首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
BACKGROUND: beta-Lactam compounds are the most widely used antibiotics. They inactivate bacterial DD-transpeptidases, also called penicillin-binding proteins (PBPs), involved in cell-wall biosynthesis. The most common bacterial resistance mechanism against beta-lactam compounds is the synthesis of beta-lactamases that hydrolyse beta-lactam rings. These enzymes are believed to have evolved from cell-wall DD-peptidases. Understanding the biochemical and mechanistic features of the beta-lactam targets is crucial because of the increasing number of resistant bacteria. DAP is a D-aminopeptidase produced by Ochrobactrum anthropi. It is inhibited by various beta-lactam compounds and shares approximately 25% sequence identity with the R61 DD-carboxypeptidase and the class C beta-lactamases. RESULTS: The crystal structure of DAP has been determined to 1.9 A resolution using the multiple isomorphous replacement (MIR) method. The enzyme folds into three domains, A, B and C. Domain A, which contains conserved catalytic residues, has the classical fold of serine beta-lactamases, whereas domains B and C are both antiparallel eight-stranded beta barrels. A loop of domain C protrudes into the substrate-binding site of the enzyme. CONCLUSIONS: Comparison of the biochemical properties and the structure of DAP with PBPs and serine beta-lactamases shows that although the catalytic site of the enzyme is very similar to that of beta-lactamases, its substrate and inhibitor specificity rests on residues of domain C. DAP is a new member of the family of penicillin-recognizing proteins (PRPs) and, at the present time, its enzymatic specificity is clearly unique.  相似文献   

2.
Cephamycin C-producing microorganisms use two enzymes to convert cephalosporins to their 7alpha-methoxy derivatives. Here we report the X-ray structure of one of these enzymes, CmcI, from Streptomyces clavuligerus. The polypeptide chain of the enzyme folds into a C-terminal Rossmann domain and a smaller N-terminal domain, and the molecule packs as a hexamer in the crystal. The Rossmann domain binds S-adenosyl-L-methionine (SAM) and the demethylated product, S-adenosyl-L-homocysteine, in a fashion similar to the common binding mode of this cofactor in SAM-dependent methyltransferases. There is a magnesium-binding site in the vicinity of the SAM site with a bound magnesium ion ligated by residues Asp160, Glu186 and Asp187. The expected cephalosporin binding site near the magnesium ion is occupied by polyethyleneglycol (PEG) from the crystallisation medium. The geometry of the SAM and the magnesium binding sites is similar to that found in cathechol O-methyltransferase. The results suggest CmcI is a methyltransferase, and its most likely function is to catalyse the transfer of a methyl group from SAM to the 7alpha-hydroxy cephalosporin in the second catalytic reaction of cephamycin formation. Based on the docking of the putative substrate, 7alpha-hydroxy-O-carbamoyldeacetylcephalosporin C, to the structure of the ternary CmcI-Mg2+-SAM complex, we propose a model for substrate binding and catalysis. In this model, the 7-hydroxy group of the beta-lactam ring ligates the Mg2+ with its alpha-side facing the methyl group of SAM at a distance that would allow methylation of the hydroxyl-group.  相似文献   

