首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
We explore model-based techniques of phylogenetic tree inference exercising Markov invariants. Markov invariants are group invariant polynomials and are distinct from what is known in the literature as phylogenetic invariants, although we establish a commonality in some special cases. We show that the simplest Markov invariant forms the foundation of the Log–Det distance measure. We take as our primary tool group representation theory, and show that it provides a general framework for analyzing Markov processes on trees. From this algebraic perspective, the inherent symmetries of these processes become apparent, and focusing on plethysms, we are able to define Markov invariants and give existence proofs. We give an explicit technique for constructing the invariants, valid for any number of character states and taxa. For phylogenetic trees with three and four leaves, we demonstrate that the corresponding Markov invariants can be fruitfully exploited in applied phylogenetic studies.  相似文献   

2.
An attempt to use phylogenetic invariants for tree reconstruction was made at the end of the 80s and the beginning of the 90s by several researchers (the initial idea due to Lake [1987] and Cavender and Felsenstein [1987]). However, the efficiency of methods based on invariants is still in doubt (Huelsenbeck 1995; Jin and Nei 1990). Probably because these methods only used few generators of the set of phylogenetic invariants. The method studied in this paper was first introduced in Casanellas et al. (2005) and it is the first method based on invariants that uses the "whole" set of generators for DNA data. The simulation studies performed in this paper prove that it is a very competitive and highly efficient phylogenetic reconstruction method, especially for nonhomogeneous models on phylogenetic trees.  相似文献   

3.
4.
A phylogenetic invariant for a model of biological sequence evolution along a phylogenetic tree is a polynomial that vanishes on the expected frequencies of base patterns at the terminal taxa. While the use of these invariants for phylogenetic inference has long been of interest, explicitly constructing such invariants has been problematic.We construct invariants for the general Markov model of kappa-base sequence evolution on an n-taxon tree, for any kappa and n. The method depends primarily on the observation that certain matrices defined in terms of expected pattern frequencies must commute, and yields many invariants of degree kappa+1, regardless of the value of n. We define strong and parameter-strong sets of invariants, and prove several theorems indicating that the set of invariants produced here has these properties on certain sets of possible pattern frequencies. Thus our invariants may be sufficient for phylogenetic applications.  相似文献   

5.
Counting phylogenetic invariants in some simple cases.   总被引:1,自引:0,他引:1  
An informal degrees of freedom argument is used to count the number of phylogenetic invariants in cases where we have three or four species and can assume a Jukes-Cantor model of base substitution with or without a molecular clock. A number of simple cases are treated and in each the number of invariants can be found. Two new classes of invariants are found: non-phylogenetic cubic invariants testing independence of evolutionary events in different lineages, and linear phylogenetic invariants which occur when there is a molecular clock. Most of the linear invariants found by Cavender (1989, Molec. Biol. Evol. 6, 301-316) turn out in the Jukes-Cantor case to be simple tests of symmetry of the substitution model, and not phylogenetic invariants.  相似文献   

6.
The Cavender-Felsenstein edge-length invariants for binary characters on 4-trees provide the starting point for the development of "customized" invariants for evaluating and comparing phylogenetic hypotheses. The binary character invariants may be generalized to k-valued characters without losing the quadratic nature of the invariants as functions of the theoretical frequencies f(UVXY) of observable character configurations (U at organism 1, V at 2, etc.). The key to the approach is that certain sets of these configurations constitute events which are probabilistically independent from other such sets, under the symmetric Markov change models studied. By introducing more complex sets of configurations, we find the quadratic invariants for 5-trees in the binary model and for individual edges in 6-trees or, indeed, in any size tree. The same technique allows us to formulate invariants for entire trees, but these are cubic functions for 6-trees and are higher-degree polynomials for larger trees. With k-valued characters and, especially, with large trees, the types of configuration sets (events) used in the simpler examples are too rare (i.e., their predicted frequencies are too low) to be useful, and the construction of meaningful pairs of independent events becomes an important and nontrivial task in designing invariants suited to testing specific hypotheses. In a very natural way, this approach fits in with well-known statistical methodology for contingency tables. We explore use of events such as "only transitions occur for character i (i.e., position i in a nucleic acid sequence) in subtree a" in analyzing a set of data on ribosomal RNA in the context of the controversy over the origins of archaebacteria, eubacteria, and eukaryotes.  相似文献   

