首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
口腔癌缺失(DeletedinOralCancer-1,DOC-1)基因是近年来被证实的口腔癌中具有抑癌作用的基因。1999年,研究人员通过酵母双杂交实验又发现了与DOC-1相关的另一候选抑癌基因DOC-1R(DOC-1related)。以往的很多实验表明,这两个蛋白无论序列还是功能上都非常相似。然而,其三维结构以及与其他重要蛋白相互作用的机制一直还不清楚,PDB库中也未见其相关同源结构的报道。作者将人DOC-1R基因的cDNA片段克隆至原核表达载体pET-22b( )中,通过IPTG诱导获得高效表达,再经过Ni-NTA亲和层析和Superdex75层析柱纯化,获得了纯度达到96%以上的蛋白。质谱分子量测定显示DOC-1R的分子量为14091.23Da,与理论分子量基本一致;动态光散射实验显示蛋白均一性高达99.0%,可用于晶体生长;采用悬滴气相扩散法筛选,在多个条件下得到了DOC-1R的微晶。为DOC-1R的三维结构解析奠定了坚实的基础。  相似文献   

2.
DOC-1R (deleted in oral cancer-1 related) is a novel putative tumor suppressor. This study investigated DOC-1R antitumor activity and the underlying molecular mechanisms. Cell phenotypes were assessed using flow cytometry, BrdU incorporation and CDK2 kinase assays in DOC-1R overexpressing HeLa cells. In addition, RT-PCR and Western blot assays were used to detect underlying molecular changes in these cells. The interaction between DOC-1R and CDK2 proteins was assayed by GST pull-down and immunoprecipitation-Western blot assays. The data showed that DOC-1R overexpression inhibited G1/S phase transition, DNA replication and suppressed CDK2 activity. Molecularly, DOC-1R inhibited CDK2 expression at the mRNA and protein levels, and there were decreased levels of G1-phase cyclins (cyclin D1 and E) and elevated levels of p21, p27, and p53 proteins. Meanwhile, DOC-1R associated with CDK2 and inhibited CDK2 activation by obstructing its association with cyclin E and A. In conclusion, the antitumor effects of DOC-1R may be mediated by negatively regulating G1 phase progression and G1/S transition through inhibiting CDK2 expression and activation.  相似文献   

3.
DOC-2/DAB2 (differentially expressed in ovarian carcinoma-2/disabled 2) appears to be a potential tumor suppressor gene with a growth inhibitory effect on several cancer types. Previously, we have shown that DOC-2/DAB2 suppresses protein kinase C-induced AP-1 activation, which is modulated by serine 24 phosphorylation in the N terminus of DOC-2/DAB2. However, the functional impact of the C terminus of DOC-2/DAB2, containing three proline-rich domains, has not been explored. In this study, we examined this functional role in modulating signaling mediated by peptide growth factor receptor tyrosine kinase, particularly because it involves the interaction with Grb2. Using sequence-specific peptides, we found that the second proline-rich domain of DOC-2/DAB2 is the key binding site to Grb2 in the presence of growth factors. Such elevated binding interrupts the binding between SOS and Grb2, which consequently suppresses downstream ERK phosphorylation. Reduced ERK phosphorylation was restored when the binding between DOC-2/DAB2 and Grb2 was interrupted by a specific peptide or by increasing the expression of Grb2. Furthermore, the C terminus of the DOC-2/DAB2 construct can inhibit the AP-1 activity elicited by growth factors. We conclude that DOC-2/DAB2, a potent negative regulator, can suppress ERK activation by interrupting the binding between Grb2 and SOS that is elicited by peptide growth factors. This study further illustrates that DOC-2/DAB2 has multiple effects on the RAS-mediated signal cascades active in cancer cells.  相似文献   

4.
We have cloned and characterized LATS2, a novel mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Northern blot analysis showed ubiquitous expression of mouse LATS2 (MmLATS2) mRNA, whereas expression of human LATS2 (HsLATS2) mRNA was enhanced in skeletal muscle and heart. Immunoblotting analysis of fractionated cell lysates showed HsLats2 to be a nuclear protein. We mapped the MmLATS2 gene to mouse chromosome 14 by interspecific backcross analysis. We also mapped the HsLATS2 gene (by fluorescence in situ hybridization) to the 13q11-q12 region, in which a loss of heterozygosity has been frequently observed in many primary cancers and to which the tumor suppressor genes RB and BRCA2 have also been mapped.  相似文献   

