首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
405份CIMMYT引进小麦种质的遗传多样性分析   总被引:4,自引:1,他引:3  
为了明确国际玉米改良中心(CIMMYT)引进普通小麦种质材料的遗传多样性特点,为其利用提供参考依据,本研究从均匀分布于小麦基因组的420对SSR引物中选择出条带清晰、多态性较好的62对引物对引自CIMMYT的405份普通小麦种质系进行遗传多样性检测。结果表明,62对SSR引物在405份CIMMYT材料中共检测到198个等位变异,每对引物检测到等位变异的数目为2~8个,平均每对SSR引物能够检测到3.19个等位变异。单个SSR引物的PIC值介于0.03~0.79之间,平均值0.48。405份CIMMYT材料A、B、D基因组之间多态性位点数和等位变异数相差不大,PIC平均值B基因组(0.53)A基因组(0.52)D基因组(0.39)。聚类分析结果显示,62对SSR引物能够将405份CIMMYT材料区分开来,在0.1285遗传距离处将供试材料分为24个类群,类型较为丰富,不同类群的材料在农艺性状和品质性状上存在差异。  相似文献   

2.
Characterization of genetic diversity is of great value to assist breeders in parental line selection and breeding system design. We screened 770 maize inbred lines with 1,034 single nucleotide polymorphism (SNP) markers and identified 449 high-quality markers with no germplasm-specific biasing effects. Pairwise comparisons across three distinct sets of germplasm, CIMMYT (394), China (282), and Brazil (94), showed that the elite lines from these diverse breeding pools have been developed with only limited utilization of genetic diversity existing in the center of origin. Temperate and tropical/subtropical germplasm clearly clustered into two separate groups. The temperate germplasm could be further divided into six groups consistent with known heterotic patterns. The greatest genetic divergence was observed between temperate and tropical/subtropical lines, followed by the divergence between yellow and white kernel lines, whereas the least divergence was observed between dent and flint lines. Long-term selection for hybrid performance has contributed to significant allele differentiation between heterotic groups at 20% of the SNP loci. There appeared to be substantial levels of genetic variation between different breeding pools as revealed by missing and unique alleles. Two SNPs developed from the same candidate gene were associated with the divergence between two opposite Chinese heterotic groups. Associated allele frequency change at two SNPs and their allele missing in Brazilian germplasm indicated a linkage disequilibrium block of 142 kb. These results confirm the power of SNP markers for diversity analysis and provide a feasible approach to unique allele discovery and use in maize breeding programs.  相似文献   

3.
Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.  相似文献   

4.
An integrated DArT-SSR linkage map of durum wheat   总被引:2,自引:0,他引:2  
Genetic mapping in durum wheat (Triticum durum Desf.) is constrained by its large genome and allopolyploid nature. We developed a Diversity Arrays Technology (DArT) platform for durum wheat to enable efficient and cost-effective mapping and molecular breeding applications. Genomic representations from 56 durum accessions were used to assemble a DArT genotyping microarray. Microsatellite (SSR) and DArT markers were mapped on a durum wheat recombinant inbred population (176 lines). The integrated DArT-SSR map included 554 loci (162 SSRs and 392 DArT markers) and spanned 2022 cM (5 cM/marker on average). The DArT markers from durum wheat were positioned in respect to anchor SSRs and hexaploid wheat DArT markers. DArT markers compared favourably to SSRs to evaluate genetic relationships among the durum panel, with 1315 DArT polymorphisms found across the accessions. Combining DArT and SSR platforms provides an efficient and rapid method of generating linkage maps in durum wheat.  相似文献   