3.
It has been proposed that penicillin and other beta-lactam antibiotics are substrate analogs which inactivate certain essential enzymes of bacterial cell wall biosynthesis by acylating a catalytic site amino acid residue (Tipper, D.J., and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141). A key prediction of this hypothesis, that the penicilloyl moiety and an acyl moiety derived from substrate both bind to the same active site residue, has been examined. D-Alanine carboxypeptidase, a penicillin-sensitive membrane enzyme, was purified from Bacillus subtilis and labeled covalently at the antibiotic binding site with [14C]penicillin G or with the cephalosporin [14C]cefoxitin. Alternatively, an acyl moiety derived from the depsipeptide substrate [14C]diacetyl L-Lys-D-Ala-D-lactate was trapped at the catalytic site in near-stoichiometric amounts by rapid denaturation of an acyl-enzyme intermediate. Radiolabeled peptides were purified from a pepsin digest of each of the 14C-labeled D-alanine carboxypeptidases and their amino acid sequences determined. Antibiotic- and substrate-labeled peptic peptides had the same sequence: Tyr-Ser-Lys-Asn-Ala-Asp-Lys-Arg-Leu-Pro-Ile-Ala-Ser-Met. Acyl moieties derived from antibiotic and from substrate were shown to be bound covalently in ester linkage to the identical amino acid residue, a serine at the penultimate position of the peptic peptide. These studies establish that beta-lactam antibiotics are indeed active site-directed acylating agents. Additional amino acid sequence data were obtained by isolating and sequencing [14C]penicilloyl peptides after digestion of [14C]penicilloyl D-alanine carboxypeptidase with either trypsin or cyanogen bromide and by NH2-terminal sequencing of the uncleaved protein. The sequence of the NH2-terminal 64 amino acids was thus determined and the active site serine then identified as residue 36. A computer search for homologous proteins indicated significant sequence homology between the active site of D-alanine carboxypeptidase and the NH2-terminal portion of beta-lactamases. Maximum homology was obtained when the active site serine of D-alanine carboxypeptidase was aligned correctly with a serine likely to be involved in beta-lactamase catalysis. These findings provide strong evidence that penicillin-sensitive D-alanine carboxypeptidases and penicillin-inactivating beta-lactamases are related evolutionarily.  相似文献   

4.
beta-Lactamases inactivate penicillin and cephalosporin antibiotics by hydrolysis of the beta-lactam ring and are an important mechanism of resistance for many bacterial pathogens. Four wild-type variants of Staphylococcus aureus beta-lactamase, designated A, B, C, and D, have been identified. Although distinguishable kinetically, they differ in primary structure by only a few amino acids. Using the reported sequences of the A, C, and D enzymes along with crystallographic data about the structure of the type A enzyme to identify amino acid differences located close to the active site, we hypothesized that these differences might explain the kinetic heterogeneity of the wild-type beta-lactamases. To test this hypothesis, genes encoding the type A, C, and D beta-lactamases were modified by site-directed mutagenesis, yielding mutant enzymes with single amino acid substitutions. The substitution of asparagine for serine at residue 216 of type A beta-lactamase resulted in a kinetic profile indistinguishable from that of type C beta-lactamase, whereas the substitution of serine for asparagine at the same site in the type C enzyme produced a kinetic type A mutant. Similar bidirectional substitutions identified the threonine-to-alanine difference at residue 128 as being responsible for the kinetic differences between the type A and D enzymes. Neither residue 216 nor 128 has previously been shown to be kinetically important among serine-active-site beta-lactamases.  相似文献   

5.
The active centres in penicillin-sensitive enzymes   总被引:2,自引:0,他引:2  
The interaction between beta-lactam antibiotics and the penicillin-sensitive enzymes is a multiple-step process. Binding of the beta-lactam ring of the penam (or 3-cepham) nucleus occurs at binding site no. 1. Interaction between the N-14 substituent of the bound molecule and binding site no. 2 induces changes in binding site no. 1. In turn, the catalytic site thus created increases the chemical reactivity of the beta-lactam amide bond. As the beta-lactam ring opens and acylates an enzyme serine residue, the interaction between the thiazolidine (or dihydrothiazine) ring and binding site no. 3 stabilizes the acyl-enzyme complex. Enzyme regeneration slowly proceeds either by direct elimination of the penicilloyl moiety or via C-5-C-6 splitting of the bound metabolite. The fragment arising from thiazolidine yields free N-formyl-D-penicillamine while the enzyme-linked N-acylglycyl fragment is immediately attacked by an exogenous nucleophile correctly positioned on the acceptor site. Similarly, the enzyme action on L-X-D-Ala-D-Ala terminated peptides is mediated via a binding site no. 1 that combines with D-Ala-D-Ala, a binding site no. 2 that interacts with the side chain of the preceding L-residue, an inducible catalytic site and an acceptor site. Enzymes are known that form a transitory L-X-D-Ala-enzyme complex where the acyl group is ester-linked to the same serine residue as that involved in the formation of the penicilloyl-enzyme complex (Waxman et al., this symposium). Other enzymes, however, may function as catalyst templates. Depending on the enzymes, the independence of the beta-lactam and L-X-D-Ala-D-Ala active centres is more or less pronounced.  相似文献   

