首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ATP-sensitive K+ (KATP) channels have been characterized in pituitary GH3 cells with the aid of the patch-clamp technique. In the cell-attached configuration, the presence of diazoxide (100 μm) revealed the presence of glibenclamide-sensitive KATP channel exhibiting a unitary conductance of 74 pS. Metabolic inhibition induced by 2,4-dinitrophenol (1 mm) or sodium cyanide (300 μm) increased KATP channel activity, while nicorandil (100 μm) had no effect on it. In the inside-out configuration, Mg-ATP applied intracellularly suppressed the activity of KATP channels in a concentration-dependent manner with an IC50 value of 30 μm. The activation of phospholipase A2 caused by mellitin (1 μm) was found to enhance KATP channel activity and further application of aristolochic acid (30 μm) reduced the mellitin-induced increase in channel activity. The challenging of cells with 4,4′-dithiodipyridine (100 μm) also induced KATP channel activity. Diazoxide, mellitin and 4,4′-dithiodipyridine activated the KATP channels that exhibited similar channel-opening kinetics. In addition, under current-clamp conditions, the application of diazoxide (100 μm) hyperpolarized the membrane potential and reduced the firing rate of spontaneous action potentials. The present study clearly indicates that KATP channels similar to those seen in pancreatic β cells are functionally expressed in GH3 cells. In addition to the presence of Ca2+-activated K+ channels, KATP channels found in these cells could thus play an important role in controlling hormonal release by regulating the membrane potential. Received: 19 June 2000/Revised: 13 September 2000  相似文献   

2.
Opening of ATP-sensitive K+ (KATP) channels by the uncoupler of oxidative phosphorylation, 2,4 dinitrophenol (DNP), has been assumed to be secondary to metabolic inhibition and reduced intracellular ATP levels. Herein, we present data which show that DNP (200 μm) can induce opening of cardiac KATP channels, under whole-cell and inside-out conditions, despite millimolar concentrations of ATP (1–2.5 mm). DNP-induced currents had a single channel conductance (71 pS), inward rectification, reversal potential, and intraburst kinetic properties (open time constant, τopen: 4.8 msec; fast closed time constant, τclosed(f): 0.33 msec) characteristic of KATP channels suggesting that DNP did not affect the pore region of the channel, but may have altered the functional coupling of the ATP-dependent channel gating. A DNP analogue, with the pH-titrable hydroxyl replaced by a methyl group, could not open KATP channels. The pH-dependence of the effect of DNP on channel opening under whole-cell, cell-attached, and inside-out conditions suggested that transfer of protonated DNP across the sarcolemma is essential for activation of KATP channels in the presence of ATP. We conclude that the use of DNP for metabolic stress-induced KATP channel opening should be reevaluated. Received: 10 September 1996/Revised: 27 December 1996  相似文献   

3.
A large conductance, Ca2+-activated K+ channel of the BK type was examined in cultured pituitary melanotrophs obtained from adult male rats. In cell-attached recordings the slope conductance for the BK channel was ≈190 pS and the probability (P o ) of finding the channel in the open state at the resting membrane potential was low (<<0.1). Channels in inside-out patches and in symmetrical 150 mm K+ had a conductance of ≈260 pS. The lower conductance in the cell-attached recordings is provisionally attributed to an intracellular K+ concentration of ≈113 mm. The permeability sequence, relative to K+, was K+ > Rb+ (0.87) > NH+ 4 (0.17) > Cs+≥ Na+ (≤0.02). The slope conductance for Rb+ was much less than for K+. Neither Na+ nor Cs+ carried measurable currents and 150 mm internal Cs+ caused a flickery block of the channel. Internal tetraethylammonium ions (TEA+) produced a fast block for which the dissociation constant at 0 mV (K D (0 mV)) was 50 mm. The K D (0 mV) for external TEA+ was much lower, 0.25 mm, and the blocking reaction was slower as evidenced by flickery open channel currents. With both internal and external TEA+ the blocking reaction was bimolecular and weakly voltage dependent. External charybdotoxin (40 nm) caused a large and reversible decrease of P o . The P o was increased by depolarization and/or by increasing the concentration of internal Ca2+. In 0.1 μm Ca2+ the half-maximal P o occurred at ≈100 mV; increasing Ca2+ to 1 μm shifted the voltage for the half-maximal P o to −75 mV. The Ca2+ dependence of the gating was approximated by a fourth power relationship suggesting the presence of four Ca2+ binding sites on the BK channel. Received: 23 October/Revised: 15 December 1995  相似文献   