5.
We recently identified a novel metastasis suppressor gene, BRMS1, in breast cancer. Since the BRMS1 gene maps to chromosome 11q13.1-q13.2 and since chromosome 11q defects have been described in various stages of human melanoma progression, we hypothesized that BRMS1 may function as a tumor or metastasis suppressor in melanomas as well. Quantitative real-time RT-PCR revealed that BRMS1 mRNA expression was high in melanocytes, considerably reduced in early melanoma-derived cell lines, and barely detectable in advanced/metastatic cell lines. Stable transfectants of BRMS1 in the human melanoma cell lines MelJuSo and C8161.9 did not alter the tumorigenicity of either cell line, but significantly suppressed metastasis compared to vector-only transfectants. Orthotopic tumors continued to express BRMS1, but expression was lost in lung metastases. In vitro morphology, growth rate, and histology of BRMS1 transfectants were similar to controls. BRMS1 transfectants were less invasive in a collagen sandwich assay and had restored homotypic gap junctional intercellular communication (GJIC). Thus, BRMS1 functions as a metastasis suppressor in more than one tumor type (i.e., breast carcinoma and cutaneous melanoma) by modifying several metastasis-associated phenotypes.  相似文献   

6.
7.
8.
The pathogenesis of hairy cell leukemia (HCL) remains largely unknown since no specific genetic lesion has been identified in this disease. Previous cytogenetic analysis from our group has shown that chromosome abnormalities involving the 5q13 band are common in HCL, occurring in approximately 1/3 of patients. The data suggest that the 5q13.3 band is likely to harbor a gene involved in the transformational events of this disease. We have recently found two cosmids flanking the 5q13.3 breakpoint in patients with HCL, and the distance between them is approximately 35 kb, as analyzed by fiber-FISH. The two cosmids have been located between the markers SGC34998 and WI-15505/WI-6897 by radiation hybrid mapping. Five of 11 patients with HCL had a hemizygous deletion of the two cosmids, indicating that the function of a tumor suppressor gene may be lost. With the aim of delineating the critical region of 5q13.3 loss in patients with HCL, we have constructed an integrated contig of YAC, BAC, PAC, P1, and cosmid clones that covers the region. Within this area, three expressed sequences were identified as candidates for the putative 5q13.3 tumor suppressor gene involved in the pathogenesis of HCL.  相似文献   

9.
p12(DOC-1) is a growth suppressor identified and isolated from normal keratinocytes. Ectopic expression of p12(DOC-1) in squamous carcinoma cells led to the reversion of in vitro transformation phenotypes including anchorage independence, doubling time, and morphology. Here we report that p12(DOC-1) associates with DNA polymerase alpha/primase (pol-alpha:primase) in vitro and in cells. The pol-alpha:primase binding domain in p12(DOC-1) is mapped to the amino-terminal six amino acid (MSYKPN). The biological effect of p12(DOC-1) on pol-alpha:primase was examined using in vitro DNA replication assays. Using the SV40 DNA replication assay, p12(DOC-1) suppresses DNA replication, leveling at approximately 50%. Similar results were obtained using the M13 single-stranded DNA synthesis assay. Analysis of the DNA replication products revealed that p12(DOC-1) affects the initiation step, not the elongation phase. The p12(DOC-1) suppression of DNA replication is likely to be mediated either by a direct inhibitory effect on pol-alpha:primase or by its effect on cyclin-dependent kinase 2 (CDK2), a recently identified p12(DOC-1)-associated protein known to stimulate DNA replication by phosphorylating pol-alpha:primase. p12(DOC-1) suppresses CDK2-mediated phosphorylation of pol-alpha:primase. These data support a role of p12(DOC-1) as a regulator of DNA replication by direct inhibition of pol-alpha:primase or by negatively regulating the CDK2-mediated phosphorylation of pol-alpha:primase.  相似文献   

