首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradability of excess activated sludge from a wastewater treatment plant was studied. The objective was establishing the degree of degradation using either air or pure oxygen at different temperatures. Sludge treated with pure oxygen was degraded at temperatures from 22 degrees C to 50 degrees C while samples treated with air were degraded between 32 degrees C and 65 degrees C. Using air, sludge is efficiently degraded at 37 degrees C and at 50-55 degrees C. With oxygen, sludge was most effectively degraded at 38 degrees C or at 25-30 degrees C. Two-stage anaerobic-aerobic processes were studied. The first anaerobic stage was always operated for 5 days HRT, and the second stage involved aeration with pure oxygen and an HRT between 5 and 10 days. Under these conditions, there is 53.5% VSS removal and 55.4% COD degradation at 15 days HRT - 5 days anaerobic, 10 days aerobic. Sludge digested with pure oxygen at 25 degrees C in a batch reactor converted 48% of sludge total Kjeldahl nitrogen to nitrate. Addition of an aerobic stage with pure oxygen aeration to the anaerobic digestion enhances ammonium nitrogen removal. In a two-stage anaerobic-aerobic sludge digestion process within 8 days HRT of the aerobic stage, the removal of ammonium nitrogen was 85%.  相似文献   

2.
Haemonchus contortus eggs were cultured in intact fecal pellets at various temperatures (5-35 degrees C) for 22 days. Temperature and relative humidity were kept constant throughout the incubation period. Nl larval development occurred at 5 degrees C; peak third-stage larval recovery occurred at 20 degrees C. Egg mortality was an age-dependent phenomenon, whereas larval mortality remained constant irrespective of larval age. Development was characterized by a minimum development time followed by a transition to the next stage which occurred at a constant rate. All rates were temperature dependent. The minimum development times reported here are much less than those previously reported. Based on these results a mathematical model was used to describe the demography of the free-living stages of H. contortus at various temperatures.  相似文献   

3.
Amounts of several metabolites were measured in overwintering larvae of Enosima leucotaeniella acclimated to temperatures between -5 and 15 degrees C for 30days. In the diapausing stage, cold hardiness, as shown by the survival rate, began rising below 15 degrees C. Glycogen content decreased as the temperature decreased from 10 to 0 degrees C. Trehalose content rose as the temperature decreased from 15 to 5 degrees C, but remained unchanged as the temperature decreased from 5 and 0 degrees C. Twenty-eight free amino acids were detected in the haemolymph; levels of proline, glutamine and glutamic acid increased at high temperatures, but alanine increased at low temperatures, especially as temperature decreased from 5 to 0 degrees C. Lipid content was unchanged by the different acclimation temperatures. The effects of temperature, diapause and aerobic conditions on the levels of carbohydrates and amino acids in overwintering larvae were analyzed. Alanine levels rose at low temperature only when the larvae were in the diapausing stage. The level of trehalose rose at low temperature in both the diapausing and post-diapausing stages, although it was higher at aerobic conditions in the post-diapausing stage. These results suggest that efficient trehalose synthesis occurs under the combination of low temperature and aerobic conditions of the post-diapausing stage, so that cold hardiness in overwintering E. leucotaeniella larvae may rise to a high level in winter.  相似文献   

4.
低温对小菜蛾实验种群的影响   总被引:4,自引:3,他引:1  
研究了低温(<8℃)对小菜蛾的发育、存活和繁殖的影响结果表明,卵和蛹在4℃和6℃下死亡率随处理时间的延长而增加,在分别处理55d和70d后,卵和蛹全部死亡;经4℃和6℃处理的蛹,在16℃下羽化成虫的平均产卵量随处理时间的延长而减少,处理45d时,产卵量均为0小菜蛾幼期各虫态在0℃以下,死亡率随低温强度加大和处理时问的延长而增高就耐寒力而言,3龄幼虫和蛹最强,其次是2龄和4龄幼虫,卵和1龄幼虫的耐寒力最弱不同低温和时间处理小菜蛾幼期虫态对其后继虫态的发育历期有较大影响,总体说来,经过处理的小菜蛾幼期虫态,其后继虫态的发育历期普遍延长,一般处理某一虫态对其相邻虫态发育历期的影响最大小菜蛾蛹经低温处理后其羽化成虫的产卵量随着蛹期所经历低温强度的增强和时间延长而减少。  相似文献   

