首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Class Ia phosphoinositide (PI) 3-kinase is a central component in growth factor signaling and is comprised of a p110 catalytic subunit and a regulatory subunit, the most common family of which is derived from the p85alpha gene (Pik3r1). Optimal signaling through the PI 3-kinase pathway depends on a critical molecular balance between the regulatory and catalytic subunits. In wild-type cells, the p85 subunit is more abundant than p110, leading to competition between the p85 monomer and the p85-p110 dimer and ineffective signaling. Heterozygous disruption of Pik3r1 results in increased Akt activity and decreased apoptosis by insulin-like growth factor 1 (IGF-1) through up-regulated phosphatidylinositol (3,4,5)-triphosphate production. Complete depletion of p85alpha, on the other hand, results in significantly increased apoptosis due to reduced PI 3-kinase-dependent signaling. Thus, a reduction in p85alpha represents a novel therapeutic target for enhancing IGF-1/insulin signaling, prolongation of cell survival, and protection against apoptosis.  相似文献   

2.
The p85alpha regulatory subunit of class I(A) phosphoinositide 3-kinases (PI3K) is derived from the Pik3r1 gene, which also yields alternatively spliced variants p50alpha and p55alpha. It has been proposed that excess monomeric p85 competes with functional PI3K p85-p110 heterodimers. We examined embryonic stem (ES) cells with heterozygous and homozygous disruptions in the Pik3r gene and found that wild type ES cells express virtually no monomeric p85alpha. Although, IGF-1-stimulated PI3K activity associated with insulin receptor substrates was unaltered in all cell lines, p85alpha-null ES cells showed diminished protein kinase B activation despite increased PI3K activity associated with the p85beta subunit. Furthermore, p85alpha-null cells demonstrated growth retardation, increased frequency of apoptosis, and altered cell cycle regulation with a G(0)/G(1) cell cycle arrest and up-regulation of p27(KIP), whereas signaling through CREB and MAPK was enhanced. These phenotypes were reversed by re-expression of p85alpha via adenoviral gene transfer. Surprisingly, all ES cell lines could be differentiated into adipocytes. In these differentiated ES cells, however, compensatory p85beta signaling was lost in p85alpha-null cells while increased signaling by CREB and MAPK was still observed. Thus, loss of p85alpha in ES cells induced alterations in IGF-1 signaling and regulation of apoptosis and cell cycle but no defects in differentiation. However, differentiated ES cells partially lost their ability for compensatory signaling at the level of PI3K, which may explain some of the defects observed in mice with homozygous deletion of the Pik3r1 gene.  相似文献   

3.
Phosphoinositide 3-kinase (PI 3-kinase) activity is required for growth factor-induced cytoskeletal regulation and cell migration. We previously found that in MTLn3 rat adenocarcinoma cells, EGF-stimulated induction of actin barbed ends and lamellipod extension specifically requires the p85/p110alpha isoform of PI 3-kinase. To further characterize signaling by distinct PI 3-kinase isoforms, we have developed MTLn3 cells that transiently or stably overexpress either p110alpha or p110beta. Transient overexpression of p110beta inhibited EGF-stimulated lamellipod extension, whereas p110alpha-transfected cells showed normal EGF-stimulated lamellipod extension. Similar results were obtained by overexpression of kinase-dead p110beta, suggesting that effects on cytoskeletal signaling were due to competition with p85/p110alpha complexes. Stable overexpression of p110alpha appeared to be toxic, based on the difficulty in obtaining stable overexpressing clones. In contrast, cells expressing a 2-fold increase in p110beta were readily obtainable. Interestingly, cells stably expressing p110beta showed a marked inhibition of EGF-stimulated lamellipod extension. Using computer-assisted analysis of time-lapse images, we found that overexpression of p110beta caused a nearly complete inhibition of motility. Cells overexpressing p110beta showed normal activation of Akt and Erk, suggesting that overall PI 3-kinase signaling was intact. A chimeric p110 molecule containing the p85-binding and Ras-binding domains of p110alpha and the C2, helical, and kinase domains of p110beta, was catalytically active yet also inhibited EGF-stimulated lamellipod extension. These data highlight the differential signaling by distinct p110 isoforms. Identification of effectors that are differently regulated by p110alpha versus p110beta will be important for understanding cell migration and its role in metastasis.  相似文献   

