首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bone loss in type 1 diabetes is accompanied by increased marrow fat, which could directly reduce osteoblast activity or result from altered bone marrow mesenchymal cell lineage selection (adipocyte vs. osteoblast). CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of both adipocyte and osteoblast differentiation. C/EBPβ-null mice have delayed bone formation and defective lipid accumulation in brown adipose tissue. To examine the balance of C/EBPβ functions in the diabetic context, we induced type 1 diabetes in C/EBPβ-null (knockout, KO) mice. We found that C/EBPβ deficiency actually enhanced the diabetic bone phenotype. While KO mice had reduced peripheral fat mass compared with wild-type mice, they had 5-fold more marrow adipocytes than diabetic wild-type mice. The enhanced marrow adiposity may be attributed to compensation by C/EBPδ, peroxisome proliferator-activated receptor-γ2, and C/EBPα. Concurrently, we observed reduced bone density. Relative to genotype controls, trabecular bone volume fraction loss was escalated in diabetic KO mice (-48%) compared with changes in diabetic wild-type mice (-22%). Despite greater bone loss, osteoblast markers were not further suppressed in diabetic KO mice. Instead, osteoclast markers were increased in the KO diabetic mice. Thus, C/EBPβ deficiency increases diabetes-induced bone marrow (not peripheral) adipose depot mass, and promotes additional bone loss through stimulating bone resorption. C/EBPβ-deficiency also reduced bone stiffness and diabetes exacerbated this (two-way ANOVA P < 0.02). We conclude that C/EBPβ alone is not responsible for the bone vs. fat phenotype switch observed in T1 diabetes and that suppression of CEBPβ levels may further bone loss and decrease bone stiffness by increasing bone resorption.  相似文献   

2.
Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-GsαOsxKO mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1–34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-GsαOsxKO mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-GsαOsxKO mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.  相似文献   

3.
Diabetes type I is associated with bone loss and increased bone adiposity. Osteoblasts and adipocytes are both derived from mesenchymal stem cells located in the bone marrow, therefore we hypothesized that if we could block adipocyte differentiation we might prevent bone loss in diabetic mice. Control and insulin-deficient diabetic BALB/c mice were chronically treated with a peroxisomal proliferator-activated receptor gamma (PPARgamma) antagonist, bisphenol-A-diglycidyl ether (BADGE), to block adipocyte differentiation. Effects on bone density, adiposity, and gene expression were measured. BADGE treatment did not prevent diabetes-associated hyperglycemia or weight loss, but did prevent diabetes-induced hyperlipidemia and effectively blocked diabetes type I-induced bone adiposity. Despite this, BADGE treatment did not prevent diabetes type I suppression of osteoblast markers (runx2 and osteocalcin) and bone loss (as determined by micro-computed tomography). BADGE did not suppress osteoblast gene expression or bone mineral density in control mice, however, chronic (but not acute) BADGE treatment did suppress osteocalcin expression in osteoblasts in vitro. Taken together, our findings suggest that BADGE treatment is an effective approach to reduce serum triglyceride and free fatty acid levels as well as bone adiposity associated with type I diabetes. The inability of BADGE treatment to prevent bone loss in diabetic mice suggests that marrow adiposity is not linked to bone density status in type I diabetes, but we cannot exclude the possibility of additional BADGE effects on osteoblasts or other bone cells, which could contribute to preventing the rescue of the bone phenotype.  相似文献   