7.
For a model of molecular evolution to be useful for phylogenetic inference, the topology of evolutionary trees must be identifiable. That is, from a joint distribution the model predicts, it must be possible to recover the tree parameter. We establish tree identifiability for a number of phylogenetic models, including a covarion model and a variety of mixture models with a limited number of classes. The proof is based on the introduction of a more general model, allowing more states at internal nodes of the tree than at leaves, and the study of the algebraic variety formed by the joint distributions to which it gives rise. Tree identifiability is first established for this general model through the use of certain phylogenetic invariants.  相似文献   

8.
We prove that it is impossible to reconstruct ancestral data at the root of "deep" phylogenetic trees with high mutation rates. Moreover, we prove that it is impossible to reconstruct the topology of "deep" trees with high mutation rates from a number of characters smaller than a low-degree polynomial in the number of leaves. Our impossibility results hold for all reconstruction methods. The proofs apply tools from information theory and percolation theory.  相似文献   

9.
We address phylogenetic reconstruction when the data is generated from a mixture distribution. Such topics have gained considerable attention in the biological community with the clear evidence of heterogeneity of mutation rates. In our work we consider data coming from a mixture of trees which share a common topology, but differ in their edge weights (i.e., branch lengths). We first show the pitfalls of popular methods, including maximum likelihood and Markov chain Monte Carlo algorithms. We then determine in which evolutionary models, reconstructing the tree topology, under a mixture distribution, is (im)possible. We prove that every model whose transition matrices can be parameterized by an open set of multilinear polynomials, either has non-identifiable mixture distributions, in which case reconstruction is impossible in general, or there exist linear tests which identify the topology. This duality theorem, relies on our notion of linear tests and uses ideas from convex programming duality. Linear tests are closely related to linear invariants, which were first introduced by Lake, and are natural from an algebraic geometry perspective.  相似文献   

10.
11.
We review the combinatorial optimization problems in calculating edit distances between genomes and phylogenetic inference based on minimizing gene order changes. With a view to avoiding the computational cost and the "long branches attract" artifact of some tree-building methods, we explore the probabilization of genome rearrangement models prior to developing a methodology based on branch-length invariants. We characterize probabilistically the evolution of the structure of the gene adjacency set for reversals on unsigned circular genomes and, using a nontrivial recurrence relation, reversals on signed genomes. Concepts from the theory of invariants developed for the phylogenetics of homologous gene sequences can be used to derive a complete set of linear invariants for unsigned reversals, as well as for a mixed rearrangement model for signed genomes, though not for pure transposition or pure signed reversal models. The invariants are based on an extended Jukes-Cantor semigroup. We illustrate the use of these invariants to relate mitochondrial genomes from a number of invertebrate animals.  相似文献   

12.
An analytical method is presented for constructing linear invariants. All linear invariants of a k-species tree can be derived from those of (k-1)-species trees using this method. The new method is simpler than that of Cavender, which relies on numerical computations. Moreover, the new method provides a convenient tool to study the relationships between linear invariants of the same tree or of different trees. All linear invariants of trees of up to five species are derived in this study. For four species, there are 16 independent linear invariants for each of the three possible unrooted trees, 14 of which are shared by two unrooted trees and 12 of these are shared by all three unrooted trees; the last types of linear invariants can be used to construct tests on the assumptions about nucleotide substitutions. The number of linear invariants for a tree is found to increase rapidly with the number of species.  相似文献   

13.
Incongruence between gene trees is the main challenge faced by phylogeneticists in the genomic era. Incongruence can occur for artefactual reasons, when we fail to recover the correct gene trees, or for biological reasons, when true gene trees are actually distinct from each other, and from the species tree. Horizontal gene transfers (HGTs) between genomes are an important process of bacterial evolution resulting in a substantial amount of phylogenetic conflicts between gene trees. We argue that the (bacterial) species tree is still a meaningful scientific concept even in the case of HGTs, and that reconstructing it is still a valid goal. We tentatively assess the amount of phylogenetic incongruence caused by HGTs in bacteria by comparing bacterial datasets to a metazoan dataset in which transfers are presumably very scarce or absent.We review existing phylogenomic methods and their ability to return to the user, both the vertical (speciation/extinction history) and horizontal (gene transfers) phylogenetic signals.  相似文献   

14.