6.
The crystallographic structure of the Escherichia coli OXA-1 beta-lactamase has been established at 1.5-A resolution and refined to R = 0.18. The 28.2-kD oxacillinase is a class D serine beta-lactamase that is especially active against the penicillin-type beta-lactams oxacillin and cloxacillin. In contrast to the structures of OXA-2, OXA-10, and OXA-13 belonging to other subclasses, the OXA-1 molecule is monomeric rather than dimeric and represents the subclass characterized by an enlarged Omega loop near the beta-lactam binding site. The 6-residue hydrophilic insertion in this loop cannot interact directly with substrates and, instead, projects into solvent. In this structure at pH 7.5, carboxylation of the conserved Lys 70 in the catalytic site is observed. One oxygen atom of the carboxylate group is hydrogen bonded to Ser 120 and Trp 160. The other oxygen atom is more exposed and hydrogen bonded to the Ogamma of the reactive Ser 67. In the overlay of the class D and class A binding sites, the carboxylate group is displaced ca. 2.6 A from the carboxylate group of Glu 166 of class A enzymes. However, each group is equidistant from the site of the water molecule expected to function in hydrolysis, and which could be activated by the carboxylate group of Lys 70. In this ligand-free OXA-1 structure, no water molecule is seen in this site, so the water molecule must enter after formation of the acyl-Ser 67 intermediate.  相似文献   

7.
X-ray crystallography has been used to examine the binding of three members of the beta-lactam family of antibiotics to the D-alanyl-D-alanine peptidase from Streptomyces R61, a target of penicillins. Cephalosporin C, the monobactam analog of penicillin G and (2,3)-alpha-methylene benzylpenicillin have been mapped at 2.3 A resolution in the form of acyl-enzyme complexes bound to serine 62. On the basis of the positions of these inhibitors, the binding of a tripeptide substrate for the enzyme, L-lysyl-D-alanyl-D-alanine, has been modeled in the active site. The binding of both inhibitors and substrate is facilitated by hydrogen-bonding interactions with a conserved beta-strand (297-303), which is antiparallel to the beta-lactam's acylamide linkage or the substrate's peptide bond. The active site is similar to that in beta-lactamases.  相似文献   

8.
The alpha-amino acid ester hydrolase (AEH) from Acetobacter turbidans is a bacterial enzyme catalyzing the hydrolysis and synthesis of beta-lactam antibiotics. The crystal structures of the native enzyme, both unliganded and in complex with the hydrolysis product D-phenylglycine are reported, as well as the structures of an inactive mutant (S205A) complexed with the substrate ampicillin, and an active site mutant (Y206A) with an increased tendency to catalyze antibiotic production rather than hydrolysis. The structure of the native enzyme shows an acyl binding pocket, in which D-phenylglycine binds, and an additional space that is large enough to accommodate the beta-lactam moiety of an antibiotic. In the S205A mutant, ampicillin binds in this pocket in a non-productive manner, making extensive contacts with the side chain of Tyr(112), which also participates in oxyanion hole formation. In the Y206A mutant, the Tyr(112) side chain has moved with its hydroxyl group toward the catalytic serine. Because this changes the properties of the beta-lactam binding site, this could explain the increased beta-lactam transferase activity of this mutant.  相似文献   