5.
Diversity Array Technology (DArT) markers were used to investigate the genetic diversity, population structure, and extent of linkage disequilibrium (LD) on a genome-wide level in Canadian barley (Hordeum vulgare L.). Approximately 1,000 DArT markers were polymorphic and scored with high confidence among a collection of 170 barley lines composed mostly of Canadian cultivars and breeding lines. The reproducibility of DArT markers proved very high, as 99.9% of allele calls were identical among seven replicated samples. The polymorphism information content (PIC) of DArT markers ranged between 0.04 and 0.50 with an average of 0.38. Using principal coordinate analysis (PCoA), most lines fell into one of two major groups reflecting inflorescence type (two-row versus six-row). Within these two large groups, evidence of geographic clustering of genotypes was also observed. A cluster analysis Unweighted Pair Group Method with Algorithmic Mean suggested the existence of three subgroups within the two-row group and four subgroups within the six-row group. An analysis of molecular variance (AMOVA) revealed highly significant (P < 0.001) genetic variance within subgroups, among subgroups, and among groups. Values of LD, expressed as r 2, declined with increasing genetic distance, and mean values of r 2 fell below 0.2 for markers located 2.6 cM apart. Approximately 8% of marker pairs located on the same chromosome and 3.4% of pairs located on different chromosomes were in LD (r 2  > 0.2). Within both the subsets of two-row and six-row lines, LD extended slightly further (3.5 cM) than for the entire set, while 7.5% of intra-chromosomal locus pairs and <2% of inter-chromosomal pairs were in LD. We discuss the implications of these findings with regard to the prospects of association mapping of complex traits in barley.  相似文献   

6.
The level of population structure and the extent of linkage disequilibrium (LD) can have large impacts on the power, resolution, and design of genome-wide association studies (GWAS) in plants. Until recently, the topics of LD and population structure have not been explored in oat due to the lack of a high-throughput, high-density marker system. The objectives of this research were to survey the level of population structure and the extent of LD in oat germplasm and determine their implications for GWAS. In total, 1,205 lines and 402 diversity array technology (DArT) markers were used to explore population structure. Principal component analysis and model-based cluster analysis of these data indicated that, for the lines used in this study, relatively weak population structure exists. To explore LD decay, map distances of 2,225 linked DArT marker pairs were compared with LD (estimated as r 2). Results showed that LD between linked markers decayed rapidly to r 2 = 0.2 for marker pairs with a map distance of 1.0 centi-Morgan (cM). For GWAS, we suggest a minimum of one marker every cM, but higher densities of markers should increase marker-QTL association and therefore detection power. Additionally, it was found that LD was relatively consistent across the majority of germplasm clusters. These findings suggest that GWAS in oat can include germplasm with diverse origins and backgrounds. The results from this research demonstrate the feasibility of GWAS and related analyses in oat.  相似文献   

7.
Information about the extent and genomic distribution of linkage disequilibrium (LD) is of fundamental importance for association mapping. The main objectives of this study were to (1) investigate genetic diversity within germplasm groups of elite European maize (Zea mays L.) inbred lines, (2) examine the population structure of elite European maize germplasm, and (3) determine the extent and genomic distribution of LD between pairs of simple sequence repeat (SSR) markers. We examined genetic diversity and LD in a cross section of European and US elite breeding material comprising 147 inbred lines genotyped with 100 SSR markers. For gene diversity within each group, significant (P<0.05) differences existed among the groups. The LD was significant (P<0.05) for 49% of the SSR marker pairs in the 80 flint lines and for 56% of the SSR marker pairs in the 57 dent lines. The ratio of linked to unlinked loci in LD was 1.1 for both germplasm groups. The high incidence of LD suggests that the extent of LD between SSR markers should allow the detection of marker-phenotype associations in a genome scan. However, our results also indicate that a high proportion of the observed LD is generated by forces, such as relatedness, population stratification, and genetic drift, which cause a high risk of detecting false positives in association mapping.  相似文献   

8.
Stem rust is one of the most destructive diseases of wheat worldwide. The recent emergence of wheat stem rust race Ug99 (TTKS based on the North American stem rust race nomenclature system) and related strains threaten global wheat production because they overcome widely used genes that had been effective for many years. Host resistance is likely to be more durable when several stem rust resistance genes are pyramided in a single wheat variety; however, little is known about the resistance genotypes of widely used wheat germplasm. In this study, a diverse collection of wheat germplasm was haplotyped for stem rust resistance genes Sr2, Sr22, Sr24, Sr25, Sr26, Sr36, Sr40, and 1A.1R using linked microsatellite or simple sequence repeat (SSR) and sequence tagged site (STS) markers. Haplotype analysis indicated that 83 out of 115 current wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT) likely carry Sr2. Among those, five out of 94 CIMMYT spring lines tested had both Sr2 and Sr25 haplotypes. Five out of 22 Agriculture Research Service (ARS) lines likely have Sr2 and a few have Sr24, Sr36, and 1A.1R. Two out of 43 Chinese accessions have Sr2. No line was found to have the Sr26 and Sr40 haplotypes in this panel of accessions. DArT genotyping was used to identify new markers associated with the major stem resistance genes. Four DArT markers were significantly associated with Sr2 and one with Sr25. Principal component analysis grouped wheat lines from similar origins. Almost all CIMMYT spring wheats were clustered together as a large group and separated from the winter wheats. The results provide useful information for stem rust resistance breeding and pyramiding.  相似文献   