4.
These experiments were conducted to determine the membrane K+ currents and channels in human urinary bladder (HTB-9) carcinoma cells in vitro. K+ currents and channel activity were assessed by the whole-cell voltage clamp and by either inside-out or outside-out patch clamp recordings. Cell depolarization resulted in activation of a Ca2+-dependent outward K+ current, 0.57 ± 0.13 nS/pF at −70 mV holding potential and 3.10 ± 0.15 nS/pF at 30 mV holding potential. Corresponding patch clamp measurements demonstrated a Ca2+-activated, voltage-dependent K+ channel (KCa) of 214 ± 3.0 pS. Scorpion venom peptides, charybdotoxin (ChTx) and iberiotoxin (IbTx), inhibited both the activated current and the KCa activity. In addition, on-cell patch recordings demonstrated an inwardly rectifying K+ channel, 21 ± 1 pS at positive transmembrane potential (V m ) and 145 ± 13 pS at negative V m . Glibenclamide (50 μm), Ba2+ (1 mm) and quinine (100 μm) each inhibited the corresponding nonactivated, basal whole-cell current. Moreover, glibenclamide inhibited K+ channels in inside/out patches in a dose-dependent manner, and the IC50= 46 μm. The identity of this K+ channel with an ATP-sensitive K+ channel (KATP) was confirmed by its inhibition with ATP (2 mm) and by its activation with diazoxide (100 μm). We conclude that plasma membranes of HTB-9 cells contain the KCa and a lower conductance K+ channel with properties consistent with a sulfonylurea receptor-linked KATP. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

5.
The outer sulcus epithelium was recently shown to absorb cations from the lumen of the gerbil cochlea. Patch clamp recordings of excised apical membrane were made to investigate ion channels that participate in this reabsorptive flux. Three types of channel were observed: (i) a nonselective cation (NSC) channel, (ii) a BK (large conductance, maxi K or K Ca ) channel and (iii) a small K+ channel which could not be fully characterized. The NSC channel found in excised insideout patch recordings displayed a linear current-voltage (I-V) relationship (27 pS) and was equally conductive for Na+ and K+, but not permeable to Cl or N-methyl-d-glucamine. Channel activity required the presence of Ca2+ at the cytosolic face, but was detected at Ca2+ concentrations as low as 10−7 m (open probability (P o ) = 0.11 ± 0.03, n= 8). Gadolinium decreased P o of the NSC channel from both the external and cytosolic side (IC50∼ 0.6 μm). NSC currents were decreased by amiloride (10 μm− 1 mm) and flufenamic acid (0.1 mm). The BK channel was also frequently (38%) observed in excised patches. In symmetrical 150 mm KCl conditions, the I-V relationship was linear with a conductance of 268 pS. The Goldman-Hodgkin-Katz equation for current carried solely by K+ could be fitted to the I-V relationship in asymmetrical K+ and Na+ solutions. The channel was impermeable to Cl and N-methyl-d-glucamine. P o of the BK channel increased with depolarization of the membrane potential and with increasing cytosolic Ca2+. TEA (20 mm), charybdotoxin (100 nm) and Ba2+ (1 mm) but not amiloride (1 mm) reduced P o from the extracellular side. In contrast, external flufenamic acid (100 μm) increased P o and this effect was inhibited by charybdotoxin (100 nm). Flufenamic acid inhibited the inward short-circuit current measured by the vibrating probe and caused a transient outward current. We conclude that the NSC channel is Ca2+ activated, voltage-insensitive and involved in both constitutive K+ and Na+ reabsorption from endolymph while the BK channel might participate in the K+ pathway under stimulated conditions that produce an elevated intracellular Ca2+ or depolarized membrane potential. Received: 14 October 1999/Revised: 10 December 1999  相似文献   