4.
Influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by binding influenza A virus NS1 protein to the p85beta regulatory subunit of PI3K. In this study, we report that NS1 binds to the inter-SH2 (iSH2) domain of p85beta. Mutational analyses on p85beta iSH2 domain defined that Val-573 is the critical amino acid (AA) that mediates NS1 and p85beta interaction. In reciprocal gain of function experiments with p85alpha, we demonstrated that mutation to Val at Met-582 leads to NS1 binding and increased PI3K activity. Molecular modeling based on our experimental results suggested that, in addition to the interaction interface between the NS1 SH3 binding motif 1 (AA 164-167) and p85beta Val-573, AA 137-142 in NS1 might interact with p85beta. Indeed, mutations of AA 141 and 142 in NS1 disrupted the interaction between NS1 and p85beta. Mutant virus PR8-NS1-141/142 was not able to activate Akt phosphorylation. Furthermore, PI3K assays demonstrated that, in wild-type virus-infected cells, p85beta-associated PI3K activity was increased significantly. In contrast, in the mutant virus-infected cells containing mutant NS1 unable to interact with p85beta, the p85beta-associated PI3K activity up-regulation was not seen, suggesting that PI3K up-regulation is dependent upon the interaction between NS1 and p85beta. Competition experiments and the immunoprecipitation studies demonstrated that NS1, p85beta, and p110 form a complex in cells. Finally, the mechanism by which binding of NS1 to p85beta regulates PI3K activity was discussed based on a predicted structural model of NS1-p85-p110 complex.  相似文献   

5.
6.
Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85alpha regulatory subunit yields three splicing variants, p85alpha, AS53/p55alpha, and p50alpha. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110alpha catalytic subunit. PI 3-kinase activity associated with p50alpha was greater than that associated with p85alpha or AS53. Increasing the level of p85alpha or AS53, but not p50alpha, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85alpha mutant lacking the p110-binding site (Deltap85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70(S6K)), was decreased in cells expressing p85alpha or AS53 but not in cells expressing p50alpha. Similar inhibition of PI 3-kinase, Akt, and p70(S6K) was observed, even when p110alpha was coexpressed with p85alpha or AS53. Expression of p110alpha alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110alpha was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.  相似文献   

7.
Phosphatidylinositol (PI) 3-kinase is a heterodimeric enzyme of 85-kDa (p85) and 110-kDa (p110) subunits implicated in mitogenic signal transduction by virtue of its activation in cells transformed by diverse viral oncoproteins and treated with various growth factors. We have identified a domain in p110 that mediates association with p85 in vitro and in intact cells. A glutathione S-transferase fusion protein containing the N-terminal 171 amino-acids of p110 beta bound to free p85 in cell lysates. This fusion protein also bound directly to p85 immobilized on nitrocellulose filters. An epitope-tagged fragment containing amino acids 31 to 150 of p110 beta associated with p85 upon expression in intact cells. Expression of either an N-terminal fragment of p110 beta or the p85 inter-SH2 domain, which mediates association with p110, reduced the association of endogenous PI 3-kinase activity with the activated platelet-derived growth factor receptor in intact cells. Hence, these defined regions of p85 and p110 mediate the interaction between the two subunits of PI 3-kinase.  相似文献   

8.
Studies ex vivo have shown that phosphoinositide 3-kinase (PI3K) activity is necessary but not sufficient for insulin-stimulated glucose uptake. Unexpectedly, mice lacking either of the PI3K regulatory subunits p85alpha or p85beta exhibit increased insulin sensitivity. The insulin hypersensitivity is particularly unexpected in p85alpha-/- p55alpha-/- p50alpha-/- mice, where a decrease in p110alpha and p110beta catalytic subunits was observed in insulin-sensitive tissues. These results raised the possibility that decreasing total PI3K available for stimulation by insulin might circumvent negative feedback loops that ultimately shut off insulin-dependent glucose uptake in vivo. Here we present results arguing against this explanation. We show that p110alpha+/- p110beta+/- mice exhibit mild glucose intolerance and hyperinsulinemia in the fasted state. Unexpectedly, p110alpha+/- p110beta+/- mice showed a approximately 50% decrease in p85 expression in liver and muscle. Consistent with this in vivo observation, knockdown of p110 by RNA interference in mammalian cells resulted in loss of p85 proteins due to decreased protein stability. We propose that insulin sensitivity is regulated by a delicate balance between p85 and p110 subunits and that p85 subunits mediate a negative role in insulin signaling independent of their role as mediators of PI3K activation.  相似文献   

