首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

2.
M Shure  J Vinograd 《Cell》1976,8(2):215-226
By a method of overlapping the results obtained after agarose gel electrophoresis under two different sets of conditions, it has become possible to determine the number of superhelical turns in a given DNA by counting the bands present after partially relaxing the DNA (Keller and Wendel, 1974) with highly purified nicking-closing (N-C) enzyme from LA9 mouse cell nuclei. Because native supercoiled DNA is heterogeneous with respect to superhelix density, an average number of superhelical turns was determined. Virion SV40 DNA contains 26 +/- 0.5 superhelical turns, and native Minicol DNA contains 19 +/- 0.5 superhelical turns. The above are values at 0.2 M NaCl and at 37 degrees C, the condition under which the enzymatic relaxations were performed. The superhelix densities determined by the band counting method have been compared with superhelix densities determined by buoyant equilibrium in PDl-CsCl gradients. The Gray, Upholt, and Vinograd (1971) calculation procedure has been used for evaluating the superhelix densities by the latter method with the new statement, however, that relaxed DNA has zero superhelical turns. Comparison of the superhelix densities obtained by both methods permits a calculation of an unwinding angle for ethidium. The mean value from experiments with SV40 DNA is 23 +/- 3 degree. The average number of superhelical turns in SV40, 26, combined with the value, 21, obtained by both Griffith (1975) and Germond et al. (1975) for the average number of nucleosomes per SV40 genome, yields an average of 1.25 superhelical turns per 1/21 of the SV40 genome. If the regions of internucleosomal DNA are fully relaxed, 1.25 correesponds to the average number of superhelical turns with a nucleosome. When analyzed under identical conditions, the limit product generated by ligating a nicked circular substrate in the presence of 0.001 M Mg2+ at 37 degrees C (ligation conditions) is slightly more positively supercoiled than the limit product obtained when the N-C reaction is performed in 0.2 M NaCl at 37 degrees C. The difference in superhelix density as measured in gels between the two sets of limit products for both Minicol and SV40 DNAs is 0.0059 +/- 0.0005. This result indicates that the DNA duplex is overwound in the ligation solvent relative to its state in 0.2 M NaCl.  相似文献   

3.
Covalently closed relaxed SV40 DNA [SV40(I')] generated by polynucleotide ligase closure of nicked circular SV40 DNA was analyzed by agarose gel electrophoresis. The DNA can be resolved into a series of bands differing in superhelical density whose intensities are approximately symmetrical about a central most intense band. Densitometric analysis of the gel pattern has revealed that the distribution of DNA species conforms to a Boltzmann distribution and has enabled us to derive an equation for the free energy of superhelix formation for SV40 DNA. We believe the observed bands reflect the time-averaged distribution of thermally induced fluctuations in DNA chain conformation in solution at the time of ligase catalyzed phosphodiester bond formation. Densitometric analysis of native supercoiled SV40 DNA, partially unwound in the presence of ethidium bromide, demonstrates that the separation between adjacent bands is approximately half that seen with SV40(I'). Agarose gel electrophoresis was also used to measure the change in average base rotation angle as a function of temperature by a procedure independent of ethidium dye binding.  相似文献   

4.
L Marty  C Cajean  F Suarez  M Girard 《Biochimie》1976,58(9):1113-1122
The technique of density labeling of DNA by BrdU was used to characterize the material synthesized in vitro by cytoplasmic extracts of SV40 infected cells incubated in the presence of simian virus 40 (SV40) DNA component I molecules (Girard et al, Biochimie, this volume). In a first experiment, the template was labeled beforehand in vivo using [14C]-BrdU, and the in vitro incubation was carried out in the presence of [3H]-dGTP and [3H]-dTTP. In a second experiment, the template was labeled in vivo with 32P, and the in vitro incubation was in the presence of [3H]-dGTP and BrdUTP. After digestion with the restriction endonuclease Hind II + III, the fragments from the end products of the reaction were analyzed by density gradient centrifugation, at pH 7 and pH 13. In both experiments the DNA product molecules had the same density as the resepctive DNA templates. Cellular enzymes seem to be responsible for this in vitro synthesis of DNA, since cytoplasmic extracts from uninfected cells were almost as active as those from SV40 infected cells. The system was proved efficient in the conversion of "open circular" molecules (component II DNA molecules) to covalently closed circular DNA molecules (relaxed component I molecules). The use of DNA complexed with histones did not impart viral specificity to the system. It is concluded that the cytoplasmic extract is only capable of supporting the repair synthesis of added viral DNA.  相似文献   