6.
The modulation of the calmodulin-induced inhibition of the calcium release channel (ryanodine receptor) by two sulfhydryl oxidizing compounds, 4-(chloromercuri)phenyl–sulfonic acid (4-CMPS) and 4,4′-dithiodipyridine (4,4′-DTDP) was determined by single channel current recordings with the purified and reconstituted calcium release channel from rabbit skeletal muscle sarcoplasmic reticulum (HSR) and [3H]ryanodine binding to HSR vesicles. 0.1 μm CaM reduced the open probability (P o ) of the calcium release channel at maximally activating calcium concentrations (50–100 μm) from 0.502 ± 0.02 to 0.137 ± 0.022 (n= 28), with no effect on unitary conductance. 4-CMPS (10–40 μm) and 4,4′-DTDP (0.1–0.3 mm) induced a concentration dependent increase in P o (> 0.9) and caused the appearance of longer open states. CaM shifted the activation of the calcium release channel by 4-CMPS or 4,4′-DTDP to higher concentrations in single channel recordings and [3H]ryanodine binding. 40 μm 4-CMPS induced a near maximal (P o > 0.9) and 0.3 mm 4,4′-DTDP a submaximal (P o = 0.74) channel opening in the presence of CaM, which was reversed by the specific sulfhydryl reducing agent DTT. Neither 4-CMPS nor 4,4′-DTDP affected Ca-[125I]calmodulin binding to HSR. 1 mm MgCl2 reduced P o from 0.53 to 0.075 and 20–40 μm 4-CMPS induced a near maximal channel activation (P o > 0.9). These results demonstrate that the inhibitory effect of CaM or magnesium in a physiological concentration is diminished or abolished at high concentrations of 4-CMPS or 4,4′-DTDP through oxidation of activating sulfhydryls on cysteine residues of the calcium release channel. Received: 22 July 1999/Revised: 15 November 1999  相似文献   

7.
Properties of large conductance Ca2+-activated K+ channels were studied in the soma of motoneurones visually identified in thin slices of neonatal rat spinal cord. The channels had a conductance of 82 ± 5 pS in external Ringer solution (5.6 mm K+ o //155 mm K+ i ) and 231 ± 4 pS in external high-K o solution (155 mm K+ o //155 mm K+ i ). The channels were activated by depolarization and by an increase in internal Ca2+ concentration. Potentials of half-maximum channel activation (E50) were −13, −34, −64 and −85 mV in the presence of 10−6, 10−5, 10−4 and 10−3 m internal Ca2+, respectively. Using an internal solution containing 10−4 m Ca2+, averaged KCa currents showed fast activation within 2–3 msec after a voltage step to +50 mV. Averaged KCa currents did not inactivate during 400 msec voltage pulses. External TEA reduced the apparent single-channel amplitude with a 50% blocking concentration (IC50) of 0.17 ± 0.02 mm. KCa channels were completely suppressed by externally applied 100 mm charybdotoxin. It is concluded that KCa channels activated by Ca2+ entry during the action potential play an important role in the excitability of motoneurones. Received: 7 November 1996/Revised: 29 October 1997  相似文献   