9.
A family of phosphatidylinositol 3-kinases (PI 3-kinase), comprising three major classes (I-III) in terms of substrate specificity and regulation, play important roles in a variety of cell functions. We previously reported that the class-I heterodimeric PI 3-kinase consisting of p110beta-catalytic and p85-regulatory subunits is synergistically activated by two different types of membrane receptors, one possessing tyrosine kinase activity and the other activating trimeric G proteins. Here we report an additional unique feature of the p110beta/p85 PI 3-kinase. The small GTPase Rab5 was identified as a binding protein for the p110beta-catalytic subunit in a yeast two-hybrid screening system. The interaction appears to require at least two separated amino-acid sequences present specifically in the beta isoform of p110 and the GTP-bound form of Rab5. The expressions of constitutively active and dominant negative mutants of Rab5 in THP-1 cells induce the stimulation and inhibition, respectively, of protein kinase B activity, which is dependent on the PI 3-kinase product phosphatidylinositol 3,4,5-triphosphate. These results suggest that there is a specific interaction between GTP-bound Rab5 and the p110beta/p85 PI 3-kinase, leading to efficient coupling of the lipid kinase product to its downstream target, protein kinase B.  相似文献   

10.
Ventricular cardiomyocytes and cardiac tissue of lean and genetically obese (fa/fa) Zucker rats were used 1) to study the role of the p85 regulatory subunit isoforms p85 alpha and p85 beta for insulin signaling through the phosphatidylinositol (PI) 3-kinase pathway, and 2) to elucidate the implications of these mechanisms for cardiac insulin resistance. Western blot analysis of cardiomyocyte lysates revealed expression of p85 alpha and p85 beta but no detectable amounts of the splice variants of p85 alpha. Essentially no p85 alpha subunit of PI 3-kinase was found to be associated with insulin receptor substrate (IRS)-1 or IRS-2 in basal and insulin-stimulated (5 min) cardiomyocytes. Instead, insulin produced a twofold increase in p85 beta associated with IRS-1, leading to a three- to fourfold increase in p85 beta-associated PI 3-kinase activity. This response was significantly reduced in obese animals. Comparable results were obtained in the intact heart after in vivo stimulation. In GLUT-4-containing vesicles, an increased abundance (3.7 +/- 0.7-fold over basal) of p85 alpha was observed after insulin stimulation of lean animals, with no significant effect in the obese group. No p85 beta could be detected in GLUT-4-containing vesicles. Recruitment of the p110 catalytic subunit of PI 3-kinase and a twofold increase in enzyme activity in GLUT-4-containing vesicles by insulin was observed only in lean rats. We conclude that, in the heart, p85 alpha recruits PI 3-kinase activity to GLUT-4 vesicles, whereas p85 beta represents the main regulator of IRS-1- and IRS-2-mediated PI 3-kinase activation. Furthermore, multiple defects of PI 3-kinase activation, involving both the p85 alpha and the p85 beta adaptor subunits, may contribute to cardiac insulin resistance.  相似文献   

11.
Some Gq-coupled receptors have been shown to antagonize growth factor activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector, Akt. We used a constitutively active Galphaq(Q209L) mutant to explore the effects of Galphaq activation on signaling through the PI3K/Akt pathway. Transient expression of Galphaq(Q209L) in Rat-1 fibroblasts inhibited Akt activation induced by platelet-derived growth factor or insulin treatment. Expression of Galphaq(Q209L) also attenuated Akt activation promoted by coexpression of constitutively active PI3K in human embryonic kidney 293 cells. Galphaq(Q209L) had no effect on the activity of an Akt mutant in which the two regulatory phosphorylation sites were changed to acidic amino acids. Inducible expression of Galphaq(Q209L) in a stably transfected 293 cell line caused a decrease in PI3K activity in p110alpha (but not p110beta) immunoprecipitates. Receptor activation of Galphaq also selectively inhibited PI3K activity in p110alpha immunoprecipitates. Active Galphaq still inhibited PI3K/Akt in cells pretreated with the phospholipase C inhibitor U73122. Finally, Galphaq(Q209L) co-immunoprecipitated with the p110alpha-p85alpha PI3K heterodimer from lysates of COS-7 cells expressing these proteins, and incubation of immunoprecipitated Galphaq(Q209L) with purified recombinant p110alpha-p85alpha in vitro led to a decrease in PI3K activity. These results suggest that agonist binding to Gq-coupled receptors blocks Akt activation via the release of active Galphaq subunits that inhibit PI3K. The inhibitory mechanism seems to be independent of phospholipase C activation and might involve an inhibitory interaction between Galphaq and p110alpha PI3K.  相似文献   

