首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Identifying non-coding RNA regions on the genome using computational methods is currently receiving a lot of attention. In general, it is essentially more difficult than the problem of detecting protein-coding genes because non-coding RNA regions have only weak statistical signals. On the other hand, most functional RNA families have conserved sequences and secondary structures which are characteristic of their molecular function in a cell. These are known as sequence motifs and consensus structures, respectively. In this paper, we propose an improved method which extends a pairwise structural alignment method for RNA sequences to handle position specific scoring matrices and hence to incorporate motifs into structural alignment of RNA sequences. To model sequence motifs, we employ position specific scoring matrices (PSSMs). Experimental results show that PSSMs enable us to find individual RNA families efficiently, especially if we have biological knowledge such as sequence motifs. K. Sato and K. Morita contributed equally to this work.  相似文献   

2.
3.
4.
MOTIVATION: DNA motif finding is one of the core problems in computational biology, for which several probabilistic and discrete approaches have been developed. Most existing methods formulate motif finding as an intractable optimization problem and rely either on expectation maximization (EM) or on local heuristic searches. Another challenge is the choice of motif model: simpler models such as the position-specific scoring matrix (PSSM) impose biologically unrealistic assumptions such as independence of the motif positions, while more involved models are harder to parametrize and learn. RESULTS: We present MotifCut, a graph-theoretic approach to motif finding leading to a convex optimization problem with a polynomial time solution. We build a graph where the vertices represent all k-mers in the input sequences, and edges represent pairwise k-mer similarity. In this graph, we search for a motif as the maximum density subgraph, which is a set of k-mers that exhibit a large number of pairwise similarities. Our formulation does not make strong assumptions regarding the structure of the motif and in practice both motifs that fit well the PSSM model, and those that exhibit strong dependencies between position pairs are found as dense subgraphs. We benchmark MotifCut on both synthetic and real yeast motifs, and find that it compares favorably to existing popular methods. The ability of MotifCut to detect motifs appears to scale well with increasing input size. Moreover, the motifs we discover are different from those discovered by the other methods. AVAILABILITY: MotifCut server and other materials can be found at motifcut.stanford.edu.  相似文献   

5.
MOTIVATION: Finding common patterns, or motifs, in the promoter regions of co-expressed genes is an important problem in bioinformatics. A common representation of the motif is by probability matrix or PSSM (position specific scoring matrix). However, even for a motif of length six or seven, there is no algorithm that can guarantee finding the exact optimal matrix from an infinite number of possible matrices. RESULTS: This paper introduces the first algorithm, called EOMM, for finding the exact optimal matrix-represented motif, or simply optimal motif. Based on branch-and-bound searching by partitioning the solution space recursively, EOMM can find the optimal motif of size up to eight or nine, and a motif of larger size with any desired accuracy on the principle that the smaller the error bound, the longer the running time. Experiments show that for some real and simulated data sets, EOMM finds the motif despite very weak signals when existing software, such as MEME and MITRA-PSSM, fails to do so.  相似文献   

6.
Hu YJ 《Nucleic acids research》2002,30(17):3886-3893
Given a set of homologous or functionally related RNA sequences, the consensus motifs may represent the binding sites of RNA regulatory proteins. Unlike DNA motifs, RNA motifs are more conserved in structures than in sequences. Knowing the structural motifs can help us gain a deeper insight of the regulation activities. There have been various studies of RNA secondary structure prediction, but most of them are not focused on finding motifs from sets of functionally related sequences. Although recent research shows some new approaches to RNA motif finding, they are limited to finding relatively simple structures, e.g. stem-loops. In this paper, we propose a novel genetic programming approach to RNA secondary structure prediction. It is capable of finding more complex structures than stem-loops. To demonstrate the performance of our new approach as well as to keep the consistency of our comparative study, we first tested it on the same data sets previously used to verify the current prediction systems. To show the flexibility of our new approach, we also tested it on a data set that contains pseudoknot motifs which most current systems cannot identify. A web-based user interface of the prediction system is set up at http://bioinfo. cis.nctu.edu.tw/service/gprm/.  相似文献   

7.
Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.  相似文献   

8.
Finding composite regulatory patterns in DNA sequences   总被引:1,自引:0,他引:1  
Pattern discovery in unaligned DNA sequences is a fundamental problem in computational biology with important applications in finding regulatory signals. Current approaches to pattern discovery focus on monad patterns that correspond to relatively short contiguous strings. However, many of the actual regulatory signals are composite patterns that are groups of monad patterns that occur near each other. A difficulty in discovering composite patterns is that one or both of the component monad patterns in the group may be 'too weak'. Since the traditional monad-based motif finding algorithms usually output one (or a few) high scoring patterns, they often fail to find composite regulatory signals consisting of weak monad parts. In this paper, we present a MITRA (MIsmatch TRee Algorithm) approach for discovering composite signals. We demonstrate that MITRA performs well for both monad and composite patterns by presenting experiments over biological and synthetic data.  相似文献   

