) was identified in all plants and could be re‐transmitted to cv. ‘Tokyo’ as well as to additional cultivars carrying rym5. In contrast to this, genotypes carrying the resistance genes rym1 + rym5, Rym2, rym4, rym7, rym9, rym11, rym12, rym13, Rym14Hb, rym15 or Rym16Hb turned out to be resistant. Furthermore, the BaMMV isolates were not transmissible to different dicotyledonous species. Sequence analyses in the VPg coding region of RNA1 revealed differences to the known sequence of the original BaMMV isolate (BaMMV‐ASL1, AJ 242725) and also of a French pathotype (BaMMV‐Sil, AJ 544267, AJ 544268) which is also able to overcome the resistance mediated by rym5. At least in one location a spread of the area infested by this new strain was observed in 2004/2005 and 2005/2006.  相似文献   

11.
Summary Barley mild mosaic virus (BaMMV) is one of the agents causing the barley yellow mosaic disease. The sequence corresponding to the 3end of the BaMMV RNA1 of a German isolate was sequenced and the coding sequence for the 251 amino acid containing capsid protein was determined. Comparison of this sequence to other potyviral sequences and to the corresponding sequence of two Japanese isolates of BaMMV was done. The three different isolates of BaMMV show a high degree of similarity.Abbrevations BaMMV barley mild mosaic virus - BaYMV barley yellow mosaic virus; bp: base pair - IPTG isopropyl -D thiogalactopyranoside - kb kilo base - NTR nontranslated region - ORF open reading frame - PVDF polyvinylidene difluoride  相似文献   

12.
The soil-borne barley yellow mosaic virus disease (BaMMV, BaYMV, BaYMV-2) and the aphid-transmitted barley yellow dwarf virus (BYDV) are serious threats to winter barley cultivation. Resistance to barley yellow mosaic virus disease has been identified in extensive screening programmes and several recessive resistance genes have been mapped, e.g. rym4, rym5, rym9, rym11, rym13. In contrast to barley yellow mosaic virus disease, no complete resistance to BYDV is known in the barley gene pool, but tolerant accessions have been identified and QTL for BYDV-tolerance have been detected on chromosomes 2HL and 3HL. The use of resistance and tolerance in barley breeding can be considerably improved today by molecular markers (RFLPs, RAPDs, AFLPs, SSRs, STSs, SNPs), as they facilitate (i) efficient genotyping and estimation of genetic diversity; (ii) reliable selection on a single plant level independent of symptom expression in the field (iii) acceleration of back crossing procedures; (iv) pyramiding of resistance genes; (v) detection of QTL and marker-based combination of positive alleles; and (vi) isolation of resistance genes via map-based cloning.  相似文献   

13.
14.
Summary Antisera were raised against the RNA 2-encoded proteins of 28 kDa and 70 kDa of barley yellow mosaic virus (BaYMV) by using the corresponding cDNA sequences of a German isolate for protein overexpression inEscherichia coli BL 21 and subsequent purification. The proposed processing of a 98 kDa precursor polyprotein encoded by the long open reading frame of RNA 2 to two proteins of 28 kDa and 70 kDa could be confirmed by immunoprecipitation of the in vitro transcribed and translated cDNA-clone of RNA 2 and Western blot analysis of fragmentated protein extracts of BaYMV-infected winter barley plants. In situ localisation studies of infected leaf tissue using immunogold labeling techniques for electron microscopy revealed that both viral proteins of BaYMV (RNA 2) were associated with the crystal-like cytoplasmic inclusion bodies. No other parts of the cells and no other inclusions (pinwheelstructures or aggregated virus particles) showed any gold labeling when the 28 kDa and 70 kDa antisera were used. We suppose that both RNA 2-encoded proteins take part in the formation of the crystal-like cytoplasmic inclusion bodies which are the most dominant structures in the cytoplasm of BaYMV-infected tissue. Possible functions of the 28 kDa and 70 kDa protein of BaYMV (RNA 2) are discussed.Abbreviations PBS phosphate-buffered saline - CEA chicken egg albumin - BaYMV barley yellow mosaic virus - BaMMV barley mild mosaic virus  相似文献   