9.
Lu Y  Shah T  Hao Z  Taba S  Zhang S  Gao S  Liu J  Cao M  Wang J  Prakash AB  Rong T  Xu Y 《PloS one》2011,6(9):e24861
Understanding of genetic diversity and linkage disequilibrium (LD) decay in diverse maize germplasm is fundamentally important for maize improvement. A total of 287 tropical and 160 temperate inbred lines were genotyped with 1943 single nucleotide polymorphism (SNP) markers of high quality and compared for genetic diversity and LD decay using the SNPs and their haplotypes developed from genic and intergenic regions. Intronic SNPs revealed a substantial higher variation than exonic SNPs. The big window size haplotypes (3-SNP slide-window covering 2160 kb on average) revealed much higher genetic diversity than the 10 kb-window and gene-window haplotypes. The polymorphic information content values revealed by the haplotypes (0.436-0.566) were generally much higher than individual SNPs (0.247-0.259). Cluster analysis classified the 447 maize lines into two major groups, corresponding to temperate and tropical types. The level of genetic diversity and subpopulation structure were associated with the germplasm origin and post-domestication selection. Compared to temperate lines, the tropical lines had a much higher level of genetic diversity with no significant subpopulation structure identified. Significant variation in LD decay distance (2-100 kb) was found across the genome, chromosomal regions and germplasm groups. The average of LD decay distance (10-100 kb) in the temperate germplasm was two to ten times larger than that in the tropical germplasm (5-10 kb). In conclusion, tropical maize not only host high genetic diversity that can be exploited for future plant breeding, but also show rapid LD decay that provides more opportunity for selection.  相似文献   

10.
Linkage disequilibrium can be used for identifying associations between traits of interest and genetic markers. This study used mapped diversity array technology (DArT) markers to find associations with resistance to stem rust, leaf rust, yellow rust, and powdery mildew, plus grain yield in five historical wheat international multienvironment trials from the International Maize and Wheat Improvement Center (CIMMYT). Two linear mixed models were used to assess marker-trait associations incorporating information on population structure and covariance between relatives. An integrated map containing 813 DArT markers and 831 other markers was constructed. Several linkage disequilibrium clusters bearing multiple host plant resistance genes were found. Most of the associated markers were found in genomic regions where previous reports had found genes or quantitative trait loci (QTL) influencing the same traits, providing an independent validation of this approach. In addition, many new chromosome regions for disease resistance and grain yield were identified in the wheat genome. Phenotyping across up to 60 environments and years allowed modeling of genotype x environment interaction, thereby making possible the identification of markers contributing to both additive and additive x additive interaction effects of traits.  相似文献   

11.
Carrot is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to develop a saturated genetic linkage map of carrot. We analyzed a set of 900 DArT markers in a collection of plant materials comprising 94 cultivated and 65 wild carrot accessions. The accessions were attributed to three separate groups: wild, Eastern cultivated and Western cultivated. Twenty-seven markers showing signatures for selection were identified. They showed a directional shift in frequency from the wild to the cultivated, likely reflecting diversifying selection imposed in the course of domestication. A genetic linkage map constructed using 188 F2 plants comprised 431 markers with an average distance of 1.1 cM, divided into nine linkage groups. Using previously anchored single nucleotide polymorphisms, the linkage groups were physically attributed to the nine carrot chromosomes. A cluster of markers mapping to chromosome 8 showed significant segregation distortion. Two of the 27 DArT markers with signatures for selection were segregating in the mapping population and were localized on chromosomes 2 and 6. Chromosome 2 was previously shown to carry the Vrn1 gene governing the biennial growth habit essential for cultivated carrot. The results reported here provide background for further research on the history of carrot domestication and identify genomic regions potentially important for modern carrot breeding.  相似文献   