9.
Subtle motifs: defining the limits of motif finding algorithms   总被引:4,自引:0,他引:4  
MOTIVATION: What constitutes a subtle motif? Intuitively, it is a motif that is almost indistinguishable, in the statistical sense, from random motifs. This question has important practical consequences: consider, for example, a biologist that is generating a sample of upstream regulatory sequences with the goal of finding a regulatory pattern that is shared by these sequences. If the sequences are too short then one risks losing some of the regulatory patterns that are located further upstream. Conversely, if the sequences are too long, the motif becomes too subtle and one is then likely to encounter random motifs which are at least as significant statistically as the regulatory pattern itself. In practical terms one would like to recognize the sequence length threshold, or the twilight zone, beyond which the motifs are in some sense too subtle. RESULTS: The paper defines the motif twilight zone where every motif finding algorithm would be exposed to random motifs which are as significant as the one which is sought. We also propose an objective tool for evaluating the performance of subtle motif finding algorithms. Finally we apply these tools to evaluate the success of our MULTIPROFILER algorithm to detect subtle motifs.  相似文献   

10.
GAME: detecting cis-regulatory elements using a genetic algorithm   总被引:3,自引:0,他引:3  
  相似文献   

11.
Finding motifs in the twilight zone   总被引:8,自引:0,他引:8  
  相似文献   

12.
A novel method for finding tRNA genes   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

13.
MOTIVATION: Blast programs are very efficient in finding relatively strong similarities but some very distantly related sequences are given a very high Expect value and are ranked very low in Blast results. We have developed Ballast, a program to predict local maximum segments (LMSs-i.e. sequence segments conserved relatively to their flanking regions) from a single Blast database search and to highlight these divergent homologues. The TBlastN database searches can also be processed with the help of information from a joint BlastP search. RESULTS: We have applied the Ballast algorithm to BlastP searches performed with sequences belonging to well described dispersed families (aminoacyl-tRNA synthetases; helicases) against the SwissProt 38 database. We show that Ballast is able to build an appropriate conservation profile and that LMSs are predicted that are consistent with the signatures and motifs described in the literature. Furthermore, by comparing the Blast, PsiBlast and Ballast results obtained on a well defined database of structurally related sequences, we show that the LMSs provide a scoring scheme that can concentrate on top ranking distant homologues better than Blast. Using the graphical user interface available on the Web, specific LMSs may be selected to detect divergent homologues sharing the corresponding properties with the query sequence without requiring any additional database search.  相似文献   

14.
15.
16.
17.
Protein engineering by inserting stretches of random DNA sequences into target genes in combination with adequate screening or selection methods is a versatile technique to elucidate and improve protein functions. Established compounds for generating semi-random DNA sequences are spiked oligonucleotides which are synthesised by interspersing wild type (wt) nucleotides of the target sequence with certain amounts of other nucleotides. Directed spiking strategies reduce the complexity of a library to a manageable format compared with completely random libraries. Computational algorithms render feasible the calculation of appropriate nucleotide mixtures to encode specified amino acid subpopulations. The crucial element in the ranking of spiked codons generated during an iterative algorithm is the scoring function. In this report three scoring functions are analysed: the sum-of-square-differences function s, a modified cubic function c, and a scoring function m derived from maximum likelihood considerations. The impact of these scoring functions on calculated amino acid distributions is demonstrated by an example of mutagenising a domain surrounding the active site serine of subtilisin-like proteases. At default weight settings of one for each amino acid, the new scoring function m is superior to functions s and c in finding matches to a given amino acid population.  相似文献   

18.
19.
MOTIVATION: Short linear peptide motifs mediate protein-protein interaction, cell compartment targeting and represent the sites of post-translational modification. The identification of functional motifs by conventional sequence searches, however, is hampered by the short length of the motifs resulting in a large number of hits of which only a small portion is functional. RESULTS: We have developed a procedure for the identification of functional motifs, which scores pattern conservation in homologous sequences by taking explicitly into account the sequence similarity to the query sequence. For a further improvement of this method, sequence filters have been optimized to mask those sequence regions containing little or no linear motifs. The performance of this approach was verified by measuring its ability to identify 576 experimentally validated motifs among a total of 15 563 instances in a set of 415 protein sequences. Compared to a random selection procedure, the joint application of sequence filters and the novel scoring scheme resulted in a 9-fold enrichment of validated functional motifs on the first rank. In addition, only half as many hits need to be investigated to recover 75% of the functional instances in our dataset. Therefore, this motif-scoring approach should be helpful to guide experiments because it allows focusing on those short linear peptide motifs that have a high probability to be functional.  相似文献   

20.
The development of new and effective drugs is strongly affected by the need to identify drug targets and to reduce side effects. Resolving these issues depends partially on a thorough understanding of the biological function of proteins. Unfortunately, the experimental determination of protein function is expensive and time consuming. To support and accelerate the determination of protein functions, algorithms for function prediction are designed to gather evidence indicating functional similarity with well studied proteins. One such approach is the MASH pipeline, described in the first half of this paper. MASH identifies matches of geometric and chemical similarity between motifs, representing known functional sites, and substructures of functionally uncharacterized proteins (targets). Observations from several research groups concur that statistically significant matches can indicate functionally related active sites. One major subproblem is the design of effective motifs, which have many matches to functionally related targets (sensitive motifs), and few matches to functionally unrelated targets (specific motifs). Current techniques select and combine structural, physical, and evolutionary properties to generate motifs that mirror functional characteristics in active sites. This approach ignores incidental similarities that may occur with functionally unrelated proteins. To address this problem, we have developed Geometric Sieving (GS), a parallel distributed algorithm that efficiently refines motifs, designed by existing methods, into optimized motifs with maximal geometric and chemical dissimilarity from all known protein structures. In exhaustive comparison of all possible motifs based on the active sites of 10 well-studied proteins, we observed that optimized motifs were among the most sensitive and specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号