5.
As shown by competition experiments, the single-strand DNA binding protein from normal rat liver (S25) interacts preferentially with supercoiled DNA compared to relaxed DNA duplexes. When followed both by sedimentation analysis and by nitrocellulose filter assay, the binding of S25 to SV40 supercoiled DNA (FI) appears to be non-cooperative. Saturation is reached at a protein to DNA weight ratio of about 2. The S25-DNA complexes prefixed with glutaraldehyde appear as beaded structures having an average of 14 to 16 beads per SV40 DNA molecules. Cross-linking of S25 bound to SV40 DNA by dimethyl suberimidate allows to detect oligomeric structures containing a maximum of twenty monomers of S25. When complexes are treated by glutaraldehyde, 10% of the genome become resistant against micrococcal nuclease. Moreover, S25 affects the DNA helical structure. Superhelical forms are generated by the association of S25 with SV40 DNA, in the presence of nicking-closing enzyme.  相似文献   

6.
Molecular interactions between purified poly(ADP-ribose) polymerase, whole thymus histones, histone H1, rat fibroblast genomic DNA, and closed circular and linearized SV40 DNA were determined by the nitrocellulose filter binding technique. Binding of the polymerase protein or histones to DNA was augmented greatly when both the enzyme protein and histones were present simultaneously. The polymerase protein also associated with histones in the absence of DNA. The cooperative or promoted binding of histones and the enzyme to relaxed covalently closed circular SV40 DNA was greater than the binding to the linearized form. Binding of the polymerase to SV40 DNA fragments in the presence of increasing concentrations of NaCl indicated a preferential binding to two restriction fragments as compared to the others. Polymerase binding to covalently closed relaxed SV40 DNA resulted in the induction of superhelicity. The simultaneous influence of the polymerase and histones on DNA topology were more than additive. Topological constraints on DNA induced by poly(ADP-ribose) polymerase were abolished by auto ADP-ribosylation of the enzyme. Benzamide, by inhibiting poly(ADP-ribosylation), reestablished the effect of the polymerase protein on DNA topology. Polymerase binding to in vitro-assembled core particle-like nucleosomes was also demonstrated.  相似文献   

7.
A specific DNA unwinding activity associated with SV40 large T antigen   总被引:3,自引:0,他引:3  
The incubation of highly purified large T antigen with relaxed, circular SV40 DNA in the presence of topoisomerase I (nicking closing enzyme) resulted in the introduction of negative superhelical turns in the DNA. ATP was not required for this reaction. A similar introduction of superhelical turns could also be obtained when a recombinant plasmid DNA (Y182), which contains sequences from both SV40 DNA and pBR322, was used. However, no effect was observed when relaxed pBR322 DNA, which does not contain SV40 DNA sequences, was incubated with T antigen in the presence of topoisomerase. These results are consistent with the hypothesis that large T antigen can recognize and unwind specific sequences on SV40 DNA.  相似文献   