12.
The recent emergence of wheat stem rust Ug99 and evolution of new races within the lineage threatens global wheat production because they overcome widely deployed stem rust resistance (Sr) genes that had been effective for many years. To identify loci conferring adult plant resistance to races of Ug99 in wheat, we employed an association mapping approach for 276 current spring wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT). Breeding lines were genotyped with Diversity Array Technology (DArT) and microsatellite markers. Phenotypic data was collected on these lines for stem rust race Ug99 resistance at the adult plant stage in the stem rust resistance screening nursery in Njoro, Kenya in seasons 2008, 2009 and 2010. Fifteen marker loci were found to be significantly associated with stem rust resistance. Several markers appeared to be linked to known Sr genes, while other significant markers were located in chromosome regions where no Sr genes have been previously reported. Most of these new loci colocalized with QTLs identified recently in different biparental populations. Using the same data and Q?+?K covariate matrices, we investigated the interactions among marker loci using linear regression models to calculate P values for pairwise marker interactions. Resistance marker loci including the Sr2 locus on 3BS and the wPt1859 locus on 7DL had significant interaction effects with other loci in the same chromosome arm and with markers on chromosome 6B. Other resistance marker loci had significant pairwise interactions with markers on different chromosomes. Based on these results, we propose that a complex network of gene-gene interactions is, in part, responsible for resistance to Ug99. Further investigation may provide insight for understanding mechanisms that contribute to this resistance gene network.  相似文献   

13.
Worldwide germplasm collections contain about 7.4 million accessions of plant genetic resources for food and agriculture. One of the 10 largest ex situ genebanks of our globe is located at the Leibniz Institute of Plant Genetics and Crop Plant Research in Gatersleben, Germany. Molecular tools have been used for various gene bank management practices including characterization and utilization of the germplasm. The results on genetic integrity of long-term-stored gene bank accessions of wheat (self-pollinating) and rye (open-pollinating) cereal crops revealed a high degree of identity for wheat. In contrast, the out-pollinating accessions of rye exhibited shifts in allele frequencies. The genetic diversity of wheat and barley germplasm collected at intervals of 40 to 50?years in comparable geographical regions showed qualitative rather than a quantitative change in diversity. The inter- and intraspecific variation of seed longevity was analysed and differences were detected. Genetic studies in barley, wheat and oilseed rape revealed numerous QTL, indicating the complex and quantitative nature of seed longevity. Some of the loci identified were in genomic regions that co-localize with genes determining agronomic traits such as spike architecture or biotic and abiotic stress response. Finally, a genome-wide association mapping analysis of a core collection of wheat for flowering time was performed using diversity array technology (DArT) markers. Maker trait associations were detected in genomic regions where major genes or QTL have been described earlier. In addition, new loci were also detected, providing opportunities to monitor genetic variation for crop improvement.  相似文献   

14.
For many years, genetic markers have been the building blocks in assembling genomic knowledge. Improved technology and methods for collecting marker data have increased accuracy, increased throughput, and reduced cost. However, common genotyping technology still produces far fewer markers in plant species than in animals and humans. We propose a new type of genetic marker based on the Diversity Arrays Technology (DArT) genotyping system for organisms lacking a reference genetic sequence. These markers are based directly on microarray probe intensity profiles and hence are called iDArTs. They require no additional genotyping beyond screening with a DArT array. Since standard methods of genetic analysis cannot be used with these continuous markers, we develop novel methods for the common bi-parental experimental designs doubled haploids, recombinant inbred lines, and backcrosses. These enable the augmentation of genetic maps with iDArTs and permit quantitative trait locus mapping with both discrete and continuous markers. We use simulation to demonstrate the power of this approach for marker mapping. In addition, we construct maps and perform linkage analysis for these DArT genotypes using the doubled haploid progeny lines from a cross between the wheat cultivars Chara and Glenlea. These methods allow access to a previously untapped genetic resource by extracting additional information from the raw data. With no additional genotyping cost, we are able to double the number of markers mapped and thereby increase genome coverage.  相似文献   