5.
We examined the thermokinetic behaviors of infective third-stage larvae (L3) of the rodent parasitic nematode Strongyloides ratti on temperature gradients using an in vitro agarose tracking assay method. Observed behaviors included both negative and positive thermokineses, the direction of movement depending both on the gradient temperature at which larvae were initially placed and on prior experience of culture temperature. Larvae isolated from rat feces cultured at 25 degrees C and placed on a gradient at temperatures between 22 degrees and 29 degrees C tended to move toward higher temperatures. At higher placement temperatures, most larvae moved little and showed no directional response, whereas at lower placement temperatures, many migrated toward cooler temperatures. At placement temperatures of 20 degrees C or below, few or no larvae moved toward the zone of higher temperature. Larvae isolated from rat feces cultured at 20 degrees C tended to migrate to a high temperature area regardless of placed temperature. Those cultured at 30 degrees C did not respond to the temperature gradient. L3 cultured at 30 degrees C were significantly less infective to rats than those cultured at 25 degrees or 20 degrees C. Additional experiments were designed to demonstrate thermokinetic behaviors during the period after reaching the L3 stage. Larvae incubated in double distilled water (DDW) for 24 h at 37 degrees C lost their ability to respond to lower temperatures, while in those incubated in DDW at 15 degrees and 25 degrees C, responses were still apparent. The thermokinetic behavior of S. ratti L3 is affected by surrounding environmental temperatures and this may have an important role in host finding.  相似文献   

6.
Development times and survivorship of immature shore flies and longevity and reproduction of adult shore flies, Scatella tenuicosta Collin, reared on algae-infested filter paper, were studied at three temperatures (constant 20, 26, and 28.5 degrees C) through life table analysis. The development time for each individual life stage and the total time from egg to adult decreased with increasing temperature. Duration of the third (ultimate) larval instar ranged from 3.3 +/- 0.09 d at 20 degrees C to 1.4 +/- 0.04 d at 28.5 degrees C and was 1.7-1.9 times longer than the approximately equal first and second instars. Development of male and female shore flies from egg to adult needed an average of 14.5 +/- 0.13, 8.2 +/- 0.05, and 7.0 +/- 0.04 d at 20, 26, and 28.5 degrees C, respectively, and needed an estimated 154.4 +/- 1.2 thermal units (degree days). At these respective temperatures, adult females lived 21.8 +/- 2.2, 19.9 +/- 2.4, and 15.0 +/- 1.4 d and produced 379 +/- 62, 710 +/- 119, and 477 +/- 83 eggs during oviposition periods of 14.3 +/- 2.1, 15.0 +/- 2.2, and 10.8 +/- 1.4 d; daily lifetime egg production averaged 16.3 +/- 2.3, 33.5 +/- 3.8, and 29.7 +/- 3.5. Developmental stage-specific mortality was relatively low for all life stages at all temperatures, with maximum percent mortalities of 5.7% occurring in both the egg stage and in the third instar. The highest net reproductive rate (R(o)) was obtained for insects reared at 26 degrees C and was 329.6. The intrinsic rate of natural increase (r(m)) was highest at 28.5 degrees C and was 0.430. Generation time and doubling time of the population were shortest at 28.5 degrees C and were 12.4 and 1.6 d, respectively. Results suggested that 26 degrees C was near optimum for reproduction.  相似文献   