8.
Electron microscopy of SV40 DNA cross-linked by anti-Z DNA IgG.   总被引:5,自引:1,他引:4       下载免费PDF全文
Electron microscopy has revealed the specific binding of bivalent anti-Z DNA immunoglobulin G (IgG) to different sites on supercoiled Form I SV40 DNA. The anti-Z IgG links together left-handed regions located within individual or on multiple SV40 DNA molecules at the superhelix density obtained upon extraction. Velocity sedimentation, electrophoresis, and electron microscopy all show that two or more Z DNA sites in the SV40 genome can be intermolecularly cross-linked with bivalent IgG into high mol. wt. complexes. The formation and stability of the intermolecular antibody-DNA complexes are dependent on DNA superhelix density, as judged by three criteria: (1) relaxed circular (Form II) DNA does not react; (2) release of torsional stress by intercalation of 0.25 microM ethidium bromide removes the antibody; and (3) linearization with specific restriction endonucleases reverses antibody binding and DNA cross-linking. Non-immune IgG does not bind to negatively supercoiled SV40 Form I DNA, nor are complexes observed in the presence of competitive synthetic polynucleotides constitutively in the left-handed Z conformation; B DNA has no effect. Using various restriction endonucleases, three major sites of anti-Z IgG binding have been mapped by electron microscopy to the 300-bp region containing nucleotide sequences controlling SV40 gene expression. A limited number of minor sites may also exist (at the extracted superhelix density).  相似文献   

9.
By moving boundary sedimentation it is shown that the interaction of H1 histone with superhelical circular SV40 DNA results in the formation of giant heterogeneous aggregates. The size of these aggregates grows with increasing H1 concentration. s20,w values of some 10 000 S were measured. As compared with open relaxed circular DNA a preferential interaction of superhelical DNA with H1 histone is observed, irrespective of the sign of the superhelical turns which was reversed by the addition to DNA of ethidium bromide. The addition to the H1 complexed aggregates of ethidium bromide effects a progressive breakdown of the aggregates. Furthermore, the superhelicity of DNA is not changed by the addition of small amounts of H1 histone.  相似文献   

10.
The effect of different divalent metal ions on the hydrolysis of DNA by DNase I was studied with an assay which distinguishes between cleavage of one or both strands of the DNA substrate during initial encounters between enzyme and DNA. Using covalently closed superhelical SV40(I) DNA as substrate, initial reaction products consisting of relaxed circles or unit-length linears are resolved by electrophoresis of radioactively labeled DNA in agarose gels. Only in the presence of a transition metal ion, such as Mn2+ or Co2+, and only under certain reaction conditions, is DNase I able to cut both DNA strands at or near the same point, generating unit-length linears. This ability to cut both DNA strands is inhibited by such factors as temperature decrease, the addition of a monovalent ion or another divalent cation which is not a transition metal ion, or a reduction in the number of superhelical turns in the DNA substrate. All of these factors lead to a winding of the duplex helix and antagonize the unwinding of the duplex promoted by transition metal ion binding. Transition metal ions may thus convert the DNA substrate locally to a form in which DNase I can introduce breaks into both strands. In the presence of Mg2+, DNase I introduces single strand nicks into SV40(I), generating exclusively the covalently open, relaxed circular SV40(II) as the initial product of the reaction. In the presence of Mn2+, DNase I generates as initial products a mixture of SV40(II) and unit-length SV40 linear DNA molecules, formed by two nicks in opposite strands at or near the same point in the duplex. These circular SV40(II) molecules consist of two types. A minority class is indistinguishable from the nicked SV40(II) produced by DNase I in the presence of Mg2+. The majority class consists of molecules containing a gap in one of the two strands, the mean length of the gap being 11 nucleotides. The SV40(L) molecules produced in the presence of Mn2+ appear to have single strand extensions at one or both ends.  相似文献   

11.
Nucleoprotein complexes containing viral DNA and cellular histones were extracted from nuclei of permissive cells infected with polyoma virus or simian virus 40 (SV40) and examined by electron microscopy. Polyoma and SV40 nucleoprotein complexes are almost identical. They appear as relaxed circular molecules consisting of 20 to 21 globular particles interconnected by thin filaments. Their contour length in 0.02 M salt is 2.7 times shorter than that of viral DNA form I obtained after dissociation of the proteins in 1 M NaCl. The nucleosomes have an average diameter of 12.5 nm. Each nucleosome contains 175 to 205 DNA base pairs condensed fivefold in length. The nucleosomes are regularly spaced on the circular molecule. The internucleosomal filaments are made of naked DNA, and each filament contains about 55 base pairs. The partial sensitivity of the nucleoprotein complex to cleavage by EcoR1 endonuclease suggests that the nucleosomes are not formed at specific sites on the viral genome. Faster sedimenting nucleoprotein complexes containing replicative intermediates were studied. Isopycnic centrifugation in metrizamide gradients in the absence of aldehyde fixation showed that these molecules conserved the same DNA-to-protein ratio as the form I DNA-containing complexes.  相似文献   

