首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
After the disappointment of clinical trials with early broad spectrum synthetic inhibitors of matrix metalloproteinases (MMPs), the field is now resurging with a new focus on the development of selective inhibitors that fully discriminate between different members of the MMP family with several therapeutic applications in perspective. Here, we report a novel class of highly selective MMP-12 inhibitors, without a phosphinic zinc-binding group, designed to plunge deeper into the S1′ cavity of the enzyme. The best inhibitor from this series, identified through a systematic chemical exploration, displays nanomolar potency toward MMP-12 and selectivity factors that range between 2 and 4 orders of magnitude toward a large set of MMPs. Comparison of the high resolution x-ray structures of MMP-12 in free state or bound to this new MMP-12 selective inhibitor reveals that this compound fits deeply within the S1′ specificity cavity, maximizing surface/volume ratios, without perturbing the S1′ loop conformation. This is in contrast with highly selective MMP-13 inhibitors that were shown to select a particular S1′ loop conformation. The search for such compounds that fit precisely to preponderant S1′ loop conformation of a particular MMP may prove to be an alternative effective strategy for developing selective inhibitors of MMPs.  相似文献   

2.
Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that have been implicated in various disease processes. Different classes of MMP inhibitors, including hydroxamic acids, phosphinic acids and thiols, have been previously described. Most of these mimic peptides and most likely bind in a similar way to the corresponding peptide substrates. Here we describe pyrimidine-triones as a completely new class of metalloprotease inhibitors. While the pyrimidine-trione template is used as the zinc-chelating moiety, the substituents have been optimized to yield inhibitors comparable in their inhibition efficiency of matrix metalloproteinases to hydroxamic acid derivatives such as batimastat. However, they are much more specific for a small subgroup of MMPs, namely the gelatinases (MMP-2 and MMP-9).  相似文献   

3.
Abnormal production of matrix metalloproteinases (MMPs) has been observed in a variety of diseases, such as emphysema, atherosclerosis, and cancer metastasis. Destruction of connective tissue ensues and elastin is often a key target. Three of the main elastolytic MMPs are the gelatinases MMP-2 and MMP-9 and the metalloelastase MMP-12. To investigate the possibility of using peptides to inhibit the elastolytic activity of these enzymes, we mapped the sites within tropoelastin recognized by MMP-9 and MMP-12. Peptides that correspond to regions overlapping these sites were then tested for their ability to inhibit these MMPs. These included an unmodified peptide directed against MMP-9 (peptide PP), cysteine-containing peptides that mimicked either the MMP-9 (peptide NCP) or the MMP-12 (peptide lin24) cleavage sites in tropoelastin and their cyclized forms (CP and cyc24, respectively), and a peptide containing a zinc-chelating hydroxamate group directed against MMP-9 (HP). The presence of a free sulfhydryl or hydroxamate group capable of chelating the zinc ion in the active site of the MMPs was generally found to increase the inhibitory activity of the peptides. The specificity of the inhibitors varied, with some of the inhibitors showing activity against all of the MMPs examined. None of the inhibitors had any significant effect on the activity of the unrelated serine protease, plasmin. K(i) values for the inhibitors were in the micromolar range. Our results suggest ways of developing other MMP inhibitors based on substrate recognition sites that may provide greater levels of inhibition.  相似文献   

4.
Matrix metalloproteinases (MMPs) play critical roles in a multiple number of autoimmunity diseases progression and metastasis of solid tumor. Gelatinases including MMP-2 and MMP-9 are extremely overexpressed in multiple pathological processes. MMP-9 and MMP-2 breakdown the extracellular matrix component gelatin very efficaciously. Therefore, designing and expansion of MMPs inhibitors can be an engrossing plan for therapeutic intermediacy. Anyway, a wide range of MMPs inhibitors face failure in several clinical trials. Due to sequence and structural conservation across the various MMPs, achieving specific and selective inhibitors is very demanding. In the current study, a phage-displayed peptide library was screened using active human recombinant MMP-9 protein and evaluated by enzyme-linked immunosorbent assay. Here, we isolate novel peptide sequence from phage display peptide libraries that can be a specific gelatinase inhibitor. Interestingly, in silico molecular docking showed strong interactions between the peptide three-dimensional models and some important residues of the MMP-9 and MMP-2 proteins at the fibronectin domain. A consensus peptide sequence was then synthesized (named as RSH-12) to evaluate its inhibitory potency by in vitro assays. Zymography assay was employed to evaluate the effect of RSH-12 on gelatinolysis activity of MMP-2 and MMP-9 secretion from the HT1080 cells using different concentrations of RSH-12 and inhibiting MMP-9- and MMP-2-driven gelatin proteolysis, measured by fluorescein isothiocyanate-gelatin degradation assay and HT1080 cell invasion assay on Matrigel (gelatinous protein mixture). The negative control peptide (CP) with the irrelevant sequence and no MMP inhibition properties and the positive control compound (GM6001) as a potent inhibitor of MMPs were used to assess the selectivity and specificity of gelatinases inhibition by RSH-12. Therefore, RSH-12 decreased the gelatin degradation by specifically preventing gelatin binding to MMP-9 and MMP-2. Selective gelatinase inhibitors may prove the usefulness of the new peptide discovered in tumor targeting and anticancer and anti-inflammation therapies.  相似文献   