Background  

It has become increasingly apparent that a comprehensive database of RNA motifs is essential in order to achieve new goals in genomic and proteomic research. Secondary RNA structures have frequently been represented by various modeling methods as graph-theoretic trees. Using graph theory as a modeling tool allows the vast resources of graphical invariants to be utilized to numerically identify secondary RNA motifs. The domination number of a graph is a graphical invariant that is sensitive to even a slight change in the structure of a tree. The invariants selected in this study are variations of the domination number of a graph. These graphical invariants are partitioned into two classes, and we define two parameters based on each of these classes. These parameters are calculated for all small order trees and a statistical analysis of the resulting data is conducted to determine if the values of these parameters can be utilized to identify which trees of orders seven and eight are RNA-like in structure.  相似文献   

15.
Phylogenetic comparative methods play a critical role in our understanding of the adaptive origin of primate behaviors. To incorporate evolutionary history directly into comparative behavioral research, behavioral ecologists rely on strong, well-resolved phylogenetic trees. Phylogenies provide the framework on which behaviors can be compared and homologies can be distinguished from similarities due to convergent or parallel evolution. Phylogenetic reconstructions are also of critical importance when inferring the ancestral state of behavioral patterns and when suggesting the evolutionary changes that behavior has undergone. Improvements in genome sequencing technologies have increased the amount of data available to researchers. Recently, several primate phylogenetic studies have used multiple loci to produce robust phylogenetic trees that include hundreds of primate species. These trees are now commonly used in comparative analyses and there is a perception that we have a complete picture of the primate tree. But how confident can we be in those phylogenies? And how reliable are comparative analyses based on such trees? Herein, we argue that even recent molecular phylogenies should be treated cautiously because they rely on many assumptions and have many shortcomings. Most phylogenetic studies do not model gene tree diversity and can produce misleading results, such as strong support for an incorrect species tree, especially in the case of rapid and recent radiations. We discuss implications that incorrect phylogenies can have for reconstructing the evolution of primate behaviors and we urge primatologists to be aware of the current limitations of phylogenetic reconstructions when applying phylogenetic comparative methods.  相似文献   

16.
SUMMARY Traits from early development mapped onto phylogenetic trees can potentially offer insight into the evolutionary history of development by inferring the states of those characters among ancestors at nodes in the phylogeny. A key and often-overlooked aspect of such mapping is the underlying model of character evolution. Without a well-supported and realistic model ("nothing"), character mapping of ancestral traits onto phylogenetic trees might often return results ("something") that lack a sound basis. Here we reconsider a challenging case study in this area of evolutionary developmental biology: the inference of ancestral states for ecological and morphological characters in the reproduction and larval development of asterinid sea stars. We apply improved analytical methods to an expanded set of asterinid phylogenetic data and developmental character states. This analysis shows that the new methods might generally offer some independent insight into choice of a model of character evolution, but that in the specific case of asterinid sea stars the quantitative features of the model (especially the relative probabilities of different directions of change) have an important effect on the results. We suggest caution in applying ancestral state reconstructions in the absence of an independently corroborated model of character evolution, and highlight the need for such modeling in evolutionary developmental biology.  相似文献   

17.
Concerns have been raised that posterior probabilities on phylogenetic trees can be unreliable when the true tree is unresolved or has very short internal branches, because existing methods for Bayesian phylogenetic analysis do not explicitly evaluate unresolved trees. Two recent papers have proposed that evaluating only resolved trees results in a "star tree paradox": when the true tree is unresolved or close to it, posterior probabilities were predicted to become increasingly unpredictable as sequence length grows, resulting in inflated confidence in one resolved tree or another and an increasing risk of false-positive inferences. Here we show that this is not the case; existing Bayesian methods do not lead to an inflation of statistical confidence, provided the evolutionary model is correct and uninformative priors are assumed. Posterior probabilities do not become increasingly unpredictable with increasing sequence length, and they exhibit conservative type I error rates, leading to a low rate of false-positive inferences. With infinite data, posterior probabilities give equal support for all resolved trees, and the rate of false inferences falls to zero. We conclude that there is no star tree paradox caused by not sampling unresolved trees.  相似文献   

