首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Urinary miRNAs are discussed as potential biomarkers for bladder cancer. The majority of miRNAs, however, are downregulated, making it difficult to utilize reduced miRNA signals as reliable diagnostic tools. Because the downregulation of miRNAs is frequently associated with hypermethylation of the respective regulative sequences, we studied whether DNA hypermethylation might serve as an improved diagnostic tool compared to measuring downregulated miRNAs. miRNA expression arrays and individual qPCR were used to identify and confirm miRNAs that were downregulated in malignant urothelial cells (RT4, 5637 and J82) when compared to primary, non-malignant urothelial cells (HUEPC). DNA methylation was determined by customized PCR-arrays subsequent to methylation-sensitive DNA-restriction and by mass spectrometry. miRNA expression and DNA methylation were determined in untreated cells and in cultures treated with the demethylating agent 5-Aza-2′-deoxycytidine. miR-200b, miR-152 and miR-10a displayed differential expression and methylation among untreated cancer cell lines. In addition, reduced miRNA expression of miR-200b, miR-152, and miR-10a was associated with increased DNA methylation in malignant cells versus HUEPC. Finally, the demethylation approach revealed a causal relationship between both parameters for miR-152 in 5637 and also suggests a causal connection of both parameters for miR-200b in J82 and miR-10a in 5637. In conclusion, our studies in multiple bladder cancer cell lines and primary non-malignant urothelial cells suggest that hypermethylation of miR-152, miR-10a and miR-200b regulative DNA sequences might serve as epigenetic bladder cancer biomarkers.  相似文献   

2.
3.
MicroRNAs (miRNAs) belong to the heterogeneous class of non-coding RNAs (ncRNAs) that regulate the translation and degradation of target mRNAs, and control approximately 30% of human genes. MiRNA genes might be silenced in human tumors (oncomiRs) by aberrant hypermethylation of CpG islands that encompass or lie adjacent to miRNA genes and/or by histone modifications. We performed literature search for research articles describing epigenetically regulated miRNAs in cancer and identified 45 studies that were published between 2006 and 7/2010. The data from those papers are fragmented and methodologically heterogeneous and our work represents first systematic review towards to integration of diverse sets of information. We reviewed the methods used for detection of miRNA epigenetic regulation, which comprise bisulfite genomic sequencing PCR (BSP), bisulfite pyrosequencing, methylation specific PCR (MSP), combined bisulfite restriction analysis (COBRA), methylation sensitive single nucleotide primer extension (Ms-SNuPE), MassARRAY technique and some modifications of those methods. This integrative study revealed 122 miRNAs that were reported to be epigenetically regulated in 23 cancer types. Compared to protein coding genes, human oncomiRs showed an order of magnitude higher methylation frequency (11.6%; 122/1048 known miRNAs). Nearly half, (45%; 55/122) epigenetically regulated miRNAs were associated with different cancer types, but other 55% (67/122) miRNAs were present in only one cancer type and therefore representing cancer-specific biomarker potential. The data integration revealed miRNA epigenomic hot spots on the chromosomes 1q, 7q, 11q, 14q and 19q. CpG island analysis of corresponding miRNA precursors (pre-miRNAs) revealed that 20% (26/133) of epigenetically regulated miRNAs had a CpG island within the range of 5kb upstream, among them 14% (19/133) of miRNAs resided within the CpG island. Our integrative survey and analyses revealed candidate cancer-specific miRNA epigenetic signatures which provide the basis for new therapeutic strategies in cancer by targeting the epigenetic regulation of miRNAs.  相似文献   