7.
The first-stage larvae of Angiostrongylus cantonensis were cultured in various media at 27 degrees C. The most suitable medium for the development was Chernin's balanced salt solution supplemented with 10% L-15, 10% tryptose phosphate broth, 20% fetal calf serum, and 26 mM sodium bicarbonate. Addition of sodium bicarbonate to the medium facilitated early development of the first-stage larvae. When the first-stage larvae were cultured in the medium under 5% CO2 in air, the worms developed gradually to become quiescent and showed the C shape. Thereafter, the larvae developed to the second stage, retaining their first sheath. About 23 days later, the larvae began to develop to the third stage, being enclosed within the sheaths of the first and second molts. Under these conditions, the larvae developed uniformly and 82% of the larvae reached the third stage 50 days later. About 70% of the third-stage larvae discarded their two sheaths, showing almost the same size as those obtained in vivo. When these exsheathed larvae were inoculated into rats, they developed into adult worms and deposited numerous first-stage larvae.  相似文献   

8.
The aim of this study was to examine the effect of different temperatures and humidities on the infectivity of Echinococcus granulosus protoscolices. Eighteen dogs (6 groups, n = 3 each) were fed with offal mince harbouring approximately 20,000 protoscolices of E. granulosus of different viabilities. Dogs were infected with E. granulosus protoscolices of: (1) 5% viability at -10 degrees C and 50% relative humidity (RH); (2) 30% viability at 0 degrees C and 60% RH; (3) 20% viability at +10 degrees C and 65% RH; (4) 15% viability at +30 degrees C and 75% RH; (5) 11% viability at +40 degrees C and 80% RH; (6) 68% viability (control group). Dogs in each group were necropsied at 29-49 days post-infection. Mean intensities of E. granulosus recovered from dogs were 256.7 +/- 60.3 in the second group; 32.7 +/- 7.1 in the third group; 40.3 +/- 15.5 in the fourth group and 1533 +/- 513 in the control group. However, no parasites were recovered from the first and fifth groups. Results obtained in the present study show that larval stages could be infective for 1 to 4 weeks during spring, autumn or winter months when maximal temperatures are approximately 0-10 degrees C. In conclusion, cold-storage depots in slaughterhouses and abattoirs where sheep carcasses might be discarded should be kept at -20 degrees C for 2-3 days, dogs should be properly controlled and adequate control programmes must be established in areas where the disease is endemic.  相似文献   

9.
Liu Z  Gong P  Wu K  Sun J  Li D 《Journal of insect physiology》2006,52(10):1012-1020
Summer diapause in the cotton bollworm, Helicoverpa armigera (Hübner), which prolongs the pupal stage, particularly in males, is induced by high temperatures. In the laboratory, summer-diapausing pupae of H. armigera were induced at high temperatures (33-39 degrees C) with a photoperiod of LD8:16; winter-diapausing and non-diapausing pupae, cultured at 20 degrees C with a photoperiod of LD8:16 and at 27 degrees C, LD16:8, respectively, acted as a control. Retention time of eye spots, weight, and lipid and glycogen levels were compared. At high temperatures, both body weight and energy storage capacity were much higher in summer-diapausing pupae than in non-diapausing pupae reared at 33-39 degrees C. At temperatures (>33 degrees C) high enough to maintain summer diapause, the eye spots of summer-diapausing pupae did not move during the 30-day experiment. However, eye spots of summer-diapausing pupae placed at 30 degrees C began to move about 10 days after they were transferred, significantly later than in non-diapausing pupae reared at 33-39 degrees C or non-diapausing pupae reared at 27 degrees C, which initiated eye spot movement 2 days after pupation. The differences in retention time of eye spots between summer- and winter-diapausing pupae shows that winter diapause is more intense than summer diapause in this insect. The weight loss, and lipid and glycogen metabolism curves indicate that the summer-diapausing pupae's metabolism is very low. We conclude that summer diapause in the cotton bollworm is a true diapause and that the summer diapause enables the cotton bollworm to withstand the high temperatures of summer.  相似文献   