18.
The neutral theory of molecular evolution predicts that rates of phenotypic change are largely independent from genotypic change. A recent study by Bromham et al. (2002) confirmed this expectation, finding no evidence for correlated phenotypic and molecular evolutionary rates in animals. We reevaluate this hypothesis, sampling at different taxonomic levels in plants and animals, using Bayesian inference to reconstruct phylogenetic trees and estimate rates of molecular evolution. We use independent contrasts in branch lengths to maximize the information extracted from each of the trees and nodal posterior probabilities to assess the influence of phylogenetic error. Our results indicate that in vascular plants between 2% and 11% of the variation in phenotypic rates of change can be explained by the rate of genotypic change. These results may be explained by the idea that processes that affect general evolutionary rates, such as body size, may also be expected to influence rates of morphological change.  相似文献   

19.
Investigating patterns of phylogenetic structure across different life stages of tree species in forests is crucial to understanding forest community assembly, and investigating forest gap influence on the phylogenetic structure of forest regeneration is necessary for understanding forest community assembly. Here, we examine the phylogenetic structure of tree species across life stages from seedlings to canopy trees, as well as forest gap influence on the phylogenetic structure of forest regeneration in a forest of the subtropical region in China. We investigate changes in phylogenetic relatedness (measured as NRI) of tree species from seedlings, saplings, treelets to canopy trees; we compare the phylogenetic turnover (measured as βNRI) between canopy trees and seedlings in forest understory with that between canopy trees and seedlings in forest gaps. We found that phylogenetic relatedness generally increases from seedlings through saplings and treelets up to canopy trees, and that phylogenetic relatedness does not differ between seedlings in forest understory and those in forest gaps, but phylogenetic turnover between canopy trees and seedlings in forest understory is lower than that between canopy trees and seedlings in forest gaps. We conclude that tree species tend to be more closely related from seedling to canopy layers, and that forest gaps alter the seedling phylogenetic turnover of the studied forest. It is likely that the increasing trend of phylogenetic clustering as tree stem size increases observed in this subtropical forest is primarily driven by abiotic filtering processes, which select a set of closely related evergreen broad-leaved tree species whose regeneration has adapted to the closed canopy environments of the subtropical forest developed under the regional monsoon climate.  相似文献   

20.
The branching topology of the archaeal (archaebacterial) domain was inferred from sequence comparisons of the largest subunit (B) of DNA-dependent RNA polymerases (RNAP). Both the nucleic acid sequences of the genes coding for RNAP subunit B and the amino acid sequences of the derived gene products were used for phylogenetic reconstructions. Individual analysis of the three nucleotide positions of codons revealed significant inequalities with respect to guanosine and cytosine (GC) content and evolutionary rates. Only the nucleotides at the second codon positions were found to be unbiased by varied GC contents and sufficiently conserved for reliable phylogenetic reconstructions. A decision matrix was used for the combination of the results of distance matrix, maximum parsimony, and maximum likelihood methods. For this purpose the original results (sums of squares, steps, and logarithms of likelihoods) were transformed into comparable effective values and analyzed with methods known from the theory of statistical decisions. Phylogenetic invariants and statistical analysis with resampling techniques (bootstrap and jackknife) confirmed the preferred branching topology, which is significantly different from the topology known from phylogenetic trees based on 16S rRNA sequences. The preferred topology reconstructed by this analysis shows a common stem for the Methanococcales and Methanobacteriales and a separation of the thermophilic sulfur archaea from the methanogens and halophiles. The latter coincides with a unique phylogenetic location of a characteristic splitting event replacing the largest RNAP subunit of thermophilic sulfur archaea by two fragments in methanogens and halophiles. This topology is in good agreement with physiological and structural differences between the various archaea and demonstrates RNAP to be a suitable phylogenetic marker molecule. Correspondence to: H.-P. Klenk  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号