12.
Activation of p85/p110-type phosphatidylinositol (PI) kinase has been implicated in various cellular activities. This PI kinase phosphorylates the D-4 position with a similar or higher efficiency than the D-3 position when trichloroacetic acid-treated cell membrane is used as a substrate, although it phosphorylates almost exclusively the D-3 position of the inositol ring in phosphoinositides when purified PI is used as a substrate. Furthermore, the lipid kinase activities of p110 for both the D-3 and D-4 positions were completely abolished by introducing kinase-dead point mutations in their lipid kinase domains (DeltaKinalpha and DeltaKinbeta, respectively). In addition, both PI 3- and PI 4-kinase activities of p110alpha and p110beta immunoprecipitates were similarly inhibited by either wortmannin or LY294002, specific inhibitors of p110. Insulin induced phosphorylation of not only the D-3 position, but also the D-4 position. Indeed, overexpression of p110 in Sf9 or 3T3-L1 cells induced marked phosphorylation of the D-4 position to a level comparable to or much greater than that of D-3, whereas inhibition of endogenous p85/p110-type PI kinase via overexpression of dominant-negative p85alpha (Deltap85alpha) in 3T3-L1 adipocytes abolished insulin-induced synthesis of both. Thus, p85/p110-type PI kinase phosphorylates the D-4 position of phosphoinositides more efficiently than the D-3 position in vivo, and each of the D-3- or D-4-phosphorylated phosphoinositides may transmit signals downstream.  相似文献   

13.
Rhinovirus (RV) is responsible for the majority of common colds and triggers exacerbations of asthma and chronic obstructive lung disease. We have shown that RV serotype 39 (RV39) infection activates phosphatidylinositol 3 (PI 3)-kinase and the serine threonine kinase Akt minutes after infection and that the activation of PI 3-kinase and Akt is required for maximal interleukin-8 (IL-8) expression. Here, we further examine the contributions of Src and PI 3-kinase activation to RV-induced Akt activation and IL-8 expression. Confocal fluorescent microscopy of 16HBE14o- human bronchial epithelial cells showed rapid (10-min) colocalization of RV39 with Src, p85alpha PI 3-kinase, p110beta PI 3-kinase, Akt and Cit-Akt-PH, a fluorescent Akt pleckstrin homology domain which binds PI(3,4,5)P(3). The chemical Src inhibitor PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine} and the PI 3-kinase inhibitor LY294002 each inhibited Akt phosphorylation and the colocalization of RV39 with Akt. Digoxigenin-tagged RV coprecipitated with a Crosstide kinase likely to be Akt, and inhibition of Src blocked kinase activity. Digoxigenin-tagged RV39 colocalized with the lipid raft marker ceramide. In 16HBE14o- and primary mucociliary differentiated human bronchial epithelial cells, inhibition of Src kinase activity with the Src family chemical inhibitor PP2, dominant-negative Src (K297R), and Src small interfering RNA (siRNA) each inhibited RV39-induced IL-8 expression. siRNA against p110beta PI 3-kinase also inhibited IL-8 expression. These data demonstrate that, in the context of RV infection, Src and p110beta PI 3-kinase are upstream activators of Akt and the IL-8 promoter and that RV colocalizes with Src, PI 3-kinase, and Akt in lipid rafts.  相似文献   