4.
5.
Type 1 diabetes (T1D) is correlated with osteopenia primarily due to low bone formation. Parathyroid hormone (PTH) is a known anabolic agent for bone, the anabolic effects of which are partially mediated through the Wnt/β-catenin signaling pathway. In the present study, we first determined the utility of intermittent PTH treatment in a streptozotocin-induced T1D mouse model. It was shown that the PTH-induced anabolic effects on bone mass and bone formation were attenuated in T1D mice compared with nondiabetic mice. Further, PTH treatment failed to activate β-catenin signaling in osteoblasts of T1D mice and was unable to improve osteoblast proliferation and differentiation. Next, the Col1–3.2 kb-CreERTM; β-cateninfx(ex3) mice were used to conditionally activate β-catenin in osteoblasts by injecting tamoxifen, and we addressed whether or not preactivation of β-catenin boosted the anabolic action of PTH on T1D-related bone loss. The results demonstrated that pretreatment with activation of osteoblastic β-catenin followed by PTH treatment outperformed PTH or β-catenin activation monotherapy and led to greatly improved bone structure, bone mass, and bone strength in this preclinical model of T1DM. Further analysis demonstrated that osteoblast proliferation and differentiation, as well as osteoprogenitors in the marrow, were all improved in the combination treatment group. These findings indicated a clear advantage of developing β-catenin as a target to improve the efficacy of PTH in the treatment of T1D-related osteopenia.  相似文献   

6.
7.
Parathyroid hormone (PTH) has biphasic effects on bone: continuous treatment is catabolic whereas intermittent treatment is anabolic. The mechanism(s) responsible for these differing effects are still unclear, partly because of the previous non-availability of a model system in which effects on both formation and resorption indices could be studied concomitantly. In cultured marrow cells from 6-week old C57BL/6 mice, we demonstrated that 4 days of intermittent PTH treatment increased mRNA for osteoblast differentiation markers (Runx2, alkaline phosphatase (AP), and type I procollagen (COL1A1) whereas continuous treatment resulted in production of large numbers of TRAP-positive multinucleated osteoclasts. Although IGF-I mRNA did not increase after intermittent treatment, it was consistently higher than after continuous treatment, and the addition of an anti-IGF-I neutralizing antibody prevented the increase in bone formation indices observed with intermittent treatment. By contrast, after continuous treatment, gene expression of RANK ligand (RANKL) was increased and that of osteoprotegerin (OPG) was decreased, resulting in a 25-fold increase in the RANKL/OPG ratio. In this model system, the data suggest that intermittent PTH treatment enhances osteoblast differentiation through an IGF-I dependent mechanism and continuous PTH treatment enhances osteoclastogenesis through reciprocal increases in RANKL and decreases in OPG.  相似文献   

8.
5rolGLP-HV is a promising dual-function peptide for the treatment of diabetes and thrombosis simultaneously. For investigating the therapeutic mechanism of 5rolGLP-HV for type 2 diabetes mellitus (T2DM), STZ-induced diabetic mice were established and treated with 5rolGLP-HV. The results showed that daily water and food intake, blood glucose, serum and pancreatic insulin levels significantly decreased after 5rolGLP-HV treatment with various oral concentrations, and 16 mg/kg was the optimal dose for controlling diabetes. 5rolGLP-HV treatment decreased the MDA levels and the T-SOD activity in serum and pancreatic of diabetic mice (but not up to significant difference), and significantly increased the expression of signal pathways related genes of rolGLP-1, also the density of insulin expression and the numbers of apoptosis cells in islets of diabetic mice were significantly decreased in comparison to the negative diabetic mice. These effects above may be clarified the hypoglycemic mechanisms of 5rolGLP-HV, and 5rolGLP-HV may be as a potential drug for diabetes in future.  相似文献   