5.
Stromelysin-3 (ST3) is a matrix metalloproteinase (MMP-11) whose proteolytic activity plays an important role in tumorigenicity enhancement. In breast cancer, ST3 is a bad prognosis marker: its expression is associated with a poor clinical outcome. This enzyme therefore represents an attractive therapeutic target.The topology of matrix metalloproteinases (MMPs) is remarkably well conserved, making the design of highly specific inhibitors difficult. The major difference between MMPs lies in the S(1)' subsite, a well-defined hydrophobic pocket of variable depth. The present crystal structure, the first 3D-structure of the ST3 catalytic domain in interaction with a phosphinic inhibitor mimicking a (d, l) peptide, clearly demonstrates that its S(1)' pocket corresponds to a tunnel running through the enzyme. This open channel is filled by the inhibitor P(1)' group which adopts a constrained conformation to fit this pocket, together with two water molecules interacting with the ST3-specific residue Gln215. These observations provide clues for the design of more specific inhibitors and show how ST3 can accommodate a phosphinic inhibitor mimicking a (d, l) peptide.The presence of a water molecule interacting with one oxygen atom of the inhibitor phosphinyl group and the proline residue of the Met-turn suggests how the intermediate formed during proteolysis may be stabilized. Furthermore, the hydrogen bond distance observed between the methyl of the phosphinic group and the carbonyl group of Ala182 mimics the interaction between this carbonyl group and the amide group of the cleaved peptidic bond. Our crystal structure provides a good model to study the MMPs mechanism of proteolysis.  相似文献   

6.
Matrix metalloproteinases (MMPs) have long been known as key drivers in the development and progression of diseases, including cancer and neurodegenerative, cardiovascular, and many other inflammatory and degenerative diseases, making them attractive potential drug targets. Engineering selective inhibitors based upon tissue inhibitors of metalloproteinases (TIMPs), endogenous human proteins that tightly yet nonspecifically bind to the family of MMPs, represents a promising new avenue for therapeutic development. Here, we used a counter-selective screening strategy for directed evolution of yeast-displayed human TIMP-1 to obtain TIMP-1 variants highly selective for the inhibition of MMP-3 in preference over MMP-10. As MMP-3 and MMP-10 are the most similar MMPs in sequence, structure, and function, our results thus clearly demonstrate the capability for engineering full-length TIMP proteins to be highly selective MMP inhibitors. We show using protein crystal structures and models of MMP-3-selective TIMP-1 variants bound to MMP-3 and counter-target MMP-10 how structural alterations within the N-terminal and C-terminal TIMP-1 domains create new favorable and selective interactions with MMP-3 and disrupt unique interactions with MMP-10. While our MMP-3-selective inhibitors may be of interest for future investigation in diseases where this enzyme drives pathology, our platform and screening strategy can be employed for developing selective inhibitors of additional MMPs implicated as therapeutic targets in disease.  相似文献   

7.
A series of pseudo-peptides with general formula X-l-Glu-NH(2) (with X corresponding to an acyl moiety with a long aryl-alkyl side chain) have been synthesized, evaluated as inhibitors of matrix metalloproteases (MMPs), and found to display remarkable nanomolar affinity. The loss in potency associated with a substitution of the P(2)' l-glutamate by a l-glutamine corroborates the importance of a carboxylate at this position. The binding mode of some of these inhibitors was characterized in solution and by x-ray crystallography in complex with various MMPs. The x-ray crystal structures reveal an unusual binding mode with the glutamate side chain chelating the active site zinc ion. Competition experiments between these inhibitors and acetohydroxamic acid, a small zinc-binding molecule, are in accord with the crystallographic results. One of these pseudo-dipeptides displays potency and selectivity toward MMP-12 similar to the best MMP-12 inhibitors reported to date. This novel family of pseudo peptides opens new opportunities to develop potent and selective inhibitors for several metzincins.  相似文献   