8.
The lipid bilayer technique is used to examine the biophysical properties of anion and cation channels frequently formed by platypus (Ornithorhynchus anatinus) venom (OaV). The OaV-formed anion channel in 250/50 mm KCl cis/trans has a maximum conductance of 857 ± 23 pS (n= 5) in 250/50 mm KCl cis/trans. The current-voltage relationship of this channel shows strong inward rectification. The channel activity undergoes time-dependent inactivation that can be removed by depolarizing voltage steps more positive than the reversal potential for chloride, E Cl , (+40 mV). The reversal potential of the OaV-formed slow current activity in 250/50 mm KCl cis/trans is close to the potassium equilibrium potential (E K ) of −40 mV. The conductance values for the slow channel are 22.5 ± 2.6 pS and 41.38 ± 4.2 pS in 250/50 and 750/50 mm cis/trans, respectively. The gating kinetics of the slow ion channels are voltage-dependent. The channel open probability (P o ) is between 0.1 and 0.8 at potentials between 0 and +140 mV. The channel frequency (F o ) increases with depolarizing voltages between 0 and +140 mV, whereas mean open time (T o ) and mean closed time (T c ) decrease. Ion substitution experiments of the cis solution show that the channel has conductance values of 21.47 ± 2.3 and 0.53 ± 0.1 pS in 250 mm KCl and choline Cl, respectively. The amplitude of the single channel current is dependent on [K+] cis and the current reversal potential (E rev ) responds to increases in [K+] cis by shifting to more negative voltages. The increase in current amplitude as a function of increasing [K+] cis can be best described by a third order polynomial fit. At +140 mV, the values of the maximal single channel conductance (γ max ) and the concentration for half maximal γ (K s ) are 38.6 pS and 380 mm and decline to 15.76 pS and 250 mm at 0 mV, respectively. The ion selectivity of the channel to K+, Na+, Cs+ and choline+ was determined in ion substitution experiments. The permeability values for P K+ :P Na+ :P Cs+ :P choline+ were 1:1:0.63:0.089, respectively. On the other hand, the activity of the slow channel was eliminated (Fig. 7B). The slow channel was reversibly inhibited by [TEA+] trans and the half-maximal inhibitory concentration (K i ) was ∼48 mm. Received: 26 April 1999/Revised: 19 July 1999  相似文献   

9.
Large Conductance Ca2+-Activated K+ Channels in Human Meningioma Cells   总被引:2,自引:0,他引:2  
Cells from ten human meningiomas were electrophysiologically characterized in both living tissue slices and primary cultures. In whole cells, depolarization to voltages higher than +80 mV evoked a large K+ outward current, which could be blocked by iberiotoxin (100 nm) and TEA (half blocking concentration IC50= 5.3 mm). Raising the internal Ca2+ from 10 nm to 2 mm shifted the voltage of half-maximum activation (V 1/2) of the K+ current from +106 to +4 mV. Respective inside-out patch recordings showed a voltage- and Ca2+-activated (BK Ca ) K+ channel with a conductance of 296 pS (130 mm K+ at both sides of the patch). V 1/2 of single-channel currents was +6, −12, −46, and −68 mV in the presence of 1, 10, 100, and 1000 μm Ca2+, respectively, at the internal face of the patch. In cell-attached patches the open probability (P o ) of BK Ca channels was nearly zero at potentials below +80 mV, matching the activation threshold for whole-cell K+ currents with 10 nm Ca2+ in the pipette. Application of 20 μm cytochalasin D increased P o of BK Ca channels in cell-attached patches within minutes. These data suggest that the activation of BK Ca channels in meningioma cells does not only depend on voltage and internal Ca2+ but is also controlled by the cytoskeleton. Received 18 June 1999/Revised: 18 January 2000  相似文献   

10.
These experiments were done to determine the effect of glibenclamide and diazoxide on the growth of human bladder carcinoma (HTB-9) cells in vitro. Cell growth was assayed by cell counts, protein accumulation, and 3H-thymidine uptake. Glibenclamide added at 75 and 150 μm for 48 hr reduced cell proliferation. Dose-inhibition curves showed that glibenclamide added for 48 hr reduced cell growth at concentrations as low as 1 μm (IC50= 73 μm) when growth was assayed in the absence of added serum. This μM-effect on cell growth was in agreement with the dose range in which glibenclamide decreased open probability of membrane KATP channels. Addition of glibenclamide for 48 hr also altered the distribution of cells within stages of the cell cycle as determined by flow cytometry using 10−5 m bromodeoxyuridine. Glibenclamide (100 μm) increased the percentage of cells in G0/G1 from 33.6% (vehicle control) to 38.3% (P < 0.05), and it reduced the percentage of cells in S phase from 38.3% to 30.6%. On the other hand, diazoxide, which opens membrane KATP channels in HTB-9 cells, stimulated growth measured by protein accumulation, but it did not increase the cell number. We conclude that the sulfonylurea receptor and the corresponding membrane KATP channel are involved in mechanisms controlling HTB-9 cell growth. However, KATP is not rate-limiting among the signaling mechanisms or molecular switches that regulate the cell cycle. Received: 12 June 1997/Revised: 21 October 1997  相似文献   