4.
5.
The dependence of expression of miRNAs and their precursors (pre-miRNAs) on the DNA methylation level in HeLa cells 8 days after mitomycin C treatment was studied. A massive parallel DNA sequencing method was applied to analyze miRNA expression. 5-Azacytidine (DNA methylation inhibitor) was added to the medium 6 days after mutagenic agent exposure. The results indicated that the change in expression for some mature miRNAs (39 of 61) was accompanied by the change in the expression of their pre-miRNAs, while there were no significant changes in the expression of pre-miRNA for other mature miRNAs (22 of 61). The aberrant expression was maintained by 8 of 61 mature miRNAs and 6 of 55 pre-miRNAs in the induced HeLa cells after 5-azacytidine treatment. In addition, the expression of more than 90% of miRNAs, which indicated a significant change in expression after mitomycin C treatment, does not depend or depends slightly on the DNA methylation level in HeLa cells without mitomycin C treatment. The results suggest that mitomycin C induces aberrant DNA methylation which affects maintenance of changes in the miRNA expression in cell generations after mutagen treatment.  相似文献   

6.
7.
Aberrant microRNA (miR) expression plays an important role in pathogenesis of different types of cancers, including B-cell lymphoid malignancies and in the development of chemo-sensitivity or -resistance in chronic lymphocytic leukemia (CLL) as well as diffuse large B-cell lymphoma (DLBCL). Ibrutinib is a first-in class, oral, covalent Bruton’s tyrosine kinase (BTK) inhibitor (BTKi) that has shown impressive clinical activity, yet many ibrutinib-treated patients relapse or develop resistance over time. We have reported that acquired resistance to ibrutinib is associated with downregulation of tumor suppressor protein PTEN and activation of the PI3K/AKT pathway. Yet how PTEN mediates chemoresistance in B-cell malignancies is not clear. We now show that the BTKi ibrutinib and a second-generation compound, acalabrutinib downregulate miRNAs located in the 14q32 miRNA cluster region, including miR-494, miR-495, and miR-543. BTKi-resistant CLL and DLBCL cells had striking overexpression of miR-494, miR-495, miR-543, and reduced PTEN expression, indicating further regulation of the PI3K/AKT/mTOR pathway in acquired BTKi resistance. Additionally, unlike ibrutinib-sensitive CLL patient samples, those with resistance to ibrutinib treatment, demonstrated upregulation of 14q32 cluster miRNAs, including miR-494, miR-495, and miR-543 and decreased pten mRNA expression. Luciferase reporter gene assay showed that miR-494 directly targeted and suppressed PTEN expression by recognizing two conserved binding sites in the PTEN 3′-UTR, and subsequently activated AKTSer473. Importantly, overexpression of a miR-494 mimic abrogated both PTEN mRNA and protein levels, further indicating regulation of apoptosis by PTEN/AKT/mTOR. Conversely, overexpression of a miR-494 inhibitor in BTKi-resistant cells restored PTEN mRNA and protein levels, thereby sensitizing cells to BTKi-induced apoptosis. Inhibition of miR-494 and miR-495 sensitized cells by cooperative targeting of pten, with additional miRNAs in the 14q32 cluster that target pten able to contribute to its regulation. Therefore, targeting 14q32 cluster miRNAs may have therapeutic value in acquired BTK-resistant patients via regulation of the PTEN/AKT/mTOR signaling axis.Subject terms: Cancer, Chronic lymphocytic leukaemia  相似文献   

8.
Yan H  Choi AJ  Lee BH  Ting AH 《PloS one》2011,6(6):e20628
Abnormal microRNA (miRNA) expression has been linked to the development and progression of several human cancers, and such dysregulation can result from aberrant DNA methylation. While a small number of miRNAs is known to be regulated by DNA methylation, we postulated that such epigenetic regulation is more prevalent. By combining MBD-isolated Genome Sequencing (MiGS) to evaluate genome-wide DNA methylation patterns and microarray analysis to determine miRNA expression levels, we systematically searched for candidate miRNAs regulated by DNA methylation in colorectal cancer cell lines. We found 64 miRNAs to be robustly methylated in HCT116 cells; eighteen of them were located in imprinting regions or already reported to be regulated by DNA methylation. For the remaining 46 miRNAs, expression levels of 18 were consistent with their DNA methylation status. Finally, 8 miRNAs were up-regulated by 5-aza-2'-deoxycytidine treatment and identified to be novel miRNAs regulated by DNA methylation. Moreover, we demonstrated the functional relevance of these epigenetically silenced miRNAs by ectopically expressing select candidates, which resulted in inhibition of growth and migration of cancer cells. In addition to reporting these findings, our study also provides a reliable, systematic strategy to identify DNA methylation-regulated miRNAs by combining DNA methylation profiles and expression data.  相似文献   