8.
The zinc-dependent gelatinases belong to the family of matrix metalloproteinases (MMPs), enzymes that have been shown to play a key role in angiogenesis and tumor metastasis. These enzymes are capable of hydrolyzing extracellular matrix (ECM) components under physiological conditions. Specific and selective inhibitors aimed at blocking their activity are highly sought for use as potential therapeutic agents. We report herein on a novel mode of inhibition of gelatinase A (MMP-2) by the recently characterized inhibitors 4-(4-phenoxphenylsulfonyl)butane-1,2-dithiol (inhibitor 1) and 5-(4-phenoxphenylsulfonyl) pentane-1,2-dithiol (inhibitor 2). These synthetic inhibitors are selective for MMP-2 and MMP-9. We show that the dithiolate moiety of these inhibitors chelates the catalytic zinc ion of MMP-2 via two sulfur atoms. This mode of binding results in alternation of the coordination number of the metal ion and the induction of conformational changes at the microenvironment of the catalytic zinc ion; a set of events that is likely to be at the root of the potent slow binding inhibition behavior exhibited by these inhibitors. This study demonstrates a distinct approach for the understanding of the structural mechanism governing the molecular interactions between potent inhibitors and catalytic sites of MMPs, which may aid in the design of effective inhibitors.  相似文献   

9.
Gelatinases have been shown to play a key role in angiogenesis and tumor metastasis. Small molecular weight synthetic inhibitors for these enzymes are highly sought for potential use as anti-metastatic agents. Virtually all of the known inhibitors of matrix metalloproteinases (MMPs) are broad spectrum. We report herein the synthesis and kinetic characterization of two compounds, 4-(4-phenoxyphenylsulfonyl)butane-1,2-dithiol (compound 1) and 5-(4-phenoxyphenylsulfonyl)pentane-1,2-dithiol (compound 2), that are potent and selective gelatinase inhibitors. These compounds are slow, tight-binding inhibitors of gelatinases (MMP-2 and MMP-9) with K(i) values in the nanomolar range. In contrast, competitive inhibition of the catalytic domain of membrane-type 1 metalloproteinase (MMP-14(cat)) with comparable K(i) values (K(i) approximately 200 nm) was observed. Binding to stromelysin (MMP-3) was substantially weaker, with K(i) values in the micromolar range (K(i) approximately 10 microm). No binding to matrilysin (MMP-7) and collagenase 1 (MMP-1) was detected at inhibitor concentrations up to 60 microm. We have previously shown that synthetic MMP inhibitors work synergistically with TIMP-2 in the promotion of pro-MMP-2 activation by MT1-MMP in a process that depends on the affinity of the inhibitor toward MT1-MMP. It is shown herein that the dithiols are significantly less efficient (>100-fold) than marimastat, a broad-spectrum MMP inhibitor, in enhancing pro-MMP-2 activation in cells infected to express MT1-MMP, consistent with the lower affinity of the dithiols toward MT1-MMP. Thus, in contrast to broad-spectrum MMP inhibitors, the dithiols are less likely to promote MT1-MMP-dependent pro-MMP-2 activation in the presence of TIMP-2, while maintaining their ability to inhibit active MMP-2 effectively.  相似文献   

10.
Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a broad spectrum inhibitor of the matrix metalloproteinases (MMPs), which function in extracellular matrix catabolism. Here, phage display was used to identify variants of human TIMP-2 that are selective inhibitors of human MMP-1, a collagenase whose unregulated action is linked to cancer, arthritis, and fibrosis. Using hard randomization of residues 2, 4, 5, and 6 (L1) and soft randomization of residues 34-40 (L2) and 67-70 (L3), a library was generated containing 2 × 10(10) variants of TIMP-2. Five clones were isolated after five rounds of selection with MMP-1, using MMP-3 as a competitor. The enriched phages selectively bound MMP-1 relative to MMP-3 and contained mutations only in L1. The most selective variant (TM8) was used to generate a second library in which residues Cys(1)-Gln(9) were soft-randomized. Four additional clones, selected from this library, showed a similar affinity for MMP-1 as wild-type TIMP-2 but reduced affinity for MMP-3. Variants of the N-terminal domain of TIMP-2 (N-TIMP-2) with the sequences of the most selective clones were expressed and characterized for inhibitory activity against eight MMPs. All were effective inhibitors of MMP-1 with nanomolar K(i) values, but TM8, containing Ser(2) to Asp and Ser(4) to Ala substitutions, was the most selective having a nanomolar K(i) value for MMP-1 but no detectable inhibitory activity toward MMP-3 and MMP-14 up to 10 μM. This study suggests that phage display and selection with other MMPs may be an effective method for discovering tissue inhibitor of metalloproteinase variants that discriminate between specified MMPs as targets.  相似文献   