15.
A number of technologies are available to increase the abundance of DNA markers and contribute to developing high resolution genetic maps suitable for genetic analysis. The aim of this study was to expand the number of Diversity Array Technology (DArT) markers on the wheat array that can be mapped in the wheat genome, and to determine their chromosomal location with respect to simple sequence repeat (SSR) markers and their position on the cytogenetic map. A total of 749 and 512 individual DArT and SSR markers, respectively, were identified on at least one of four genetic maps derived from recombinant inbred line (RIL) or doubled haploid (DH) populations. A number of clustered DArT markers were observed in each genetic map, in which 20–34% of markers were redundant. Segregation distortion of DArT and SSR markers was also observed in each mapping population. Only 14% of markers on the Version 2.0 wheat array were assigned to chromosomal bins by deletion mapping using aneuploid lines. In this regard, methylation effects need to be considered when applying DArT marker in genetic mapping. However, deletion mapping of DArT markers provides a reference to align genetic and cytogenetic maps and estimate the coverage of DNA markers across the wheat genome. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Diversity arrays technology (DArT) genomic libraries were developed from H. chilense accessions to support robust genotyping of this species and a novel crop comprising H. chilense genome (e.g., tritordeums). Over 11,000 DArT clones were obtained using two complexity reduction methods. A subset of 2,209 DArT markers was identified on the arrays containing these clones as polymorphic between parents and segregating in a population of 92 recombinant inbred lines (RIL) developed from the cross between H. chilense accessions H1 and H7. Using the segregation data a high-density map of 1,503 cM was constructed with average inter-bin density of 2.33 cM. A subset of DArT markers was also mapped physically using a set of wheat-H. chilense chromosome addition lines. It allowed the unambiguous assignment of linkage groups to chromosomes. Four segregation distortion regions (SDRs) were found on the chromosomes 2H(ch), 3H(ch) and 5H(ch) in agreement with previous findings in barley. The new map improves the genome coverage of previous H. chilense maps. H. chilense-derived DArT markers will enable further genetic studies in ongoing projects on hybrid wheat, seed carotenoid content improvement or tritordeum breeding program. Besides, the genetic map reported here will be very useful as the basis to develop comparative genomics studies with barley and model species.  相似文献   

17.
Understanding the distribution of genetic diversity among individuals, populations and gene pools is crucial for the efficient management of germplasm collections and breeding programs. Diversity analysis is routinely carried out using sequencing of selected gene(s) or molecular marker technologies. Here we report on the development of Diversity Arrays Technology (DArT) for pigeonpea (Cajanus cajan) and its wild relatives. DArT tests thousands of genomic loci for polymorphism and provides the binary scores for hundreds of markers in a single hybridization-based assay. We tested eight complexity reduction methods using various combinations of restriction enzymes and selected PstI/HaeIII genomic representation with the largest frequency of polymorphic clones (19.8%) to produce genotyping arrays. The performance of the PstI/HaeIII array was evaluated by typing 96 accessions representing nearly 20 species of Cajanus. A total of nearly 700 markers were identified with the average call rate of 96.0% and the scoring reproducibility of 99.7%. DArT markers revealed genetic relationships among the accessions consistent with the available information and systematic classification. Most of the diversity was among the wild relatives of pigeonpea or between the wild species and the cultivated C. cajan. Only 64 markers were polymorphic among the cultivated accessions. Such narrow genetic base is likely to represent a serious impediment to breeding progress in pigeonpea. Our study shows that DArT can be effectively applied in molecular systematics and biodiversity studies.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

18.
An association genetics analysis was conducted to investigate the genetics of resistance to Septoria tritici blotch, caused by the fungus Zymoseptoria tritici (alternatively Mycosphaerella graminicola), in cultivars and breeding lines of wheat (Triticum aestivum) used in the UK between 1860 and 2000. The population was tested with Diversity Array Technology (DArT) and simple‐sequence repeat (SSR or microsatellite) markers. The lines formed a single population with no evidence for subdivision, because there were several common ancestors of large parts of the pedigree. Quantitative trait loci (QTLs) controlling Septoria resistance were postulated on 11 chromosomes, but 38% of variation was not explained by the identified QTLs. Calculation of best linear unbiased predictions (BLUPs) identified lineages of spring and winter wheat carrying different alleles for resistance and susceptibility. Abundant variation in Septoria resistance may be exploited by crossing well‐adapted cultivars in different lineages to achieve transgressive segregation and thus breed for potentially durable quantitative resistance, whereas phenotypic selection for polygenic quantitative resistance should be effective in breeding cultivars with increased resistance. The most potent allele reducing susceptibility to Septoria, on chromosome arm 6AL, was associated with reduced leaf size. Genes which increase susceptibility to Septoria may have been introduced inadvertently into UK wheat breeding programmes from cultivars used to increase yield, rust resistance and eyespot resistance between the 1950s and 1980s. This indicates the need to consider trade‐offs in plant breeding when numerous traits are important and to be cautious about the use of non‐adapted germplasm.  相似文献   