10.
The rearing of Galleria mellonella L. in laboratory is important for multiplication of entomopathogenic nematodes, mandatory for biological control studies. The objective of this study was to evaluate the effect of three thermal profiles on development stages of this insect, allowing synchronization of cycle production. Two distinct rearing phases were done: firstly, using nucleous of incubation for development of eggs and, secondly, using circular-aluminum manifolds for development of larvae and pupae. The time necessary for development of the immature stages decreased with higher temperatures. Incubation periods lasted 13.4 days at 22 degrees C, 8.3 at 27 degrees C and 6.8 days at 32 degrees C, while periods for larvae development lasted 40.4, 27.2, and 23.4 days, respectively, for the same temperatures. Development to pupal stage was observed 18.2, 15.0, and 12.2 days, respectively, for the same temperatures. Larval survival was higher at 32 degrees C, however embryonic stages and pupae survival were higher at 27 degrees C. and 22 degrees C, respectively. The threshold temperature was 11.209167 degrees C for the embryonic development stage, 7.695869 degrees C for larval stage, and 1.943050 degrees C for pupal stage of G. mellonella. Thermal constants were 138.380533 DG (degree day) for egg, 554.968830 DG for larvae, and 369.054080 DG for pupae.  相似文献   

11.
Biofilms from drains in food processing facilities with a recent history of no detectable Listeria monocytogenes in floor drains were cultured for microorganisms producing antilisterial metabolites. A total of 413 microbial isolates were obtained from 12 drain biofilm samples and were assayed at 15 and 37 degrees C for activities that were bactericidal or inhibitory to L. monocytogenes, by two agar plate assays. Twenty-one of 257 bacterial isolates and 3 of 156 yeast isolates had antilisterial activity. All 24 isolates which produced metabolites inhibitory to L. monocytogenes were assayed for antilisterial activity in coinoculated broth cultures containing tryptic soy broth with yeast extract (TSB-YE). A five-strain mixture of 10(3) CFU of L. monocytogenes/ml and 10(5) CFU of the candidate competitive-exclusion microorganism/ml was combined in TSB-YE and incubated at 37 degrees C for 24 h, 15 degrees C for 14 days, 8 degrees C for 21 days, and 4 degrees C for 28 days. Substantial inhibition of L. monocytogenes growth (4 to 5 log CFU/ml) was observed for nine bacterial isolates at 37 degrees C, two at 15 and 8 degrees C, and three at 4 degrees C. The inhibitory isolates were identified as Enterococcus durans (six isolates), Lactococcus lactis subsp. lactis (two isolates), and Lactobacillus plantarum (one isolate). The anti-L. monocytogenes activity of these isolates was evaluated in biofilms of L. monocytogenes on stainless steel coupons at 37, 15, 8, and 4 degrees C. Results revealed that two isolates (E. durans strain 152 and L. lactis subsp. lactis strain C-1-92) were highly inhibitory to L. monocytogenes (growth inhibition of >5 log(10) CFU of L. monocytogenes/cm(2)). These two bacterial isolates appear to be excellent competitive-exclusion candidates to control L. monocytogenes in biofilms at environmental temperatures of 4 to 37 degrees C.  相似文献   