9.
Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.  相似文献   

10.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

11.
《Epigenetics》2013,8(11):1230-1237
Mature microRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranslational gene silencing. Previous studies found that downregulation of miRNAs is a common feature observed in solid tumors, including hepatocellular carcinoma (HCC). We employed a genome-wide approach to test the hypothesis that DNA methylation alterations in miRNA host genes may cause deregulated miRNA expression in HCC. We analyzed tumor and adjacent non-tumor tissues from 62 Taiwanese HCC cases using Infinium HumanMethylation27 DNA Analysis BeadChips that include 254 CpG sites covering 110 miRNAs from 64 host genes. Expression levels of three identified miRNAs (miR-10a, miR-10b and miR-196b) were measured in a subset of 37 HCC tumor and non-tumor tissues. After Bonferroni adjustment, a total of 54 CpG sites from 27 host genes significantly differed in DNA methylation levels between tumor and adjacent non-tumor tissues with 53 sites significantly hypermethylated in tumor tissues. Among the 54 significant CpG sites, 15 sites had more than 2-fold tumor/non-tumor changes, 17 sites had differences > 10%, and 10 sites had both features [including 8 significantly hypermethylated CpG sites in the host genes of miR-10a, miR-10b and miR-196b (HOXB4, HOXD4 and HOXA9, respectively)]. Significant downregulation of miR-10a was observed in tumor compared with non-tumor tissues (0.50 vs. 1.73, p = 0.031). The concordance for HOXB4 methylation alteration and dysregulation of miR-10a was 73.5%. No significant change was observed for miR-10b expression. Unexpectedly, miR-196b was significantly upregulated in tumor compared with non-tumor tissues (p = 0.0001). These data suggest that aberrant DNA methylation may lead to dysregulation of miR-10a in HCC tumor tissues.  相似文献   

12.
Both maspin and glutathione S-transferase pi (GSTp) are implicated as tumor suppressors and downregulated in human prostate cancer. It is well established that GSTp downregulation is through DNA methylation-based silencing. We report here that maspin expression in prostate cancer cell line DU145 reversed GSTp DNA methylation, as measured by methylation- specific PCR, MethyLight assay, and bisulfite sequencing. The effect of maspin on GSTp expression was similar to that of the combination of a synthetic histone deacetylase (HDAC) inhibitor and DNA methylation inhibitor 5-aza-2'-deoxycytidine. Maspin expression also led to an increased level of acetylated histone 3, decreased level of methyl transferase, and methyl-CpG-binding domain proteins at the site of demethylated GSTp promoter DNA. Earlier, we have shown that maspin inhibits HDAC1. In PC3 cells, where both maspin and GSTp are expressed at a reduced level, maspin knockdown led to a significant reduction in GSTp expression, whereas dual knockdown of maspin and HDAC1 barely increased the level of GSTp expression. Thus, HDAC1 may play an essential role in cellular response to maspin-mediated GSTp desilencing. Maspin has been shown to increase tumor cell sensitivity to drug-induced apoptosis. Interestingly, GSTp reexpression in the absence of maspin expression perturbation blocked the phosphorylation of histone 2A.X, the induction of hypoxia-induced factor 1α (HIF-1α), and cell death of LNCaP cells under oxidative stress. Because DNA hypermethylation-based silencing may couple with and depend on histone deacetylation, our study suggests that endogenous HDAC inhibition by maspin may prevent pathologic gene silencing in prostate tumor progression.  相似文献   