11.
Unlike other synthetic or physiological inhibitors for matrix metalloproteinases (MMPs), the β-amyloid precursor protein-derived inhibitory peptide (APP-IP) having an ISYGNDALMP sequence has a high selectivity toward MMP-2. Our previous study identified amino acid residues of MMP-2 essential for its selective inhibition by APP-IP and demonstrated that the N to C direction of the decapeptide inhibitor relative to the substrate-binding cleft of MMP-2 is opposite that of substrate. However, detailed interactions between the two molecules remained to be clarified. Here, we determined the crystal structure of the catalytic domain of MMP-2 in complex with APP-IP. We found that APP-IP in the complex is indeed embedded into the substrate-binding cleft of the catalytic domain in the N to C direction opposite that of substrate. With the crystal structure, it was first clarified that the aromatic side chain of Tyr(3) of the inhibitor is accommodated into the S1' pocket of the protease, and the carboxylate group of Asp(6) of APP-IP coordinates bidentately to the catalytic zinc of the enzyme. The Ala(7) to Pro(10) and Tyr(3) to Ile(1) strands of the inhibitor extend into the nonprime and the prime sides of the cleft, respectively. Therefore, the decapeptide inhibitor has long range contact with the substrate-binding cleft of the protease. This mode of interaction is probably essential for the high MMP-2 selectivity of the inhibitor because MMPs share a common architecture in the vicinity of the catalytic center, but whole structures of their substrate-binding clefts have sufficient variety for the inhibitor to distinguish MMP-2 from other MMPs.  相似文献   

12.
Synthetic inhibitors of matrix metalloproteinases (MMPs), designed previously, as well as tissue inhibitors of metalloproteinases (TIMPs) lack enzyme selectivity, which has been a major obstacle for developing inhibitors into safe and effective MMP-targeted drugs. Here we designed a fusion protein named APP-IP-TIMP-2, in which the ten amino acid residue sequence of APP-derived MMP-2 selective inhibitory peptide (APP-IP) is added to the N terminus of TIMP-2. The APP-IP and TIMP-2 regions of the fusion protein are designed to interact with the active site and the hemopexin-like domain of MMP-2, respectively. The reactive site of the TIMP-2 region, which has broad specificity against MMPs, is blocked by the APP-IP adduct. The recombinant APP-IP-TIMP-2 showed strong inhibitory activity toward MMP-2 (Kiapp = 0.68 pm), whereas its inhibitory activity toward MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, or MT1-MMP was six orders of magnitude or more weaker (IC50 > 1 μm). The fusion protein inhibited the activation of pro-MMP-2 in the concanavalin A-stimulated HT1080 cells, degradation of type IV collagen by the cells, and the migration of stimulated cells. Compared with the decapeptide APP-IP (t½ = 30 min), APP-IP-TIMP-2 (t½ ≫ 96 h) showed a much longer half-life in cultured tumor cells. Therefore, the fusion protein may be a useful tool to evaluate contributions of proteolytic activity of MMP-2 in various pathophysiological processes. It may also be developed as an effective anti-tumor drug with restricted side effects.  相似文献   