12.
Fertilized rabbit ova at the 2-blastomere stage kept in rabbit serum were stored at low temperatures for various lengths of time. They were then cultured at 38 degrees C. for about 24 hours to determine their viability. A number of the viable ova were finally transplanted into recipient does. It was found that rapid cooling of ova to 5 degrees or to 0 degrees C. was more harmful to the subsequent viability of ova than slow cooling. Rapid cooling was not more lethal to the ova than slow cooling, but did prevent their future normal cleavage. There was no difference between those ova cooled rapidly or slowly to 10 degrees C. It was concluded that temperature shock has an adverse effect on ova, especially at the lower temperatures, though temperature shock can be remedied by acclimatization (slow cooling). Thus, the physiological significance of temperature shock would seem to be broadened. The optimal temperature for the storage of ova was investigated. It was found that 10 degrees C. was the best temperature; at this temperature viable ova were obtained after storage for 144 to 168 hours. At 0 degrees , 5 degrees , or 15 degrees C. the ova were viable for 96 to 120 hours, while at 22-24 degrees C., only for 24 to 48 hours. The percentage of dead ova was low at a favorable temperature, increasing only at the end of the storage period. At an unfavorable temperature, however, the rate of death increased steadily from beginning to end of storage. The percentage of abnormally cleaved ova (arrested cleavage and fragmentation) remained at a low level at first at a favorable temperature, but then increased just before or during death of the ova. A critical time for the viability, the abnormal cleavage, and the death of ova was characteristic of each temperature. About 24 to 28 per cent of the viable ova remaining after being stored at 0-15 degrees C. for 2 to 4 days and cultured at 38 degrees C. for 24 hours were capable of development into normal young. The compatibility of serum and ova, the absence of a correlation between the viability of the ova and the source of the fertilizing spermatozoa, and the fertilization of superovulated ova (i.e., the percentage of fertile does in follicular phase and in luteal phase, the percentage of unfertilized ova and of fertilized ova at different stages, the percentage of does that had produced a normal number of ova or had produced a large number of ova, etc.), are reported. The possibility of a more efficient utilization of the germ cells of valuable animals by means of the present techniques, and the possibility of a new approach to the experimental investigation of mammalian genetics and development, have been mentioned.  相似文献   

13.
There are currently two methods for maintaining cultured mammalian cells, continuous passage at 37 degrees C and freezing in small batches. We investigated a third approach, the "pausing" of cells for days or weeks at temperatures below 37 degrees C in a variety of cultivation vessels. High cell viability and exponential growth were observed after pausing a recombinant Chinese hamster ovary cell line (CHO-Clone 161) in a temperature range of 6-24 degrees C in microcentrifuge tubes for up to 3 weeks. After pausing in T-flasks at 4 degrees C for 9 days, adherent cultures of CHO-DG44 and human embryonic kidney (HEK293 EBNA) cells resumed exponential growth when incubated at 37 degrees C. Adherent cultures of CHO-DG44 cells paused for 2 days at 4 degrees C in T-flasks and suspension cultures of HEK293 EBNA cells paused for 3 days at either 4 degrees C or 24 degrees C in spinner flasks were efficiently transfected by the calcium phosphate-DNA coprecipitation method, yielding reporter protein levels comparable to those from nonpaused cultures. Finally, cultures of a recombinant CHO cell line (CHO-YIgG3) paused for 3 days at 4 degrees C, 12 degrees C, or 24 degrees C in bioreactors achieved the same cell mass and recombinant protein productivity levels as nonpaused cultures. The success of this approach to cell storage with rodent and human cell lines points to a general biological phenomenon which may have a wide range of applications for cultivated mammalian cells.  相似文献   

14.
Three different laboratory conditions were used to examine the impacts of fluctuating temperature on the development and infectivity of entomopathogenic nematode (EPN) Steinernema carpocaposae A10. Set I experiments focused on the impact of cold stress early in the development cycle. In these studies Galleria mellonella hosts were infected and incubated for 2 days at the control temperature of 23 degrees C and then subjected to lower temperatures of -10, 4, 10 or 14 degrees C, respectively, from days 3 to 36 post-infection (PI). Dissections of infected cadavers indicated arrested development at the adult stage at all lower temperatures tested. Set II experiments examined the impacts of cold stress early in the development followed by a return to 23 degrees C. Hosts were infected and incubated as in Set I and subjected to the same temperatures as above for 7 days, followed by incubation at 23 degrees C until 23 days PI. A limited number of EPN populations were able to complete development at 10 and 14 degrees C though emergent population numbers were significantly lower than those of control infections incubated continuously at 23 degrees C. In Set III experiments, infected hosts were subjected to cold stress later during development starting at day 4 post-infection followed by incubation at the control temperature. Population survival past first and second stage juveniles was reduced by at least 95% or more at the lower temperatures compared with controls. Emergent populations from the Set III cold-stressed hosts were not infectious. These studies may provide insights as to how EPN survive seasonal temperature fluctuations under natural environmental conditions.  相似文献   