14.
In the present study, we identified novel negative cross-talk between the angiotensin II subtype 2 (AT2) receptor and insulin receptor signaling in the regulation of phosphoinositide 3-kinase (PI3K), Akt, and apoptosis in rat pheochromocytoma cell line, PC12W cells, which exclusively express AT2 receptor. We demonstrated that insulin-mediated insulin receptor substrate (IRS)-2-associated PI3K activity was inhibited by AT2 receptor stimulation, whereas IRS-1-associated PI3K activity was not significantly influenced. AT2 receptor stimulation did not change insulin-induced tyrosine phosphorylation of IRS-2 or its association with the p85alpha subunit of PI3K, but led to a significant reduction of insulin-induced p85alpha phosphorylation. AT2 receptor stimulation increased the association of a protein tyrosine phosphatase, SHP-1, with IRS-2. Moreover, we demonstrated that AT2 receptor stimulation inhibited insulin-induced Akt phosphorylation and that insulin-mediated antiapoptotic effect was also blocked by AT2 receptor activation. Overexpression of a catalytically inactive dominant negative SHP-1 markedly attenuated the AT2 receptor- mediated inhibition of IRS-2-associated PI3K activity, Akt phosphorylation, and antiapoptotic effect induced by insulin. Taken together, these results indicate that AT2 receptor-mediated activation of SHP-1 and the consequent inhibition IRS-2-associated PI3K activity contributed at least partly to the inhibition of Akt phosphorylation, thereby inducing apoptosis.  相似文献   

15.
The signaling pathways linking receptor activation to actin stress fiber rearrangements during growth factor-induced cell shape change are still to be determined. Recently our laboratory demonstrated the involvement of p70 S6 kinase (p70(s6k)) activation in thrombin-induced stress fiber formation in Swiss 3T3 cells. The present work shows that thrombin-induced p70(s6k) activation is inhibited by the PI 3-kinase inhibitors wortmannin and LY-294002. These inhibitors also significantly reduced thrombin-induced stress fiber formation, demonstrating a role for PI 3-kinase activity in this process, most likely upstream of p70(s6k). Furthermore, the p110alpha form of PI 3-kinase was localized to actin stress fibers, as was previously shown for p70(s6k), as well as to a golgi-like distribution. In contrast, PI 3-kinase p110gamma colocalized with microtubules. The PI 3-kinase p85 subunit, known to be capable of association with p110alpha, was present in a predominantly golgi-like distribution with no presence on actin filaments, suggesting the existence of distinctly localized PI 3-kinase pools. Immunodepletion of p85 from cell lysates resulted in only partial depletion of p110alpha and p110alpha-associated PI 3-kinase activity, confirming the presence of a p85-free p110alpha pool located on the actin stress fibers. Our data, therefore, point to the importance of subcellular localization of PI 3-kinase in signal transduction and to a novel action of p85 subunit-independent PI 3-kinase p110alpha in the stimulation by thrombin of p70(s6k) activation and actin stress fiber formation.  相似文献   

16.
Affinity-purified bovine brain phosphatidylinositol 3-kinase (PI3-kinase) contains two major proteins of 85 and 110 kd. Amino acid sequence analysis and cDNA cloning reveals two related 85 kd proteins (p85 alpha and p85 beta), which both contain one SH3 and two SH2 regions (src homology regions). When expressed, these 85 kd proteins bind to and are substrates for tyrosine-phosphorylated receptor kinases and the polyoma virus middle-T antigen/pp60c-src complex, but lack PI3-kinase activity. However, an antiserum raised against p85 beta immunoprecipitates PI3-kinase activity. The active PI3-kinase complex containing p85 alpha or p85 beta and the 110 kd protein binds to PDGF but not EGF receptors. p85 alpha and p85 beta may mediate specific PI3-kinase interactions with a subset of tyrosine kinases.  相似文献   

17.
Phosphatidylinositol (PI) 3-kinase/Akt signaling activates NF-kappa B through pleiotropic, cell type-specific mechanisms. This study investigated the significance of PI 3-kinase/Akt signaling to tumor necrosis factor (TNF)-induced NF-kappa B activation in transformed, immortalized, and primary cells. Pharmacological inhibition of PI 3-kinase blocked TNF-induced NF-kappa B DNA binding in the 293 line of embryonic kidney cells, partially affected binding in MCF-7 breast cancer cells, HeLa and ME-180 cervical carcinoma cells, and NIH 3T3 cells but was without significant effect in H1299 and human umbilical vein endothelial cells, cell types in which TNF activated Akt. NF-kappa B is retained in the cytoplasm by inhibitory proteins, I kappa Bs, which are phosphorylated and targeted for degradation by I kappa B kinases (IKK alpha and IKK beta). Expression and the ratios of IKK alpha and IKK beta, which homo- and heterodimerize, varied among cell types. Cells with a high proportion of IKK alpha (the IKK kinase activated by Akt) to IKK beta were most sensitive to PI 3-kinase inhibitors. Consequently, transient expression of IKK beta diminished the capacity of the inhibitors to block NF-kappa B DNA binding in 293 cells. Also, inhibitors of PI 3-kinase blocked NF-kappa B DNA binding in Ikk beta-/- but not Ikk alpha-/- or wild-type cells in which the ratio of IKK alpha to IKK beta is low. Thus, noncoordinate expression of I kappa B kinases plays a role in determining the cell type-specific role of Akt in NF-kappa B activation.  相似文献   