13.
Ma L  Huang Y  Zhu W  Zhou S  Zhou J  Zeng F  Liu X  Zhang Y  Yu J 《PloS one》2011,6(10):e26502
Using DNA microarrays, we generated both mRNA and miRNA expression data from 6 non-small cell lung cancer (NSCLC) tissues and their matching normal control from adjacent tissues to identify potential miRNA markers for diagnostics. We demonstrated that hsa-miR-96 is significantly and consistently up-regulated in all 6 NSCLCs. We validated this result in an independent set of 35 paired tumors and their adjacent normal tissues, as well as their sera that are collected before surgical resection or chemotherapy, and the results suggested that hsa-miR-96 may play an important role in NSCLC development and has great potential to be used as a noninvasive marker for diagnosing NSCLC. We predicted potential miRNA target mRNAs based on different methods (TargetScan and miRanda). Further classification of miRNA regulated genes based on their relationship with miRNAs revealed that hsa-miR-96 and certain other miRNAs tend to down-regulate their target mRNAs in NSCLC development, which have expression levels permissive to direct interaction between miRNAs and their target mRNAs. In addition, we identified a significant correlation of miRNA regulation with genes coincide with high density of CpG islands, which suggests that miRNA may represent a primary regulatory mechanism governing basic cellular functions and cell differentiations, and such mechanism may be complementary to DNA methylation in repressing or activating gene expression.  相似文献   

14.
15.
The mechanisms by which oscillatory shear stress (OS) induces, while high laminar shear stress (LS) prevents, atherosclerosis are still unclear. Here, we examined the hypothesis that OS induces inflammatory response, a critical atherogenic event, in endothelial cells by a microRNA (miRNA)-dependent mechanism. By miRNA microarray analysis using total RNA from human umbilical vein endothelial cells (HUVECs) that were exposed to OS or LS for 24 h, we identified 21 miRNAs that were differentially expressed. Of the 21 miRNAs, 13 were further examined by quantitative PCR, which validated the result for 10 miRNAs. Treatment of HUVECs with the miR-663 antagonist (miR-663-locked nucleic acids) blocked OS-induced monocyte adhesion, but not apoptosis. In contrast, overexpression of miR-663 increased monocyte adhesion in LS-exposed cells. Subsequent mRNA expression microarray study using HUVECs treated with miR-663-locked nucleic acids and OS revealed 32 up- and 3 downregulated genes, 6 of which are known to be involved in inflammatory response. In summary, we identified 10 OS-sensitive miRNAs, including miR-663, which plays a key role in OS-induced inflammatory responses by mediating the expression of inflammatory gene network in HUVECs. These OS-sensitive miRNAs may mediate atherosclerosis induced by disturbed flow.  相似文献   

16.
17.
Medulloblastoma (MB) is the most common malignant brain tumor in children and a leading cause of cancer-related mortality and morbidity. Several molecular sub-types of MB have been identified, suggesting they may arise from distinct cells of origin. Data from animal models indicate that some MB sub-types arise from multipotent cerebellar neural stem cells (NSCs). Hence, microRNA (miRNA) expression profiles of primary MB samples were compared to CD133+ NSCs, aiming to identify deregulated miRNAs involved in MB pathogenesis. Expression profiling of 662 miRNAs in primary MB specimens, MB cell lines, and human CD133+ NSCs and CD133- neural progenitor cells was performed by qRT-PCR. Clustering analysis identified two distinct sub-types of MB primary specimens, reminiscent of sub-types obtained from their mRNA profiles. 21 significantly up-regulated and 12 significantly down-regulated miRNAs were identified in MB primary specimens relative to CD133+ NSCs (p<0.01). The majority of up-regulated miRNAs mapped to chromosomal regions 14q32 and 17q. Integration of the predicted targets of deregulated miRNAs with mRNA expression data from the same specimens revealed enrichment of pathways regulating neuronal migration, nervous system development and cell proliferation. Transient over-expression of a down-regulated miRNA, miR-935, resulted in significant down-regulation of three of the seven predicted miR-935 target genes at the mRNA level in a MB cell line, confirming the validity of this approach. This study represents the first integrated analysis of MB miRNA and mRNA expression profiles and is the first to compare MB miRNA expression profiles to those of CD133+ NSCs. We identified several differentially expressed miRNAs that potentially target networks of genes and signaling pathways that may be involved in the transformation of normal NSCs to brain tumor stem cells. Based on this integrative approach, our data provide an important platform for future investigations aimed at characterizing the role of specific miRNAs in MB pathogenesis.  相似文献   