9.
Beta-lactamase of Bacillus licheniformis 749/C at 2 A resolution   总被引:8,自引:0,他引:8  
Two crystal forms (A and B) of the 29,500 Da Class A beta-lactamase (penicillinase) from Bacillus licheniformis 749/C have been examined crystallographically. The structure of B-form crystals has been solved to 2 A resolution, the starting model for which was a 3.5 A structure obtained from A-form crystals. The beta-lactamase has an alpha + beta structure with 11 helices and 5 beta-strands seen also in a penicillin target DD-peptidase of Streptomyces R61. Atomic parameters of the two molecules in the asymmetric unit were refined by simulated annealing at 2.0 A resolution. The R factor is 0.208 for the 27,330 data greater than 3 sigma (F), with water molecules excluded from the model. The catalytic Ser-70 is at the N-terminus of a helix and is within hydrogen bonding distance of conserved Lys-73. Also interacting with the Lys-73 are Asn-132 and the conserved Glu-166, which is on a potentially flexible helix-containing loop. The structure suggests the binding of beta-lactam substrates is facilitated by interactions with Lys-234, Thr-235, and Ala-237 in a conserved beta-strand peptide, which is antiparallel to the beta-lactam's acylamido linkage; an exposed cavity near Asn-170 exists for acylamido substituents. The reactive double bond of clavulanate-type inhibitors may interact with Arg-244 on the fourth beta-strand. A very similar binding site architecture is seen in the DD-peptidase.  相似文献   

10.
Mutagenesis throughout the single-chain urokinase-type plasminogen activator (scu-PA) cDNA molecule, followed by expression of the mutant genes and secretion of the resulting mutant proteins from yeast, has been used to determine the amino acid residues important for activity of scu-PA molecules. Twelve out of 13 colonies secreting variant scu-PA molecules with decreased ability to form a zone of fibrinolysis had mutant genes with a single codon alteration in the serine protease encoding domain (B-chain). Many of these changes are of highly conserved residues in the serine proteases and are consequently of considerable interest. A model three-dimensional structure of the protease domain of urokinase was used to explain the basis for the effects of these down mutations. The model showed that the strongest down mutations result from either interference of the mutated side chain with substrate binding at the active site or the introduction of bulky or charged groups at structurally sensitive internal positions in the molecule. Attempts to find second site revertants of five down mutants, altered either at the plasmin activation site or near the serine at the active site, only resulted in same-site revertants, with the original or closely related amino acids restored.  相似文献   

11.
A Carfi  S Pares  E Duée  M Galleni  C Duez  J M Frère    O Dideberg 《The EMBO journal》1995,14(20):4914-4921
The 3-D structure of Bacillus cereus (569/H/9) beta-lactamase (EC 3.5.2.6), which catalyses the hydrolysis of nearly all beta-lactams, has been solved at 2.5 A resolution by the multiple isomorphous replacement method, with density modification and phase combination, from crystals of the native protein and of a specially designed mutant (T97C). The current model includes 212 of the 227 amino acid residues, the zinc ion and 10 water molecules. The protein is folded into a beta beta sandwich with helices on each external face. To our knowledge, this fold has never been observed. An approximate internal molecular symmetry is found, with a 2-fold axis passing roughly through the zinc ion and suggesting a possible gene duplication. The active site is located at one edge of the beta beta sandwich and near the N-terminal end of a helix. The zinc ion is coordinated by three histidine residues (86, 88 and 149) and a water molecule. A sequence comparison of the relevant metallo-beta-lactamases, based on this protein structure, highlights a few well-conserved amino acid residues. The structure shows that most of these residues are in the active site. Among these, aspartic acid 90 and histidine 210 participate in a proposed catalytic mechanism for beta-lactam hydrolysis.  相似文献   