12.
13.
Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.  相似文献   

14.
The interaction of supercoiled, circular SV40 DNA with calf thymus histone fractions has been studied. Five- to ten-fold less f1 histone is required to complex a given amount of DNA compared to the other histones. When the supercoiled DNA is converted to either the relaxed circular form, or full length linear molecules, or gragmented linear or denatured stands, the efficiency of complex formation with f1 histone markedly decreases. We conclude that f1 histone has a special ability to interact with supercoiled DNA. This conclusion is supported by the fact that supercoiled circular Col E1 DNA interacts with f1 as efficiently as does SV40 DNA.  相似文献   

15.
B S Rao  R G Martin 《Journal of virology》1988,62(10):3879-3882
We have studied the early transition of newly replicated, segregated daughter molecules of simian virus 40 (SV40) into their mature, fully supercoiled state. The DNA of SV40 replicating in African green monkey kidney CV1 cells was chronically labeled with [14C]thymidine and pulse-labeled with [3H]thymidine. The cells were lysed and the viral DNA was isolated. Density gradient centrifugation of viral DNA in cesium chloride revealed that the pulse-labeled, newly synthesized, closed circular supercoiled DNA molecules banded at a slightly higher density (delta sigma = 0.0025) than the chronically labeled DNA, suggesting that the newly completed molecules were in a different structural state. Electrophoresis of DNA in agarose gels at appropriate chloroquine concentrations demonstrated that the mobility of the pulse-labeled closed, superhelical DNA was retarded relative to that of the chronically labeled DNA. These observations indicated that the newly completed SV40 DNA molecules existed in a structural state more relaxed than that of mature DNA by one or two linking numbers.  相似文献   

16.
Specific folding and contraction of DNA by histones H3 and H4.   总被引:26,自引:0,他引:26  
M Bina-Stein  R T Simpson 《Cell》1977,11(3):609-618
We demonstrate that the arginine-rich histones H3 and H4 can introduce torsional constraints on closed circular DNA with a concomitant compaction of the nucleic acid. SV40 DNA I complexed with H3 and H4 appears relaxed in electron micrographs and contains particles of 75 +/- 10 A in diameter along the DNA. SV40 DNA I is contracted 2.75 +/- 0.25 fold by all the four smaller histones and 2.6 +/- 0.4 fold by H3 and H4 alone. The arginine-rich histones can cause the topological equivalent of unwinding the DNA close to one Watson-Crick turn per particle formed. Spherical nucleoprotein complexes morphologically similar to isolated nu bodies or nucleosomes are obtained by association of H3 and H4 with 140 base pair length DNA isolated from chromatin core particles. These reconstituted particles sediment at 9.8S, as compared to 10.8S for native core particles, and contain a tetramer of the arginine-rich histones. None of these specific alterations in DNA structure is seen om complexing the slightly lysine rich-histones H2A and H2B to DNA. Our data provide further evidence indicating that the arginine-rich histones are the major determinants of the architecture of DNA within the chromatin core particle.  相似文献   