9.
Type I (T1) diabetes is an autoimmune and metabolic disease associated with bone loss. Bone formation and density are decreased in T1-diabetic mice. Correspondingly, the number of TUNEL positive, dying osteoblasts increases in bones of T1-diabetic mice. Moreover, two known mediators of osteoblast death, TNFα and ROS, are increased in T1-diabetic bone. TNFα and oxidative stress are known to activate caspase-2, a factor involved in the extrinsic apoptotic pathway. Therefore, we investigated the requirement of caspase-2 for diabetes-induced osteoblast death and bone loss. Diabetes was induced in 16-week old C57BL/6 caspase-2 deficient mice and their wild type littermates and markers of osteoblast death, bone formation and resorption, and marrow adiposity were examined. Despite its involvement in extrinsic cell death, deficiency of caspase-2 did not prevent or reduce diabetes-induced osteoblast death as evidenced by a twofold increase in TUNEL positive osteoblasts in both mouse genotypes. Similarly, deficiency of caspase-2 did not prevent T1-diabetes induced bone loss in trabecular bone (BV/TV decreased by 30 and 50%, respectively) and cortical bone (decreased cortical thickness and area with increased marrow area). Interestingly, at this age, differences in bone parameters were not seen between genotypes. However, caspase-2 deficiency attenuated diabetes-induced bone marrow adiposity and adipocyte gene expression. Taken together, our data suggest that caspase-2 deficiency may play a role in promoting marrow adiposity under stress or disease conditions, but it is not required for T1-diabetes induced bone loss.  相似文献   

10.
Although the calcium-sensing receptor (CaSR) and parathyroid hormone (PTH) may each exert skeletal effects, it is uncertain how CaSR and PTH interact at the level of bone in primary hyperparathyroidism (PHPT). Therefore, we simulated PHPT with 2 wk of continuous PTH infusion in adult mice with deletion of the PTH gene (Pth(-/-) mice) and with deletion of both PTH and CaSR genes (Pth(-/-)-Casr (-/-) mice) and compared skeletal phenotypes. PTH infusion in Pth(-/-) mice increased cortical bone turnover, augmented cortical porosity, and reduced cortical bone volume, femoral bone mineral density (BMD), and bone mineral content (BMC); these effects were markedly attenuated in PTH-infused Pth(-/-)-Casr(-/-) mice. In the absence of CaSR, the PTH-stimulated expression of receptor activator of nuclear factor-κB ligand and tartrate-resistant acid phosphatase and PTH-stimulated osteoclastogenesis was also reduced. In trabecular bone, PTH-induced increases in bone turnover, trabecular bone volume, and trabecular number were lower in Pth(-/-)-Casr(-/-) mice than in Pth(-/-) mice. PTH-stimulated genetic markers of osteoblast activity were also lower. These results are consistent with a role for CaSR in modulating both PTH-induced bone resorption and PTH-induced bone formation in discrete skeletal compartments.  相似文献   

11.
Secreted frizzled-related protein (sFRP)-1 is a Wnt antagonist that when deleted in mice leads to increased trabecular bone formation in adult animals after 13 weeks of age. Treatment of mice with parathyroid hormone (PTH) also increases trabecular bone formation, and some of the anabolic actions of this hormone may result from altered expression of Wnt pathway components. To test this hypothesis, we treated +/+ and -/- female sFRP-1 mice with PTH 1-34 for 30 days and measured distal femur trabecular bone parameters by peripheral quantitative computed tomography (pQCT) and high-resolution micro-computed tomography. During the course of the 32-week study, volumetric bone mineral density (vBMD) declined 41% in vehicle-treated +/+ mice, but increased 24% in vehicle-treated -/- animals. At 8 weeks of age when vBMD was not altered by deletion of sFRP-1, treatment of +/+ and -/- mice with PTH increased vBMD by 147 and 163%, respectively. In contrast, at 24 weeks of age when vBMD was 75% higher in -/- mice than in +/+ controls, treatment with PTH increased vBMD 164% in +/+ animals, but only 58% in -/- mice. Furthermore, at 36 weeks of age when vBMD was 117% higher in -/- mice than in +/+ controls, treatment with PTH increased vBMD 74% in +/+ animals, while no increase was observed in -/- mice. At each of these time points, PTH treatment increased vBMD to a similar level in +/+ and -/- mice, and this level declined with age. In addition, at 36 weeks of age, the vBMD level reached by PTH treatment of +/+ mice was the same as that achieved solely by deletion of sFRP-1. These results indicate that loss of sFRP-1 and PTH treatment increase vBMD to a similar extent. Moreover, as the effects of sFRP-1 deletion on vBMD increase, the ability of PTH to enhance vBMD declines suggesting that there are overlapping mechanisms of action.  相似文献   