12.
The crystal structure of the catalytic domain of the site-specific recombination enzyme gamma delta resolvase has been determined at 2.7 A resolution. Its first 120 amino acids form a central five-stranded, beta-pleated sheet surrounded by five alpha helices. In one of the four dyad-related dimers, the two active site Ser-10 residues are 19 A apart, perhaps close enough to contact and become covalently linked to the DNA at the recombination site. This dimer also forms the only closely packed tetramer found in the crystal. The subunit interface at a second dyad-related dimer is more extensive and more highly conserved among the homologous recombinases; however, its active site Ser-10 residues are more than 30 A apart. Side chains, identified by mutations that eliminate catalysis but not DNA binding, are located on the subunit surface near the active site serine and at the interface between a third dyad-related pair of subunits of the tetramer.  相似文献   

13.
To examine the phosphorylation of casein kinase II in cells, the enzyme was isolated by immunoprecipitation from metabolically labeled human epidermal carcinoma A431 cells using polyclonal antipeptide antibodies specific for either the alpha subunit or the beta subunit of the enzyme. When isolated from 32P-labeled cells, the beta subunit was found to be significantly labeled on serine residues whereas only minimal labeling was associated with the alpha subunit. In vitro, the beta subunit of purified bovine casein kinase II was autophosphorylated, also on serine residues. Cleavage of the beta subunit, that had been autophosphorylated in vitro, at tryptophan 9 and tryptophan 12 using N-chlorosuccinimide demonstrated that the autophosphorylation site is located near the amino terminus of the protein, most likely at serine 2 and serine 3. Two-dimensional maps of phosphopeptides generated by digestion of the beta subunit with endoproteinase Glu-C indicted that the majority of the phosphate that was incorporated into the protein in cells was at sites that were indistinguishable from the sites that were autophosphorylated in vitro. In addition to phosphorylation at the autophosphorylation site, the beta subunit is also phosphorylated at an additional site, serine 209, in intact cells. This residue, which is near the carboxyl terminus of the protein, can be phosphorylated in vitro by p34cdc2.  相似文献   

14.
Inhibitors of metallo-beta-lactamase generated from beta-lactam antibiotics   总被引:1,自引:0,他引:1  
Badarau A  Llinás A  Laws AP  Damblon C  Page MI 《Biochemistry》2005,44(24):8578-8589
The resistance of bacteria to the normally lethal action of beta-lactam antibiotics is largely due to the production of beta-lactamases that catalyze the hydrolysis of the beta-lactam. One class of these enzymes is a zinc-dependent metallo-beta-lactamase for which there are no clinically available inhibitors. The hydrolysis of cephalosporin beta-lactam antibiotics generates dihydrothiazines which subsequently undergo isomerization at C6 by C-S bond cleavage and through the intermediacy of a thiol. These thiols can be trapped by the beta-lactamase from Bacillus cereus, causing inhibition of the enzyme. The rate of production of the thiol corresponds to the rate of inhibition, and the inhibition constants are in the micromolar range but vary with the nature of the cephalosporin derivative. NMR studies have identified the structure of the thiols causing inhibition and also show that the thiol binds to the zinc ion, which in turn perturbs the metal-bound histidines. Inhibition is slowly removed as the thiol becomes oxidized or undergoes further degradation. The thiol intermediate generated from cephalothin is a slow binding inhibitor. There is no observed inhibition from the analogous degradation products from penicillins.  相似文献   