11.
The lipid bilayer technique was used to examine the effects of the ATP-sensitive K+ channel inhibitor (glibenclamide) and openers (diazoxide, minoxidil and cromakalim) and Cl channel activators (GABA and diazepam) on two types of chloride channels in the sarcoplasmic reticulum (SR) from rabbit skeletal muscle. Neither diazepam at 100 μm nor GABA at 150 μm had any significant effect on the conductance and kinetics of the 75 pS small chloride (SCl) channel. Unlike the 150 pS channel, the SCl channel is sensitive to cytoplasmic glibenclamide with K i ∼ 30 μm. Glibenclamide induced reversible decline in the values of current (maximal current amplitude, I max and average mean current, I′) and kinetic parameters (frequency of opening F o , probability of the channel being open P o and mean open time, T o , of the SCl channel. Glibenclamide increased mean closed time, T c , and was a more potent blocker from the cytoplasmic side (cis) than from the luminal side (trans) of the channel. Diazoxide increased I′, P o , and T o in the absence of ATP and Mg2+ but it had no effect on I max and also failed to activate or remove the glibenclamide- and ATP-induced inhibition of the SCl channel. Minoxidil induced a transient increase in I′ followed by an inhibition of I max, whereas cromakalim reduced P o and I′ by increasing channel transitions to the closed state and reducing T o without affecting I max. The presence of diazoxide, minoxidil or cromakalim on the cytoplasmic side of the channel did not prevent [ATP] cis or [glibenclamide] cis from blocking the channel. The data suggest that the action(s) of these drugs are not due to their effects on the phosphorylation of the channel protein. The glibenclamide- and cromakalim-induced effects on the SCl channel are mediated via a ``flicker' type block mechanism. Modulation of the SCl channel by [diazoxide] cis and [glibenclamide] cis highlights the therapeutic potential of these drugs in regulating the Ca2+-counter current through this channel. Received: 2 September 1997/Revised: 20 March 1998  相似文献   

12.
A voltage-activated Ca++ channel has been identified in the apical membranes of cultured rabbit proximal tubule cells using the patch-clamp technique. With 105 mm CaCl2 solution in the pipette and 180 NaAsp in the bath, the channel had a conductance of 10.4 ± 1.0 pS (n= 8) in on-cell patches, and 9.8 ± 1.1 pS (n= 8) in inside-out patches. In both on-cell and inside-out patches, the channel is active by membrane depolarization. For this channel, the permeation to Ba++ and Ca++ is highly selective over Na+ and K+ (PCa(Ba):PNa(K) >200:1). The sensitivity to dihydropyridines is similar to that for L-type channels where the channel was blocked by nifedipine (10 μm), and activated by Bay K 8644 (5 μm). When activated by Bay K 8644, the channel showed subconductance levels. Treatment with forskolin (12.5 μm), phorbol ester (1 μm), or stretching (40 cm water) did not activate this channel. These results indicate that this Ca++ channel is mostly regulated by membrane voltage, and appears to be an epithelial class of L-type Ca++ channel. As such, it may participate in calcium reabsorption during periods of enhanced sodium reabsorption, or calcium signaling in volume regulation, where membrane depolarization occurs for prolonged periods. Received: 1 April 1996/Revised: 5 August 1996  相似文献   