13.
14.
Matrix metalloproteinase (MMP)-2 and MMP-9 are closely related metalloproteinases that are implicated in angiogenesis. The two proteins have a similar domain structure and highly homologous catalytic domains, making them an excellent comparative model for understanding the structural basis of substrate recognition by the MMP family. Although the two MMPs exhibit some overlap in substrate recognition, our recent work showed that MMP-2 can cleave a set of peptide substrates that are only poorly recognized by MMP-9 (Chen, E. I., Kridel, S. J., Howard, E. W., Li, W., Godzik, A., and Smith, J. W. (2002) J. Biol. Chem. 277, 4485-4491). Mutations at the P(2) position of these peptide substrates dramatically reduced their selectivity for MMP-2. Inspection of the corresponding S(2) pocket of the substrate-binding cleft of the protease reveals that MMP-9 contains an Asp, whereas MMP-2 contains Glu. Here, we test the hypothesis that this conservative substitution has a role in substrate selectivity. Mutation of Glu(412) in MMP-2 to Asp significantly reduced the hydrolysis of selective substrates, with only a minor effect on hydrolysis of non-selective substrates. The predominant effect of the mutation is at the level of k(cat), or turnover rate, with reductions reaching as high as 37-fold. The residues that occupy this position in other MMPs are highly variable, providing a potential structural basis for substrate recognition across the MMP family.  相似文献   

15.
Tumor targeting with a selective gelatinase inhibitor.   总被引:29,自引:0,他引:29  
Several lines of evidence suggest that tumor growth, angiogenesis, and metastasis are dependent on matrix metalloproteinase (MMP) activity. However, the lack of inhibitors specific for the type IV collagenase/gelatinase family of MMPs has thus far prevented the selective targeting of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) for therapeutic intervention in cancer. Here, we describe the isolation of specific gelatinase inhibitors from phage display peptide libraries. We show that cyclic peptides containing the sequence HWGF are potent and selective inhibitors of MMP-2 and MMP-9 but not of several other MMP family members. Our prototype synthetic peptide, CTTHWGFTLC, inhibits the migration of human endothelial cells and tumor cells. Moreover, it prevents tumor growth and invasion in animal models and improves survival of mice bearing human tumors. Finally, we show that CTTHWGFTLC-displaying phage specifically target angiogenic blood vessels in vivo. Selective gelatinase inhibitors may prove useful in tumor targeting and anticancer therapies.  相似文献   

16.
Glioblastoma is the deadliest type of brain cancer. Treatment could target the Matrix metalloproteinase-2 (MMP-2), which is known to be involved in the invasion process of glioblastoma cells. But current available inhibitors are not selective to MMP-2 due to their interaction with the catalytic binding site, which is highly conserved in all MMPs structures. Interestingly, members of the chloride channel blocker scorpion toxins, such as chlorotoxin (ClTx) and AaCTx, inhibit glioblastoma cell invasion and show a promising therapeutic potential. Indeed, it has been shown that CITx inhibits selectively MMP-2 and was also able to cross the blood brain and tissue barriers. Although ClTx and AaCTx show high sequence similarity, AaCTx is ten times less active than ClTx. By using molecular modeling, molecular dynamics and MM-PB(GB)SA free energy estimation, we present the first computational study reporting the interaction mode of ClTx/AaCTx with MMP-2. We found that the two peptides probably act on an exosite of MMP-2 comprising mainly residues from the collagen binding domain, a feature that could be exploited to enhance the selectivity toward MMP-2. van der Waals and hydrophobic forces are the primary mediators of this interaction. The N- and C-termini of the two peptides harbor the key residues of the interaction spread across a conserved amino acid patch. In particular, F6 contributes mostly to the binding free energy in ClTx. We also suggest that the lack of the C-terminal arginine and the residues P10 and R24, might be responsible for altering the activity of AaCTx toward glioblastoma cells compared to ClTx.  相似文献   

17.
The role of proteases in the tumor cell invasion process is multifaceted. Members of the matrix metalloproteinase (MMP) family have been implicated in primary and metastatic tumor growth, angiogenesis, and degradation of extracellular matrix (ECM) components. Differentiating between the up-regulation of MMP production and the presence of activated MMPs can be difficult but may well dictate which MMPs are critical to invasion. Because the hydrolysis of collagens is one of the committed steps in ECM turnover, we have investigated selective MMP action on collagenous substrates as a means to evaluate active MMPs. Two triple-helical peptide (THP) models of the MMP-9 cleavage site in type V collagen, alpha1(V)436-450 THP and alpha1(V)436-447 fTHP, were hydrolyzed by MMP-2 and MMP-9 at the Gly-Val bond, analogous to the bond cleaved by MMP-9 in the corresponding native collagen. Kinetic analyses showed k(cat)/K(m) values of 14,002 and 5,449 s(-1)m(-1) for MMP-2 and -9 hydrolysis of alpha1(V)436-447 fTHP, respectively. These values, along with individual k(cat) and K(m) values, are comparable with collagen hydrolysis by MMP-2 and -9. Neither THP was hydrolyzed by MMP-1, -3, -13, or -14. alpha1(V)436-447 fTHP and a general fluorogenic THP were used to screen for triple-helical peptidase activity in alpha(2)beta(1) integrin-stimulated melanoma cells. Binding of the alpha(2)beta(1) integrin resulted in the production of substantial triple-helical peptidase activity, the majority (>95%) of which was non-MMP-2/-9. THPs were found to provide highly selective substrates for members of the MMP family and can be used to evaluate active MMP production in cellular systems.  相似文献   