15.
Abnormalities induced in cultured rat embryos by hyperthermia   总被引:1,自引:0,他引:1  
D L Cockroft  D A New 《Teratology》1978,17(3):277-283
Rat embryos were explanted at nine and one-half days of gestation and cultured for 48 hours in rotating bottles containing rat serum and a gas phase, at temperatures of 38, 40, 40.5 and 41 degrees C. The embryo cultured at 40.5 degrees C were retarded and many of them were abnormal, and at 41 degrees C, all the embryos were malformed and retarded. The most frequent abnormalities occurring at both these temperatures were microcephaly and oedema of the pericardium. Development of the embryos cultured at 40 degrees C was similar to that of the controls at 38 degrees C, and superficially they appeared to be normal. However, measurement of the head dimensions, and separate determinations of head and body protein contents showed that the 40 degrees C embryos were microcephalic.  相似文献   

16.
Steady-state thermoregulatory responses were measured in the immature rat at 5, 7, 9, 11, 13, 15, 17, and 19 days of age. Tests were conducted at controlled ambient temperatures (Ta) ranging from 22.5 to 37.0 degrees C. Colonic (Tco) and skin (tail, interscapular, abdominal) temperatures were measured, as was O2 consumption from which metabolic rate (M) was calculated. Significant improvements in homeothermic ability occurred from 5 to 19 days of age. Although the resting level of M (RMR) increased by 6.9 W/m2 and the lower Ta limit for RMR (LCT) decreased by 2.5 degrees C as age advanced from 5 to 19 days, Tco at LCT was 36.8-37.1 degrees C at all ages studied. Below LCT the elevation of M to a given decrease in Tco was greater the older the animal. A comparable response to a change in skin temperature was not age dependent. Improvement in thermal insulation was the primary factor responsible for increases in homeothermic ability between 5 and 19 days of age.  相似文献   

17.
The possibility of cryopreserving the eggs of Angiostrongylus cantonensis collected from the uterus of female worms was investigated. Eggs were cultured in NCTC 109 medium containing 50% rat serum, and various growth stages, from one-cell eggs to embryonated eggs, were used in this study. As a cryoprotective agent, dimethylsulphoxide (Me2SO) was added to the medium at a final concentration of 1 M. Eggs suspended in 0.2 ml of the medium at 37 degrees C were cooled to 0 degrees C at a rate of 1 degree C min-1, then an equal volume of 2M-Me2SO solution was added. After equilibration for 15 min, the freezing procedures were started. In the freezing procedures, the effectiveness of (i) a seeding process, (ii) different cooling and warming rates and (iii) the relationship between the growth stages of the eggs and their tolerance to freezing at -20 degrees C were investigated. It was found the highest level of survival could be obtained with 32-cell eggs cooled at a rate of 0.3 degrees C min-1 or more slowly with seeding at -4 degrees C and warming at a rate of 5 degrees C min-1. Survival was influenced more by cooling rate than by warming rate. Using these optimum conditions, the survival of eggs was then investigated following cooling to various temperatures. While more than 50% of eggs were found to survive cooling to -30 degrees C, extremely low survival was noted from lower temperatures.  相似文献   

18.
The development of the triactinomyxon stage of Myxobolus cerebralis and release of mature spores from Tubifex tubifex were shown to be temperature dependent. In the present work, the effect of temperature over a range of 5-30 degrees C on the development and release of the triactinomyxon stages of M. cerebralis was studied. Infected T. tubifex stopped releasing triactinomyxon spores 4 days after transfer from 15 degrees C to 25 degrees C or 30 degrees C. Transmission electron microscopic examinations of the tubificids held at 25 degrees C and 30 degrees C for 3 days showed that all developmental stages degenerated and transformed to electron-dense clusters between the gut epithelial cells of T. tubifex. In contrast, tubificid worms held at 5 degrees C and 10 degrees C examined at the same time were heavily infected with many early developmental stages of triactinomyxon. At 15 degrees C, the optimal temperature for development, maturing and mature stages of the parasite were evident. Infected T. tubifex transferred from 15 degrees C to 20 degrees C stopped producing triactinomyxon spores after 15 days. However, 15 days at 20 degrees C was not sufficient to destroy all developmental stages of the parasite. When the tubificid worms were returned to 15 degrees C, the one-cell stages and the binucleate-cell stages resumed normal growth. It was also demonstrated that T. tubifex cured of infection by holding at 30 degrees C for 3 weeks and shifted to 15 degrees C could be re-infected with M. cerebralis spores. The waterborne triactinomyxon spores of M. cerebralis did not appear to be as short-lived as previously reported. More than 60% of experimentally produced waterborne triactinomyxon spores survived and maintained their infectivity for rainbow trout for 15 days at water temperatures up to 15 degrees C. In natural aquatic systems, the triactinomyxon spores may survive and keep their infectivity for periods even longer than 15 days.  相似文献   