12.
The cell surface receptor, low-density lipoprotein receptor-related protein 5 (LRP5) is a key regulator of bone mass. Loss-of-function mutations in LRP5 cause the human skeletal disease osteoporosis-pseudoglioma syndrome, an autosomal recessive disorder characterized by severely reduced bone mass and strength. We investigated the role of LRP5 on bone strength using mice engineered with a loss-of-function mutation in the gene. We then tested whether the osteogenic response to mechanical loading was affected by the loss of Lrp5 signaling. Lrp5-null (Lrp5-/-) mice exhibited significantly lower bone mineral density and decreased strength. The osteogenic response to mechanical loading of the ulna was reduced by 88 to 99% in Lrp5-/- mice, yet osteoblast recruitment and/or activation at mechanically strained surfaces was normal. Subsequent experiments demonstrated an inability of Lrp5-/- osteoblasts to synthesize the bone matrix protein osteopontin after a mechanical stimulus. We then tested whether Lrp5-/- mice increased bone formation in response to intermittent parathyroid hormone (PTH), a known anabolic treatment. A 4-week course of intermittent PTH (40 microg/kg/day; 5 days/week) enhanced skeletal mass equally in Lrp5-/- and Lrp5+/+ mice, suggesting that the anabolic effects of PTH do not require Lrp5 signaling. We conclude that Lrp5 is critical for mechanotransduction in osteoblasts. Lrp5 is a mediator of mature osteoblast function following loading. Our data suggest an important component of the skeletal fragility phenotype in individuals affected with osteoporosis-pseudoglioma is inadequate processing of signals derived from mechanical stimulation and that PTH might be an effective treatment for improving bone mass in these patients.  相似文献   

13.
As many as 50% of adults with type I (T1) diabetes exhibit bone loss and are at increased risk for fractures. Therapeutic development to prevent bone loss and/or restore lost bone in T1 diabetic patients requires knowledge of the molecular mechanisms accounting for the bone pathology. Because cell culture models alone cannot fully address the systemic/metabolic complexity of T1 diabetes, animal models are critical. A variety of models exist including spontaneous and pharmacologically induced T1 diabetic rodents. In this paper, we discuss the streptozotocin (STZ)-induced T1 diabetic mouse model and examine dose-dependent effects on disease severity and bone. Five daily injections of either 40 or 60 mg/kg STZ induce bone pathologies similar to spontaneously diabetic mouse and rat models and to human T1 diabetic bone pathology. Specifically, bone volume, mineral apposition rate, and osteocalcin serum and tibia messenger RNA levels are decreased. In contrast, bone marrow adiposity and aP2 expression are increased with either dose. However, high-dose STZ caused a more rapid elevation of blood glucose levels and a greater magnitude of change in body mass, fat pad mass, and bone gene expression (osteocalcin, aP2). An increase in cathepsin K and in the ratio of RANKL/OPG was noted in high-dose STZ mice, suggesting the possibility that severe diabetes could increase osteoclast activity, something not seen with lower doses. This may contribute to some of the disparity between existing studies regarding the role of osteoclasts in diabetic bone pathology. Examination of kidney and liver toxicity indicate that the high STZ dose causes some liver inflammation. In summary, the multiple low-dose STZ mouse model exhibits a similar bone phenotype to spontaneous models, has low toxicity, and serves as a useful tool for examining mechanisms of T1 diabetic bone loss.  相似文献   