18.
Epigenetic factors such as DNA methylation and microRNAs (miRNAs) are now increasingly recognized as vital contributors to lupus etiology. In this study, we investigated the potential interaction of these two epigenetic factors in lupus-prone MRL-lpr mice. We recently reported dysregulated expression of miRNAs in splenocytes of MRL-lpr mice. Here, we report that a majority of the upregulated miRNAs in MRL-lpr mice is located at the genomic imprinted DLK1-Dio3 domain. Further, we show a differential magnitude of upregulation of DLK1-Dio3 miRNA cluster in purified splenic CD4+ T, CD19+ B, and splenic CD4-CD19- cells from MRL-lpr lupus mice when compared to control MRL mice. MRL-lpr splenocytes (especially CD19+ and CD4-CD19- subsets) were hypomethylated compared to cells from control, MRL mice. We further show that deliberate demethylation of splenocytes from control MRL mice, but not from MRL-lpr lupus mice, with specific DNA methylation inhibitor 5-Aza-2’-deoxycytidine significantly augmented DLK1-Dio3 miRNAs expression. These findings strongly indicate that the upregulation of DLK1-Dio3 miRNAs in lupus splenic cell subsets is associated with reduced global DNA methylation levels in lupus cells. There was a differential upregulation of DLK-Dio3 miRNAs among various demethylated splenic cell subsets, which implies varied sensitivity of DLK1-Dio3 miRNA cluster in these cell subsets to DNA hypomethylation. Finally, inhibition of select DLK1-Dio3 miRNA such as miR-154, miR-379 and miR-300 with specific antagomirs significantly reduced the production of lupus-relevant IFNγ, IL-1β, IL-6, and IL-10 in lipopolysaccharide (LPS) activated splenocytes from MRL-lpr mice. Our study is the first to show that DNA methylation regulates genomic imprinted DLK1-Dio3 miRNAs in autoimmune lupus, which suggests a connection of DNA methylation, miRNA and genomic imprinting in lupus pathogenesis.  相似文献   

19.
Shin JY  Gupta MK  Jung YH  Uhm SJ  Lee HT 《PloS one》2011,6(7):e22481

Background

Testis-derived male germ-line stem (GS) cells, the in vitro counterpart of spermatogonial stem cells (SSC), can acquire multipotency under appropriate culture conditions to become multipotent adult germ-line stem (maGS) cells, which upon testicular transplantation, produce teratoma instead of initiating spermatogenesis. Consequently, a molecular marker that can distinguish GS cells from maGS cells would be of potential value in both clinical and experimental research settings.

Methods and Findings

Using mouse as a model system, here we show that, similar to sperm, expression of imprinted and paternally expressed miRNAs (miR-296-3p, miR-296-5p, miR-483) were consistently higher (P<0.001), while those of imprinted and maternally expressed miRNA (miR-127, miR-127-5p) were consistently lower (P<0.001) in GS cells than in control embryonic stem (ES) cells. DNA methylation analyses of imprinting control regions (ICR), that control the expression of all imprinted miRNAs in respective gene clusters (Gnas-Nespas DMR, Igf2-H19 ICR and Dlk1-Dio3 IG-DMR), confirmed that imprinted miRNAs were androgenetic in GS cells. On the other hand, DNA methylation of imprinted miRNA genes in maGS cells resembled those of ES cells but the expression pattern of the imprinted miRNAs was intermediate between those of GS and ES cells. The expression of imprinted miRNAs in GS and maGS cells were also altered during their in vitro differentiation and varied both with the differentiation stage and the miRNA.

Conclusions

Our data suggest that GS cells have androgenetic DNA methylation and expression of imprinted miRNAs which changes to ES cell-like pattern upon their conversion to maGS cells. Differential genomic imprinting of imprinted miRNAs may thus, serve as epigenetic miRNA signature or molecular marker to distinguish GS cells from maGS cells.  相似文献   

20.
Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise in the cell without initiating chromosomal instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号