13.
We investigated the properties of single K+ channels in the soma membrane of embryonic leech ganglion cells using the patch-clamp technique. We compared these K+ channels with the K+ channels found previously in Retzius neurons of the adult leech. In ganglion cells of 9- to 15-day-old embryos we characterized eight different types of K+ channels with mean conductances of 21, 55, 84, 111, 122, 132, 149 and 223 pS. The 55 pS and 84 pS channels showed flickering and were active for less than 2 min after excising the patch. The 111 pS channel was an outward rectifier, and the open state probability (p o ) decreased in the inside-out configuration when the Ca2+ concentration was raised from pCa 7 to pCa 3. The 122 pS channel also showed outward rectification. This type of channel was activated after changing from the cell-attached to the inside-out configuration and it did not inactivate during more than 30 min. The p o was Ca2+- and voltage-insensitive. One hundred μm glibenclamide reversibly reduced p o . The 132 pS channel was an outward rectifier and was Ca2+-insensitive. The 149 pS channel inactivated in the inside-out configuration. The 149- and the 223 pS channel showed inward rectification. The 111 pS channel had similar properties to the Ca2+-dependent K+ channel and the 122 pS channel resembled the ATP-inhibited K+ channel found previously in Retzius neurons of the adult leech. Received: 20 April 1995/Revised: 18 January 1996  相似文献   

14.
GABAA channels were activated by GABA in outside-out patches from rat cultured hippocampal neurons. They were blocked by bicuculline and potentiated by diazepam. In 109 of 190 outside-out patches, no channels were active before exposure to GABA (silent patches). The other 81 patches showed spontaneous channel activity. In patches containing spontaneous channel activity, rapid application of GABA rapidly activated channels. In 93 of the silent patches, channels could be activated by GABA but only after a delay that was sometimes as long as 10 minutes. The maximum channel conductance of the channels activated after a delay increased with GABA concentration from less than 10 pS (0.5 μm GABA) to more than 100 pS (10 mm GABA). Fitting the data with a Hill-type equation gave an EC 50 value of 33 μm and a Hill coefficient of 0.6. The channels showed outward rectification and were chloride selective. In the presence of 1 μm diazepam, the GABA EC 50 decreased to 0.2 μm but the maximum conductance was unchanged. Diazepam decreased the average latency for channel opening. Bicuculline, a GABA antagonist, caused a concentration-dependent decrease in channel conductance. In channels activated with 100 μm GABA the bicuculline IC 50 was 19 μm. The effect of GABA on channel conductance shows that the role of the ligand in GABAA receptor channel function is more complex than previously thought. Received: 23 October 2000/Revised: 27 February 2001  相似文献   

15.
Muscarinic receptor-linked G protein, G i , can directely activate the specific K+ channel (I K(ACh)) in the atrium and in pacemaker tissues in the heart. Coupling of G i to the K+ channel in the ventricle has not been well defined. G protein regulation of K+ channels in isolated human ventricular myocytes was examined using the patch-clamp technique. Bath application of 1 μm acetylcholine (ACh) reversibly shortened the action potential duration to 74.4 ± 12.1% of control (at 90% repolarization, mean ±sd, n= 8) and increased the whole-cell membrane current conductance without prior β-adrenergic stimulation in human ventricular myocytes. The ACh effect was reversed by atropine (1 μm). In excised inside-out patch configurations, application of GTPγS (100 μm) to the bath solution (internal surface) caused activation of I K(ACh) and/or the background inwardly-rectifying K+ channel (I K1) in ventricular cell membranes. I K(ACh) exhibited rapid gating behavior with a slope conductance of 44 ± 2 pS (n= 25) and a mean open lifetime of 1.8 ± 0.3 msec (n= 21). Single channel activity of GTPγS-activated I K1 demonstrated long-lasting bursts with a slope conductance of 30 ± 2 pS (n= 16) and a mean open lifetime of 36.4 ± 4.1 msec (n= 12). Unlike I K(ACh), G protein-activated I K1 did not require GTP to maintain channel activity, suggesting that these two channels may be controlled by G proteins with different underlying mechanisms. The concentration of GTP at half-maximal channel activation was 0.22 μm in I K(ACh) and 1.2 μm in I K1. Myocytes pretreated with pertussis toxin (PTX) prevented GTP from activating these channels, indicating that muscarinic receptor-linked PTX-sensitive G protein, G i , is essential for activation of both channels. G protein-activated channel characteristics from patients with terminal heart failure did not differ from those without heart failure or guinea pig. These results suggest that ACh can shorten the action potential by activating I K(ACh) and I K1 via muscarinic receptor-linked G i proteins in human ventricular myocytes. Received: 23 September 1996/Revised: 18 December 1996  相似文献   