14.
Type I diabetes increases an individual's risk for bone loss and fracture, predominantly through suppression of osteoblast activity (bone formation). During diabetes onset, levels of blood glucose and pro‐inflammatory cytokines (including tumor necrosis factor α (TNFα)) increased. At the same time, levels of osteoblast markers are rapidly decreased and stay decreased chronically (i.e., 40 days later) at which point bone loss is clearly evident. We hypothesized that early bone marrow inflammation can promote osteoblast death and hence reduced osteoblast markers. Indeed, examination of type I diabetic mouse bones demonstrates a greater than twofold increase in osteoblast TUNEL staining and increased expression of pro‐apoptotic factors. Osteoblast death was amplified in both pharmacologic and spontaneous diabetic mouse models. Given the known signaling and inter‐relationships between marrow cells and osteoblasts, we examined the role of diabetic marrow in causing the osteoblast death. Co‐culture studies demonstrate that compared to control marrow cells, diabetic bone marrow cells increase osteoblast (MC3T3 and bone marrow derived) caspase 3 activity and the ratio of Bax/Bcl‐2 expression. Mouse blood glucose levels positively correlated with bone marrow induced osteoblast death and negatively correlated with osteocalcin expression in bone, suggesting a relationship between type I diabetes, bone marrow and osteoblast death. TNF expression was elevated in diabetic marrow (but not co‐cultured osteoblasts); therefore, we treated co‐cultures with TNFα neutralizing antibodies. The antibody protected osteoblasts from bone marrow induced death. Taken together, our findings implicate the bone marrow microenvironment and TNFα in mediating osteoblast death and contributing to type I diabetic bone loss. J. Cell. Physiol. 226: 477–483, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
We previously reported that the ability of continuously elevated PTH to stimulate osteoblastic differentiation in bone marrow stromal cell cultures was abrogated by an osteoclastic factor secreted in response to cyclooxygenase-2 (Cox2)-produced prostaglandin E2. We now examine the impact of Cox2 (Ptgs2) knockout (KO) on the anabolic response to continuously elevated PTH in vivo. PTH (40 μg/kg/d) or vehicle was infused for 12 or 21 days in 3-mo-old male wild type (WT) and KO mice in the outbred CD-1 background. Changes in bone phenotype were assessed by bone mineral density (BMD), μCT and histomorphometry. PTH infusion for both 12 and 21 days increased femoral BMD in Cox2 KO mice and decreased BMD in WT mice. Femoral and vertebral trabecular bone volume fractions were increased in KO mice, but not in WT mice, by PTH infusion. In the femoral diaphysis, PTH infusion increased cortical area in Cox2 KO, but not WT, femurs. PTH infusion markedly increased trabecular bone formation rate in the femur, serum markers of bone formation, and expression of bone formation-related genes, growth factors, and Wnt target genes in KO mice relative to WT mice, and decreased gene expression of Wnt antagonists only in KO mice. In contrast to the differential effects of PTH on anabolic factors in WT and KO mice, PTH infusion increased serum markers of resorption, expression of resorption-related genes, and the percent bone surface covered by osteoclasts similarly in both WT and KO mice. We conclude that Cox2 inhibits the anabolic, but not the catabolic, effects of continuous PTH. These data suggest that the bone loss with continuously infused PTH in mice is due largely to suppression of bone formation and that this suppression is mediated by Cox2.  相似文献   

16.
Leptin is a hormone secreted by adipocytes that is implicated in the regulation of bone density. Serum leptin levels are decreased in rodent models of type 1 (T1-) diabetes and in diabetic patients. Whether leptin mediates diabetic bone changes is unclear. Therefore, we treated control and T1-diabetic mice with chronic (28 days) subcutaneous infusion of leptin or saline to elucidate the therapeutic potential of leptin for diabetic osteoporosis. Leptin prevented the increase of marrow adipocytes and the increased aP2 expression that we observed in vehicle-treated diabetic mice. However, leptin did not prevent T1-diabetic decreases in trabecular bone volume fraction or bone mineral density in tibia or vertebrae. Consistent with this finding, markers of bone formation (osteocalcin RNA and serum levels) in diabetic mice were not restored to normal levels with leptin treatment. Interestingly, markers of bone resorption (TRAP5 RNA and serum levels) were decreased in diabetic mice by leptin treatment. In summary, we have demonstrated a link between low leptin levels in T1-diabetes and marrow adiposity. However, leptin treatment alone was not successful in preventing bone loss.  相似文献   