15.
Although a Chinese landrace of barley, Mokusekko 3, is completely resistant to all strains of Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), and is known to have at least two resistant genes, rym1 and rym5, only rym5 has been utilized for BaYMV resistant barley breeding in Japan. In order to clarify the effect of rym1 on BaYMV and BaMMV, and to utilize the gene for resistant barley breeding, the susceptibilities of only rym1 carrying breeding lines against BaYMV and BaMMV were investigated. In the assessment of resistance to BaYMV-I, 341 F(2) populations derived from a cross between the resistant line Y4 with only rym1 and the susceptible cv Haruna Nijo shows that the segregation loosely fits a 1R:3S ratio (0.05 > P > 0.01), suggesting that the resistance is controlled by a single recessive gene, rym1. Further, none of the F(3) lines derived from the nine resistant F(2) plants showed any disease symptoms in the field infected by BaYMV-I. The same nine F(3) lines showed almost the same agronomic characters in the field infected by BaYMV-III as those in the uninfected field, apart from the symptom of showing numerous mosaics. This result indicates that the gene rym1 has an acceptable level of resistance to BaYMV-III. In the assessment of resistance to BaYMV-II, BaMMV-Ka1 and -Na1, an artificial infection method was adopted and the susceptibilities to those viruses were investigated. Although the control varieties, Ko A and Haruna Nijo, were infected with all of them, the rym1 gene carrying BC(2)F(3) lines were completely resistant to all strains. In summary, rym1 is completely resistant to BaYMV-I, -II, BaMMV-Ka1 and -Na1, and has an acceptable level of resistance to BaYMV-III. This study concludes with a discussion of the reason why the important resistance gene rym1 was eliminated along with resistant cultivars during breeding for resistance to BaYMV.  相似文献   

16.
Barley yellow mosaic virus (BaYMV) is the causal agent of a soil-borne systemic mosaic disease on barley. It has been reported in Belgium since the 1980s. The control of this disease is managed almost exclusively through the use of resistant varieties. The resistance of most commercial barley cultivars grown in Europe is conferred mainly by a single recessive gene, rym4. This monogenic resistance provides immunity against BaYMV pathotype 1 and has been mapped on barley chromosome 3HL and shown to be caused by mutations in the translation initiation factor eIF4E. Another pathotype, BaYMV pathotype 2, which appeared in the late 1980s (in Belgium, in the early 1990s), is able to overcome the rym4-controlled resistance. Until recently, this pathotype remained confined to specific locations. During a systematic survey in 2003, mosaic symptoms were observed only on susceptible barley cultivars collected in Belgian fields. BaYMV was detected by ELISA and RT-PCR on the susceptible cultivars and only by RT-PCR on the resistant cultivars. In 2004, mosaic symptoms were observed on susceptible and resistant cultivars. BaYMV was detected by ELISA and RT-PCR on both cultivars. In addition to developing RT-PCR methods for detecting and identifying BaYMV and Barley mild mosaic virus (BaMMV), an RT-PCR targeting the VPg/NIa viral protein part of the genome, known to discriminate the two BaYMV pathotypes, was set up to accurately identify the pathotype(s) now present in Belgium. The sequences from the generated amplicons revealed the single nucleotide substitution resulting in an amino acid change from lysine to asparagine specific to BaYMV pathotype 2. The possible reasons for the change in the BaYMV pathotype situation in Belgium, such as climatic change or a progressive build-up of soil inoculum potential, will be discussed, as well as the use of eIF4E-based resistance.  相似文献   

17.
Genomic sequence AY661558, representing a part of the BAC contig of the Rym4/Rym5 locus conferring resistance to the barley yellow mosaic virus complex (BaMMV/BaYMV), was exploited in order to develop SSR markers for practical barley breeding. Out of 57 SSR motifs found within this sequence, primers were designed and tested for the 5 SSRs with the highest repeat length. The polymorphic SSR marker QLB1 co-segregated with rym4 and rym5 phenotypes in respective high-resolution mapping populations developed for the construction of the original BAC contig. The primers targeted 2 sites located 756 bp and 5173 bp downstream of the translation initiation factor 4E (Hv-eIF4E). Physical linkage of the QLB1 marker to the Rym4/Rym5 locus was confirmed experimentally on Morex BAC 519J14, a seed BAC of Hv-eIF4E, and BAC 801A11, which is located proximally to Hv-eIF4E. QLB1 revealed 7 alleles in a set of 100 winter barley lines and cultivars. Five alleles were found within 673 advanced breeding lines derived from applied Polish winter barley breeding programmes, which corresponds to a PIC value of 0.684. No recombinants between Rym4/5 and QLB1 were detected, suggesting that QLB1 can be used efficiently in marker-assisted selection of the Hv-eIF4E-mediated bymovirus resistance.  相似文献   

18.