18.
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease associated with irreversible progressive airflow limitation. Matrix metalloproteinase-12 (MMP-12) has been characterized to be one of the major proteolytic enzymes to induce airway remodeling, destruction of elastin and the aberrant remodeling of damaged alveoli in COPD and asthma. The goal of this project is to develop and identify an orally potent and selective small molecule inhibitor of MMP-12 for treatment of COPD and asthma. Syntheses and structure-activity relationship (SAR) studies of a series of dibenzofuran (DBF) sulfonamides as MMP-12 inhibitors are described. Potent inhibitors of MMP-12 with excellent selectivity against other MMPs were identified. Compound 26 (MMP118), which exhibits excellent oral efficacy in the MMP-12 induced ear-swelling inflammation and lung inflammation mouse models, had been successfully advanced into Development Track status.  相似文献   

19.
The hydrolysis of collagen (collagenolysis) is one of the committed steps in extracellular matrix turnover. Within the matrix metalloproteinase (MMP) family distinct preferences for collagen types are seen. The substrate determinants that may guide these specificities are unknown. In this study, we have utilized 12 triple-helical substrates in combination with 10 MMPs to better define the contributions of substrate sequence and thermal stability toward triple helicase activity and collagen specificity. In general, MMP-13 was found to be distinct from MMP-8 and MT1-MMP(Delta279-523), in that enhanced substrate thermal stability has only a modest effect on activity, regardless of sequence. This result correlates to the unique collagen specificity of MMP-13 compared with MMP-8 and MT1-MMP, in that MMP-13 hydrolyzes type II collagen efficiently, whereas MMP-8 and MT1-MMP are similar in their preference for type I collagen. In turn, MMP-1 was the least efficient of the collagenolytic MMPs at processing increasingly thermal stable triple helices and thus favors type III collagen, which has a relatively flexible cleavage site. Gelatinases (MMP-2 and MMP-9(Delta444-707)) appear incapable of processing more stable helices and are thus mechanistically distinct from collagenolytic MMPs. The collagen specificity of MMPs appears to be based on a combination of substrate sequence and thermal stability. Analysis of the hydrolysis of triple-helical peptides by an MMP mutant indicated that Tyr(210) functions in triple helix binding and hydrolysis, but not in processing triple helices of increasing thermal stabilities. Further exploration of MMP active sites and exosites, in combination with substrate conformation, may prove valuable for additional dissection of collagenolysis and yield information useful in the design of more selective MMP inhibitors.  相似文献   

20.
Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases known to exert multiple regulatory roles in tumor progression and invasiveness. This encouraged over the years the approach of MMP, and particularly MMP-2, targeting for anticancer treatment. Early generations of MMP inhibitors, based on aspecific zinc binding groups (ZBGs) assembled on (pseudo)peptide scaffolds, have been discontinued due to the clinical emergence of toxicity and further drawbacks, giving the way to inhibitors with alternative zinc-chelator moieties or not binding the catalytic zinc ion.In the present paper, we continue the search for new non-zinc binding MMP-2 inhibitors: exploiting previously identified compounds, a virtual screening (VS) campaign was carried out and led to the identification of a new class of ligands. The structure-activity relationship (SAR) of the benzimidazole scaffold was explored by synthesis of several analogues whose inhibition activity was tested with enzyme inhibition assays. By performing the molecular simplification approach, we disclosed different sets of single-digit micromolar inhibitors of MMP-2, with up to a ten-fold increase in inhibitory activity and ameliorated selectivity towards off-target MMP-8, compared to selected lead compound. Molecular dynamics calculations conducted on complexes of MMP-2 with docked privileged structures confirmed that analyzed inhibitors avoid targeting the zinc ion and dip inside the S1′ pocket. Present results provide a further enrichment of our insights for the design of novel MMP-2 selective inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号