17.
The possible addition of extra sequences to simian virus 40 (SV40) DNA was analyzed by electron microscopy in two different cell systems, productively infected monkey cells and activated heterokaryons on monkey and transformed mouse 3T3 cells. We found that the closed circular DNA fraction, extracted from monkey cells at 70 h after infection with nondefective SV40 at a multiplicity of infection of 6 PFU/cell, contained oversized molesules (1.1 to 2.0 fractional lengths of SV40 DNA) constituting about 8% of the molecules having lengths equal to or shorter than SV40 dinner DNA. The oversized molecules had the entired SV40 sequences. The added DNA was heterogeneous in length. The sites of addition were not specific with reference to the EcoRi site. These results suggest that recombination between monkey and SV40 DNAs or partial duplication of SV40 DNA occurs at many sites on the SV40 chromosome. The integrated SV40 DNA is excised and replicates in activated heterokaryons. In this system, besides SV40 DNA we found heterogeneous undersized and oversized molecules containing SV40 sequences in the closed circular DNA population. Additions differeing in size appeared to be overlapping and to have occurred at a preferential site on the SV40 chromosome. These results support the hypothesis that host DNA can be added to SV40 DNA at the site of integration at the time of excision.  相似文献   

18.
Simian virus 40 (SV40) DNA replication was studied in monolayers of infected monkey CV-1 cells, permeabilized with lysolecithin, by incubation with [alpha-32P]dTTP, the other dNTPs and rNTPs and an ATP-regenerating system. Analysis of the labeled SV40 DNA by sedimentation in alkaline sucrose gradients showed that about 30% of the material synthesized by the permeable cells in the course of 60 min consisted of covalently closed circular SV40 DNA (form I), with the remainder sedimenting as relaxed circles (form II) and replicative intermediates between 18 S and 4 S. The synthesis of SV40 DNA in the permeabilized cell system required the presence of all four dNTPs and was completely inhibited by aphidicolin, consistent with the involvement of DNA polymerase alpha. A detailed analysis of the distribution of radioactivity in the DNA synthesized involved cleavage with BstNI restriction endonuclease, followed by polyacrylamide gel electrophoresis and radioautography. The extent of labeling of all restriction fragments was nearly proportional to their length, suggesting that the entire SV40 chromosome was being replicated. This was confirmed by the careful comparison of the rate of labeling of a DNA fragment which includes the replication origin, and a fragment which includes the replication terminus. Their labeling was proportional to their size, regardless of the time for which the labeling was carried out. This demonstrated that the replication of the entire SV40 chromosome occurred in a steady state and that the start and termination of replication continuously occurred throughout the labeling period. The availability of an in vitro system in which replication of SV40 DNA undergoes multiple replication cycles should be of considerable value in the analysis of the mechanism of replication of this viral genome.  相似文献   

19.
20.
Systems for gel electrophoresis in the presence of one of the intercalative unwinding ligands, ethidium or chloroquine, have been developed which permit the resolution of highly supercoiled closed circular DNA molecules differing by unit values of the topological winding number, alpha. All native closed circular DNAs examined, including the viral and intracellular forms of SV40 and polyoma DNA, bacterial plasmid DNAs, and the double stranded closed circular DNA genome of the marine bacteriophage, PM2, are more heterogeneous with respect to the number of superhelical turns present than are the thermal distributions observed in the limit products of the action of nicking-closing (N-C) enzyme on the respective DNAs. In the cases of SV40 and polyoma, where it has been shown that the supercoiling is a combined consequence of the binding of the four nucleosomal histones, H2a, H2b, H3 and H4, and the action of N-C enzyme, the breadth of the distributions within the form I DNAs poses specific problems since the work of other laboratories indicates that the number of nucleosomes on the respective minichromosomes falls within a narrow distribution of 21. If it is assumed that all nucleosomes have identical structures, and that the DNA within a nucleosome is not free to rotate, the native DNA would be anticipated to be less heterogeneous than the thermal equilibrium mixtures present in N-C enzyme relaxed SV40 and polyoma DNAs.The absolute number of superhelical turns (at 37 degrees C in 0.2 M NaCl) in virion polyoma DNA has been determined to be 26 +/- 1, which is the same value obtained for virion SV40 DNA. This is consistent with the observations that polyoma DNA has a higher molecular weight, a lower superhelix density, but the same number of nucleosomes as SV40 DNA. In addition, the distributions within the virion and intracellular form I DNAs of both SV40 and polyoma were found to be indistinguishable.Images  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号