16.
Increasing evidence is now accumulating for the involvement of the cystic fibrosis transmembrane conductance regulator (CFTR) in the control of the outwardly rectifying chloride channel (ORCC). We have examined the sensitivity of ORCC to the sulfonylurea drug glibenclamide in Hi-5 (Trichoplusia ni) insect cells infected with recombinant baculovirus expressing either wild-type CFTR, ΔF508-CFTR or E. coliβ galactosidase cDNA and in control cells either infected with virus alone or uninfected. Iodide efflux and single channel patch-clamp experiments confirmed that forskolin and 1-methyl-3-isobutyl xanthine (IBMX) or 7-methyl-1,3 dipropyl xanthine (DPMX) activate CFTR channels (unitary conductance: 9.1 ± 1.6 pS) only in cells expressing CFTR. In contrast, we identified 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS)-sensitive ORCC in excised membrane patches in any of the cells studied, with similar conductance (22 ± 2.5 pS at −80 mV; 55 ± 4.1 pS at +80 mV) and properties. In the presence of 500 μm SITS, channel open probability (P o ) of ORCC was reversibly reduced to 0.05 ± 0.01 in CFTR-cells, to 0.07 ± 0.02 in non-CFTR expressing cells and to 0.05 ± 0.02 in ΔF508-cells. In Hi-5 cells that did not express CFTR, glibenclamide failed to inhibit ORCC activity even at high concentrations (100 μm), whereas 500 μm SITS reversibly inhibited ORCC. In contrast in cells expressing CFTR or ΔF508, glibenclamide dose dependently (IC50= 17 μm, Hill coefficient 1.2) and reversibly inhibited ORCC. Cytoplasmic application of 100 μm glibenclamide reversibly reduced P o from 0.88 ± 0.03 to 0.09 ± 0.02 (wash: P o = 0.85 ± 0.1) in CFTR cells and from 0.89 ± 0.05 to 0.08 ± 0.05 (wash: P o = 0.87 ± 0.1) in ΔF508 cells. In non-CFTR expressing cells, glibenclamide (100 μm) was without effect on P o (control: P o = 0.89 ± 0.09, glib.: P o = 0.86 ± 0.02; wash: P o = 0.87 ± 0.05). These data strongly suggest that the expression of CFTR confers glibenclamide sensitivity to the ORCC in Hi-5 cells. Received: 23 October 1998/Revised: 29 December 1998  相似文献   