15.
Penicillin and related beta-lactam antibiotics are known to exert their bactericidal effects by inhibiting the cross-linking step (transpeptidation) of bacterial cell wall biosynthesis. Evidence is presented in support of the hypothesis that this inhibition results from covalent modification of the active site of sensitive enzymes as a consequence of the structural similarity between penicillin and the acyl-D-alanyl-D-alanine terminus of nascent peptidoglycan strands. Several predictions of this proposal have been verified experimentally. Penicillin-sensitive enzymes are inactivated, with the formation of a covalent, stoichiometric penicilloyl-enzyme complex in vitro. Acylenzyme intermediates have been trapped with several of these enzymes by using cell wall-related substrates. Sequence analysis of the peptides derived from active site-labelled enzymes has established that both penicilloyl and an acyl moiety derived from substrate are covalently bound to the same site, as an ester of serine 36, as predicted by the substrate analogue hypothesis. Sequences near the active site serine are homologous to sequences found in four beta-lactamases, supporting the proposal that penicillin-sensitive D-alanine carboxypeptidases and penicillin-inactivating beta-lactamases are evolutionarily related. Structural features important for the specific and potent inhibitory properties of beta-lactam antibiotics are discussed in terms of the original substrate analogue hypothesis.  相似文献   

16.
Lack of knowledge of the exact chemical structure of cephalosporin antigenic determinants has hindered clinical interpretation of adverse reactions to these drugs and delayed understanding of the mechanisms involved in the specific recognition and binding of IgE molecules to these antigenic determinants. We further resolve the relationship between structure and activity of proposed antigenic chemicals, including the rational design and synthesis of these haptenic structures. Comparative RAST inhibition studies of the synthesized molecules revealed that they were recognized by IgE antibodies induced by cephalosporin antibiotics. Thus, these data indicate that recognition is mainly directed to the acyl side chain and to the beta-lactam fragment that remains linked to the carrier protein in the cephalosporin conjugation course.  相似文献   

17.
The crystal structures of an acetyl esterase, HerE, and its complex with an inhibitor dimethylarsinic acid have been determined at 1.30- and 1.45-A resolution, respectively. Although the natural substrate for the enzyme is unknown, HerE hydrolyzes the acetyl groups from heroin to yield morphine and from phenyl acetate to yield phenol. Recently, the activity of the enzyme toward heroin has been exploited to develop a heroin biosensor, which affords higher sensitivity than other currently available detection methods. The crystal structure reveals a single domain with the canonical alpha/beta hydrolase fold with an acyl binding pocket that snugly accommodates the acetyl substituent of the substrate and three backbone amides that form a tripartite oxyanion hole. In addition, a covalent adduct was observed between the active site serine and dimethylarsinic acid, which inhibits the enzyme. This crystal structure provides the first example of an As-containing compound in a serine esterase active site and the first example of covalent modification of serine by arsenic. Thus, the HerE complex reveals the structural basis for the broad scope inhibition of serine hydrolases by As(V)-containing organic compounds.  相似文献   

18.
Metallo-beta-lactamases can hydrolyze a broad spectrum of beta-lactam antibiotics and thus confer resistance to bacteria. For the Pseudomonas aeruginosa enzyme IMP-1, several variants have been reported. IMP-6 and IMP-1 differ by a single residue (glycine and serine at position 196, respectively), but have significantly different substrate spectra; while the catalytic efficiency toward the two cephalosporins cephalothin and cefotaxime is similar for both variants, IMP-1 is up to 10-fold more efficient than IMP-6 toward cephaloridine and ceftazidime. Interestingly, this biochemical effect is caused by a residue remote from the active site. The substrate-specific impact of residue 196 was studied by molecular dynamics simulations using a cationic dummy atom approach for the zinc ions. Substrates were docked in an intermediate structure near the transition state to the binding site of IMP-1 and IMP-6. At a simulation temperature of 100 K, most complexes were stable during 1 ns of simulation time. However, at higher temperatures, some complexes became unstable and the substrate changed to a nonactive conformation. To model stability, six molecular dynamics simulations at 100 K were carried out for all enzyme-substrate complexes. Stable structures were further heated to 200 and 300 K. By counting stable structures, we derived a stability ranking score which correlated with experimentally determined catalytic efficiency. The use of a stability score as an indicator of catalytic efficiency of metalloenzymes is novel, and the study of substrates in a near-transition state intermediate structure is superior to the modeling of Michaelis complexes. The remote effect of residue 196 can be described by a domino effect: upon replacement of serine with glycine, a hole is created and a stabilizing interaction between Ser196 and Lys33 disappears, rendering the neighboring residues more flexible; this increased flexibility is then transferred to the active site.  相似文献   