18.
Under resting conditions, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K) serves to both stabilize and inactivate the p110 catalytic subunit. The inhibitory activity of p85 is relieved by occupancy of the NH(2)-terminal SH2 domain of p85 by phosphorylated tyrosine. Src family kinases phosphorylate tyrosine 688 in p85, a process that we have shown to be reversed by the activity of the p85-associated SH2 domain-containing phosphatase SHP1. We demonstrate that phosphorylation of the downstream PI3K target Akt is increased in cells lacking SHP1, implicating phosphorylation of p85 in the regulation of PI3K activity. Furthermore, the in vitro specific activity of PI3K associated with tyrosine- phosphorylated p85 is higher than that associated with nonphosphorylated p85. Expression of wild-type p85 inhibits PI3K enzyme activity as indicated by PI3K- dependent Akt phosphorylation. The inhibitory activity of p85 is accentuated by mutation of tyrosine 688 to alanine and reversed by mutation of tyrosine 688 to aspartic acid, changes that block and mimic tyrosine phosphorylation, respectively Strikingly, mutation of tyrosine 688 to aspartic acid completely reverses the inhibitory activity of p85 on cell viability and activation of the downstream targets Akt and NFkappaB, indicative of the physiological relevance of p85 phosphorylation. Tyrosine phosphorylation of Tyr(688) or mutation of tyrosine 688 to aspartic acid is sufficient to allow binding to the NH(2)-terminal SH2 domain of p85. Thus an intramolecular interaction between phosphorylated Tyr(688) and the NH(2)-terminal SH2 domain of p85 can relieve the inhibitory activity of p85 on p110. Taken together, the data indicate that phosphorylation of Tyr(688) in p85 leads to a novel mechanism of PI3K regulation.  相似文献   

19.
20.
Phosphoinositide 3-kinase (PI 3-kinase) is a key signaling enzyme implicated in a variety of receptor-stimulated cell responses. Stimulation of receptors possessing (or coupling to) protein-tyrosine kinase activates heterodimeric PI 3-kinases, which consist of an 85-kDa regulatory subunit (p85) containing Src-homology 2 (SH2) domains and a 110-kDa catalytic subunit (p110 alpha or p110 beta). Thus, this form of PI 3-kinases could be activated in vitro by a phosphotyrosyl peptide containing a YMXM motif that binds to the SH2 domains of p85. Receptors coupling to alpha beta gamma-trimeric G proteins also stimulate the lipid kinase activity of a novel p110 gamma isoform, which is not associated with p85, and thereby is not activated by tyrosine kinase receptors. The activation of p110 gamma PI 3-kinase appears to be mediated through the beta gamma subunits of the G protein (G beta gamma). In addition, rat liver heterodimeric PI 3-kinases containing the p110 beta catalytic subunit are synergistically activated by the phosphotyrosyl peptide plus G beta gamma. Such enzymatic properties were also observed with a recombinant p110 beta/p85 alpha expressed in COS-7 cells. In contrast, another heterodimeric PI 3-kinase consisting of p110 alpha and p85 in the same rat liver, together with a recombinant p110 alpha/p85 alpha, was not activated by G beta gamma, though their activities were stimulated by the phosphotyrosyl peptide. Synergistic activation of PI 3-kinase by the stimulation of the two major receptor types was indeed observed in intact cells, such as chemotactic peptide (N-formyl-Met-Leu-Phe) plus insulin (or Fc gamma II) receptors in differentiated THP-1 and CHO cells and adenosine (A1) plus insulin receptors in rat adipocytes. Thus, PI 3-kinase isoforms consisting of p110 beta catalytic and SH2-containing (p85 or its related) regulatory subunits appeared to function as a 'cross-talk' enzyme between the two signal transduction pathways mediated through tyrosine kinase and G protein-coupled receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号