17.
This study investigated whether boron would enhance the ability of 17beta-estradiol (E2) or parathyroid hormone (PTH) to improve bone quality in ovariectomized OVX rats. Adult OVX rats were treated for 5 wk with vehicle, boron (5 ppm as boric acid), E2 (30 microg/kg/d, sc), PTH (60 microg/kg/d, sc), or a combination of boron and E2 or PTH, respectively. The E2 treatment corrected many adverse effects of OVX on bone quality, increased bone Ca, P, and Mg contents, and decreased trabecular plate separation. Dietary boron supplementation had no effects on these bone parameters in OVX rats. When OVX rats were treated with boron and E2 together, trabecular bone volume (Tb.BS/TV) and plate density were increased significantly more than that caused by E2 alone. The boron and E2 combination also increased trabecular bone surface (Tb.BV/TV) and decreased trabecular plate separation in OVX rats. In contrast, whereas daily PTH injection also increased bone Ca, Mg, and P contents, Tb.BV/TV, Tb.BS/TV, trabecular plate density and thickness, and decreased trabecular plate separation in OVX rats, the combination of boron and PTH had no additional improvement in bone quality over that achieved by PTH alone. In summary, this study shows for the first time that boron enhanced the action of E2, but not that of PTH, to improve trabecular bone quality in OVX rats.  相似文献   

18.
Type-1 diabetes (T1D) increases systemic inflammation, bone loss, and risk for bone fractures. Levels of the anti-inflammatory cytokine interleukin-10 (IL-10) are decreased in T1D, however their role in T1D-induced osteoporosis is unknown. To address this, diabetes was induced in male IL-10 knockout (KO) and wild-type (WT) mice. Analyses of femur and vertebral trabecular bone volume fraction identified bone loss in T1D-WT mice at 4 and 12 weeks, which in T1D-IL-10-KO mice was further reduced at 4 weeks but not 12 weeks. IL-10 deficiency also increased the negative effects of T1D on cortical bone. Osteoblast marker osterix was decreased, while osteoclast markers were unchanged, suggesting that IL-10 promotes anabolic processes. MC3T3-E1 osteoblasts cultured under high glucose conditions displayed a decrease in osterix which was prevented by addition of IL-10. Taken together, our results suggest that IL-10 is important for promoting osteoblast maturation and reducing bone loss during early stages of T1D.  相似文献   

19.
20.
Since bone resorption and formation by continuous and intermittent parathyroid hormone (PTH) treatments involve various types of cells in bone, this study examined the underlying mechanism by combining culture systems using mouse primary calvarial osteoblasts and bone marrow cells. The PTH/PTHrP receptor (PTH1R) expression and the cAMP accumulation in response to PTH were increased in accordance with the differentiation of osteoblasts. Osteoclast formation was strongly induced by continuous PTH treatment in the monolayer co‐culture of osteoblasts and bone marrow cells, which was associated with RANKL expression in differentiated osteoblasts. Bone formation determined by ALP activity and the type I collagen mRNA expression was stimulated by intermittent PTH treatment in the monolayer co‐culture and in the bone marrow cell layer of the separated co‐culture in a double chamber dish, but not in the culture of bone marrow cells alone. The stimulation in the separated co‐culture, accompanied by IGF‐I production by osteoblasts, was abolished when bone marrow cells were derived from knockout mice of insulin‐receptor substrate‐1 (IRS‐1?/?) or when osteoblasts were from PTH1R?/? mice. We conclude that differentiated osteoblasts are most likely the direct target of both continuous and intermittent PTH, while bone marrow cells are likely the effector cells. The osteoblasts stimulated by continuous PTH express RANKL which causes osteoclastogenesis from the precursors in bone marrow via cell‐to‐cell contact, leading to bone resorption; while the osteoblasts stimulated by intermittent PTH secrete IGF‐I which activates IRS‐1 in osteoblast precursors in bone marrow via a paracrine mechanism, leading to bone formation. J. Cell. Biochem. 109: 755–763, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号