19.
BACKGROUND: Semisynthetic cephalosporins are primarily synthesized from 7-aminocephalosporanic acid (7-ACA), which is usually obtained by chemical deacylation of cephalosporin C (CPC). The chemical production of 7-ACA includes, however, several expensive steps and requires thorough treatment of chemical wastes. Therefore, an enzymatic conversion of CPC to 7-ACA by cephalosporin acylase is of great interest. The biggest obstacle preventing this in industrial production is that cephalosporin acylase uses glutaryl-7ACA as a primary substrate and has low substrate specificity for CPC. RESULTS: We have solved the first crystal structure of a cephalosporin acylase from Pseudomonas diminuta at 2.0 A resolution. The overall structure looks like a bowl with two "knobs" consisting of helix- and strand-rich regions, respectively. The active site is mostly formed by the distinctive structural motif of the N-terminal (Ntn) hydrolase superfamily. Superposition of the 61 residue active-site pocket onto that of penicillin G acylase shows an rmsd in Calpha positions of 1.38 A. This indicates structural similarity in the active site between these two enzymes, but their overall structures are elsewhere quite different. CONCLUSION: The substrate binding pocket of the P. diminuta cephalosporin acylase provides detailed insight into the ten key residues responsible for the specificity of the cephalosporin C side chain in four classes of cephalosporin acylases, and it thereby forms a basis for the design of an enzyme with an improved conversion rate of CPC to 7-ACA. The structure also provides structural evidence that four of the five different classes of cephalosporin acylases can be grouped into one family of the Ntn hydrolase superfamily.  相似文献   

20.
Serine hydroxymethyltransferase (EC 2.1.2.1), a member of the alpha-class of pyridoxal phosphate enzymes, catalyzes the reversible interconversion of serine and glycine, changing the chemical bonding at the C(alpha)-C(beta) bond of the serine side-chain mediated by the pyridoxal phosphate cofactor. Scission of the C(alpha)-C(beta) bond of serine substrate produces a glycine product and most likely formaldehyde, which reacts without dissociation with tetrahydropteroylglutamate cofactor. Crystal structures of the human and rabbit cytosolic serine hydroxymethyltransferases (SHMT) confirmed their close similarity in tertiary and dimeric subunit structure to each other and to aspartate aminotransferase, the archetypal alpha-class pyridoxal 5'-phosphate enzyme. We describe here the structure at 2.4 A resolution of Escherichia coli serine hydroxymethyltransferase in ternary complex with glycine and 5-formyl tetrahydropteroylglutamate, refined to an R-factor value of 17.4 % and R(free) value of 19.6 %. This structure reveals the interactions of both cofactors and glycine substrate with the enzyme. Comparison with the E. coli aspartate aminotransferase structure shows the distinctions in sequence and structure which define the folate cofactor binding site in serine hydroxymethyltransferase and the differences in orientation of the amino terminal arm, the evolution of which was necessary for elaboration of the folate binding site. Comparison with the unliganded rabbit cytosolic serine hydroxymethyltransferase structure identifies changes in the conformation of the enzyme, similar to those observed in aspartate aminotransferase, that probably accompany the binding of substrate. The tetrameric quaternary structure of liganded E. coli serine hydroxymethyltransferase also differs in symmetry and relative disposition of the functional tight dimers from that of the unliganded eukaryotic enzymes. SHMT tetramers have surface charge distributions which suggest distinctions in folate binding between eukaryotic and E. coli enzymes. The structure of the E. coli ternary complex provides the basis for a thorough investigation of its mechanism through characterization and structure determination of site mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号