Key message

Two distinct patterns of sequence diversity for the recessive alleles of two host factors HvPDIL5 - 1 and HvEIF4E indicated the adaptive selection for bymovirus resistance in cultivated barley from East Asia.

Abstract

Plant pathogens are constantly challenging plant fitness and driving resistance gene evolution in host species. Little is known about the evolution of sequence diversity in host recessive resistance genes that interact with plant viruses. Here, by combining previously published and newly generated targeted re-sequencing information, we systematically analyzed natural variation in a broad collection of wild (Hordeum spontaneum; Hs) and domesticated barleys (Hordeum vulgare; Hv) using the full-length coding sequence of the two host factor genes, HvPDIL5-1 and HvEIF4E, conferring recessive resistance to the agriculturally important Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV). Interestingly, two types of gene evolution conferred by sequence variation in domesticated barley, but not in wild barley were observed. Whereas resistance-conferring alleles of HvEIF4E exclusively contained non-synonymous amino acid substitutions (including in-frame sequence deletions and insertions), loss-of-function alleles were predominantly responsible for the HvPDIL5-1 conferred bymovirus resistance. A strong correlation between the geographic origin and the frequency of barley accessions carrying resistance-conferring alleles was evident for each of the two host factor genes, indicating adaptive selection for bymovirus resistance in cultivated barley from East Asia.
  相似文献   

19.
在山东省烟台地区的小麦上发生一种由土壤中禾谷多粘菌Polymyxa graminis传播的病毒病,感病小麦植株表现矮化褪绿和花叶症状.我们于1997年4月从病区采集感病小麦植株,进行了病毒种类鉴定.直接电镜观察发现有二种病毒粒子,一种粒子呈棒状,占大多数,其长度约为300nm和150nm; 另一种粒子呈线状,数量较少,长度为500nm~700nm.免疫电镜结果表明,棒状病毒粒子仅与土传小麦花叶病毒(soil-borne wheat mosaic virus, SBWMV)抗血清反应,而不与小麦黄花叶病毒(wheat yellow mosaic virus,WYMV)抗血清和小麦梭条斑花叶病毒(wheat spindle streat mosaic virus,WSSMV)抗血清反应;反之,线状病毒仅与WYMV、WSSMV抗血清反应,而不与SBWMV抗血清反应.用WYMV和SBWMV两种抗血清同时进行修饰时,线状病毒粒子和棒状病毒粒子均发生反应.  相似文献   

20.
Breeding for resistant cultivars is the only way to prevent high yield loss in barley caused by the soil-borne barley mild mosaic virus (BaMMV) complex. We have characterized the BaMMV resistance of barley cv. Chikurin Ibaraki 1. Doubled haploid lines were obtained from the F1 between the susceptible six-rowed winter barley cultivar, Plaisant, and Chikurin Ibaraki 1. Each line was tested for reaction to BaMMV by mechanical inoculation followed by DAS-ELISA. Of 44 microsatellites that covered the genome, 22 polymorphic markers were tested on one susceptible and one resistant bulk, each comprising 30 lines. Differential markers and additional microsatellite markers in the same region were then tested on the whole population. A bootstrap analysis was used to compute confidence intervals of distances and to test the orders of the resistance gene and the closest markers. A segregation of 84 resistant/98 susceptible lines fitted a 1:1 ratio (2=1.08, P=0.30), which corresponds to a single gene in this DH lines population. The resistance gene was flanked by two markers near the centromeric region of chromosome 6HS—Bmag0173, at 0.6±1.2 cM, and EBmac0874, at 5.8 ± 3.4 cM. We propose to name this new resistance gene rym15. This resistance gene and associated markers will increase the possibilities to breed efficiently for new cultivars resistant to the barley mosaic disease.Communicated by P. Langridge  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号