19.
A dose-response relationship was not observed in olive fruit fly, Bactrocera oleae (Gmelin), larvae exposed to acetic acid concentrations (0-2.5%) used in commercial brine solutions to cure olives. Immersion in a 1% acetic acid brine solution impeded emergence of the immature stages. A 1-wk exposure of olives infested with olive fruit fly larvae to low-temperature storage as a postharvest treatment at 0-1 degree C resulted in 8% survival of the population, and exposures of 2 through 5 wk further reduced pupal and adult emergence to <1.0%. One- to 2-wk exposures at 2-3 degrees C resulted in a significant decrease in survival from 20 to 3%, respectively, and longer durations of 3-5 wk reduced survival to <1.0%. Mean daily fruit pulp temperatures in olives in the top, middle, and bottom of plastic bins stored at 2-3 degrees C decreased by 5-8 degrees C from the first to the second day. Lowest temperatures were observed in the top, and highest temperatures were observed in the middle layer of fruit, which attained a mean temperature of 3.8 degrees C on day 5. Laboratory choice tests showed that olive fruit fly oviposited at a higher rate in late season Mission olives that were green than in fruit that were in the red blush maturity stage in tests with 1- and 3-4-d exposure periods, and an increase in duration of exposure was related to an increase in the total number of ovipositional sites. Higher percentages of olive fruit fly third instars, pupae, and adults were reared from green fruit than from fruit in the red blush stage after a 1-d exposure to oviposition. Manzanillo olives were more attractive for oviposition by olive fruit fly than Mission olives, and significantly more third instars, pupae, and adults developed in Manzanillo fruit than in Mission fruit in the red blush stage. These differences were related to the better quality and higher flesh content of the Manzanillo versus Mission olives used in the tests.  相似文献   

20.
This study determined the relationship between the duration and extent of temperature elevation, during a critical period of rat embryonic development, and the induction of congenital malformations. Pregnant Sprague-Dawley rats, at 9 days 12 hours gestation (gastrulation stage), were partially immersed in a water bath until their core temperature, monitored by a rectal thermistor probe, was elevated to a nominated temperature. Seven temperatures were tested from 40.5 degrees C to 43.5 degrees C, elevations of 2.0-5.0 degrees C in core temperature. Various durations at each of these temperatures were tested for potential teratogenicity. A single elevation of 5.0 degrees C or 4.5 degrees C needed only a "spike" in duration to be teratogenic, 4.0 degrees C was teratogenic within 5 minutes, 3.5 degrees C within 10 minutes, 3.0 degrees C within 20 minutes, and 2.5 degrees C within 1 hour. An elevation of 2.0 degrees C for 8 hours was not teratogenic. Microphthalmia was the most common malformation at all teratogenic temperatures and was frequently the only malformation seen at the shortest time exposure for a particular temperature. Encephalocele, facial clefting, and maxillary hypoplasia were the other frequently seen malformations. Five control rats were placed in the water bath for 2 hours at 38 degrees C so that their core temperature was not elevated. All the control fetuses were normal. An elevation of 2.5 degrees C for 1 hour was the threshold combination for teratogenesis. As the temperature increased above a 2.5 degrees C elevation the necessary duration of exposure for teratogenesis decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号