17.
The Ca2+-activated maxi K+ channel was found in the apical membrane of everted rabbit connecting tubule (CNT) with a patch-clamp technique. The mean number of open channels (NP o ) was markedly increased from 0.007 ± 0.004 to 0.189 ± 0.039 (n= 7) by stretching the patch membrane in a cell-attached configuration. This activation was suggested to be coupled with the stretch-activation of Ca2+-permeable cation channels, because the maxi K+ channel was not stretch-activated in both the cell-attached configuration using Ca2+-free pipette and in the inside-out one in the presence of 10 mm EGTA in the cytoplasmic side. The maxi K+ channel was completely blocked by extracellular 1 μm charybdotoxin (CTX), but was not by cytoplasmic 33 μm arachidonic acid (AA). On the other hand, the low-conductance K+ channel, which was also found in the same membrane, was completely inhibited by 11 μm AA, but not by 1 μm CTX. The apical K+ conductance in the CNT was estimated by the deflection of transepithelial voltage (ΔV t ) when luminal K+ concentration was increased from 5 to 15 mEq. When the tubule was perfused with hydraulic pressure of 0.5 KPa, the ΔV t was only −0.7 ± 0.4 mV. However, an increase in luminal fluid flow by increasing perfusion pressure to 1.5 KPa markedly enhanced ΔV t to −9.4 ± 0.9 mV. Luminal application of 1 μm CTX reduced the ΔV t to −1.3 ± 0.6 mV significantly in 6 tubules, whereas no significant change of ΔV t was recorded by applying 33 μm AA into the lumen of 5 tubules (ΔV t =−7.2 ± 0.5 mV in control vs.ΔV t =−6.7 ± 0.6 mV in AA). These results suggest that the Ca2+-activated maxi K+ channel is responsible for flow-dependent K+ secretion by coupling with the stretch-activated Ca2+-permeable cation channel in the rabbit CNT. Received: 21 August 1997/Revised: 20 March 1998  相似文献   

18.
19.
The hypothesis that amiloride-sensitive Na+ channel complexes immunopurified from bovine renal papillary collecting tubules contain, as their core conduction component, an ENaC subunit, was tested by functional and immunological criteria. Disulfide bond reduction with dithiothreitol (DTT) of renal Na+ channels incorporated into planar lipid bilayers caused a reduction of single channel conductance from 40 pS to 13 pS, and uncoupled PKA regulation of this channel. The cation permeability sequence, as assessed from bi-ionic reversal potential measurements, and apparent amiloride equilibrium dissociation constant (K amil i ) of the Na+ channels were unaltered by DTT treatment. Like ENaC, the DTT treated renal channel became mechanosensitive, and displayed a substantial decrease in K amil i following stretch (0.44 ± 0.12 μm versus 6.9 ± 1.0 μm). Moreover, stretch activation induced a loss in the channel's ability to discriminate between monovalent cations, and even allowed Ca2+ to permeate. Polyclonal antibodies generated against a fusion protein of αbENaC recognized a 70 kDa polypeptide component of the renal Na+ channel complex. These data suggest that ENaC is present in the immunopurified renal Na+ channel protein complex, and that PKA sensitivity is conferred by other associated proteins. Received: 5 June 1995/Revised: 29 September 1995  相似文献   

20.
Smooth muscle cells isolated from the secondary and tertiary branches of the rabbit mesenteric artery contain large Ca2+-dependent channels. In excised patches with symmetrical (140 mm) K+ solutions, these channels had an average slope conductance of 235 ± 3 pS, and reversed in direction at −6.1 ± 0.4 mV. The channel showed K+ selectivity and its open probability (P o ) was voltage-dependent. Iberiotoxin (50 nm) reversibly decreased P o , whereas tetraethylammonium (TEA, at 1 mm) reduced the unitary current amplitude. Apamin (200 nm) had no effect. The channel displayed sublevels around 1/3 and 1/2 of the mainstate level. The effect of [Ca2+] on P o was studied and data fitted to Boltzmann relationships. In 0.1, 0.3, 1.0 and 10 μm Ca2+, V 1/2 was 77.1 ± 5.3 (n= 18), 71.2 ± 4.8 (n= 16), 47.3 ± 10.1 (n= 11) and −14.9 ± 10.1 mV (n= 6), respectively. Values of k obtained in 1 and 10 μm [Ca2+] were significantly larger than that observed in 0.1 μm [Ca2+]. With 30 μm NS 1619 (a BKCa channel activator), V 1/2 values were shifted by 39 mV to the left (hyperpolarizing direction) and k values were not affected. TEA applied intracellularly, reduced the unitary current amplitude with a K d of 59 mm. In summary, BKCa channels show a particularly weak sensitivity to intracellular TEA and they also display large variation in V 1/2 and k. These findings suggest the possibility that different types (isoforms) of BKCa channels may exist in this vascular tissue. Received: 22 December 1997/Revised: 27 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号