19.
Tan spot, caused by Pyrenophora tritici-repentis, is a major foliar disease of wheat worldwide. Host plant resistance is the best strategy to manage this disease. Traditionally, bi-parental mapping populations have been used to identify and map quantitative trait loci (QTL) affecting tan spot resistance in wheat. The association mapping (AM) could be an alternative approach to identify QTL based on linkage disequilibrium (LD) within a diverse germplasm set. In this study, we assessed resistance to P. tritici-repentis races 1 and 5 in 567 spring wheat landraces from the USDA-ARS National Small Grains Collection (NSGC). Using 832 diversity array technology (DArT) markers, QTL for resistance to P. tritici-repentis races 1 and 5 were identified. A linear model with principal components suggests that at least seven and three DArT markers were significantly associated with resistance to P. tritici-repentis races 1 and 5, respectively. The DArT markers associated with resistance to race 1 were detected on chromosomes 1D, 2A, 2B, 2D, 4A, 5B, and 7D and explained 1.3–3.1% of the phenotypic variance, while markers associated with resistance to race 5 were distributed on 2D, 6A and 7D, and explained 2.2–5.9% of the phenotypic variance. Some of the genomic regions identified in this study correspond to previously identified loci responsible for resistance to P. tritici-repentis, offering validation for our AM approach. Other regions identified were novel and could possess genes useful for resistance breeding. Some DArT markers associated with resistance to race 1 also were localized in the same regions of wheat chromosomes where QTL for resistance to yellow rust, leaf rust and powdery mildew, have been mapped previously. This study demonstrates that AM can be a useful approach to identify and map novel genomic regions involved in resistance to P. tritici-repentis.  相似文献   

20.
Identification of marker?Ctrait associations in germplasm relevant to a breeding program can be an effective way to identify quantitative trait loci (QTL) useful for selection and is critical to the success of genome-wide selection strategies. This approach is most cost-effective if phenotypic data routinely collected by breeding programs is used, necessitating only addition of genotypic data. The objective of this work was to evaluate such an approach using unbalanced phenotypic data from durum wheat (Triticum turgidum L. var. durum) registration trials genotyped with diversity arrays technology (DArT) markers. Plant height, grain cadmium concentration and yellow colour loss during pasta manufacture were chosen as example traits because all are influenced by major genes associated with known QTL. A further evaluation was performed on semolina yellow pigment concentration, a more complexly-inherited trait, but with numerous QTL identified. In total, 870 informative DArT markers were used to detect marker?Ctrait associations. The genome coverage of markers was uneven, with low coverage of chromosomes 4B and 5A. The DArT coverage of chromosome 4B was too sparse to identify markers strongly associated with the semidwarf height locus Rht-B1 and the lipoxygenase locus Lpx-B1, both known to reside on 4B. The 20 DArT markers associated with pigment concentration localized to chromosomes 1B, 2A, 5B, 6A, 7A and 7B, linked to the trait in other studies. One DArT clone showed sequence identity to a single wheat expressed sequence tag that maps to the same deletion bin as Psy1-A1, a gene previously associated with yellow pigment concentration in durum wheat. Three markers were associated with grain cadmium and explained similar proportions of the phenotypic variance as the Xusw14 marker known to be physically linked to Cdu-B1, a major locus on 5B regulating cadmium accumulation. The sequences of these three DArT markers were 98?% identical, and were used to identify a single gene in rice that is physically linked to other rice genes that co-localize with Cdu-B1 in durum wheat. The results suggest that this historical phenotypic dataset is useful for QTL discovery and would potentially be a ??training population?? for genomic selection when a high-density, low-cost marker platform becomes available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号