10.
p12(DOC-1) is a novel cyclin-dependent kinase 2-associated protein   总被引:12,自引:0,他引:12       下载免费PDF全文
Regulated cyclin-dependent kinase (CDK) levels and activities are critical for the proper progression of the cell division cycle. p12(DOC-1) is a growth suppressor isolated from normal keratinocytes. We report that p12(DOC-1) associates with CDK2. More specifically, p12(DOC-1) associates with the monomeric nonphosphorylated form of CDK2 (p33CDK2). Ectopic expression of p12(DOC-1) resulted in decreased cellular CDK2 and reduced CDK2-associated kinase activities and was accompanied by a shift in the cell cycle positions of p12(DOC-1) transfectants ( upward arrow G(1) and downward arrow S). The p12(DOC-1)-mediated decrease of CDK2 was prevented if the p12(DOC-1) transfectants were grown in the presence of the proteosome inhibitor clasto-lactacystin beta-lactone, suggesting that p12(DOC-1) may target CDK2 for proteolysis. A CDK2 binding mutant was created and was found to revert p12(DOC-1)-mediated, CDK2-associated cell cycle phenotypes. These data support p12(DOC-1) as a specific CDK2-associated protein that negatively regulates CDK2 activities by sequestering the monomeric pool of CDK2 and/or targets CDK2 for proteolysis, reducing the active pool of CDK2.  相似文献   

11.
DOC-2/DAB2, a novel phosphoprotein with signal-transducing capability, inhibits human prostatic cancer cells (Tseng, C.-P., Ely, B. D., Li, Y., Pong, R.-C., and Hsieh, J.-T. (1998) Endocrinology 139, 3542-3553). However, its mechanism of action is not understood completely. This study delineates the functional significance of DOC-2/DAB2 protein phosphorylation and demonstrates that in vivo activation of protein kinase C (PKC) by 12-O-tetradecanoylphorbol-13-acetate (TPA) induces DOC-2/DAB2 phosphorylation, including a serine residue at position 24. Mutation of Ser(24) to Ala reduced DOC-2/DAB2 phosphorylation by PKC. Using a synthetic Ser(24) peptide (APS(24)KKEKKKGSEKTD) or recombinant DOC-2/DAB2 as substrates, PKCbetaII, PKCgamma, and PKCdelta (but not casein kinase II) directly phosphorylated Ser(24) in vitro. This indicates that DOC-2/DAB2 is a PKC-specific substrate. Since expression of wild-type DOC-2/DAB2, but not the S24A mutant, inhibited TPA-induced AP-1 activity in prostatic epithelial cells, phosphorylation of Ser(24) appears to play a critical role in modulating TPA-induced AP-1 activity. Taken together, these data suggest that PKC-regulated phosphorylation of DOC-2/DAB2 protein may help its growth inhibitory function.  相似文献   

12.
We have recently identified the TSLC1 gene as a novel tumor suppressor in human non-small lung cancer on chromosome 11q23.2. TSLC1 encodes a membrane glycoprotein showing significant homology with immunoglobulin superfamily molecules. Here, we report the isolation of a mouse orthologous gene, Tslc1. The Tslc1 cDNA contains a single open reading frame of 1335 bp encoding a putative protein of 445 amino acids, and its expression was detected in all tissues examined. The Tslc1 gene is mapped on mouse chromosome 9, a synteny of human chromosome 11q, and is composed of ten exons, the exon-intron junctions being highly conserved between human and mouse. The predicted amino acids of mouse Tslc1 display 98% identity with that of human TSLC1. Furthermore, data base analysis indicates that the amino acid sequences corresponding to the cytoplasmic domain of Tslc1 are identical in five mammals and highly conserved in vertebrates, suggesting an important role of Tslc1 in normal cell-cell interaction.  相似文献   

13.
14.
Complete and partial deletions of chromosome 5q are recurrent cytogenetic anomalies associated with aggressive myeloid malignancies. Earlier, we identified an approximately 1.5-Mb region of loss at 5q13.3 between the loci D5S672 and D5S620 in primary leukemic blasts. A leukemic cell line, ML3, is diploid for all of chromosome 5, except for an inversion-coupled translocation within the D5S672-D5S620 interval. Here, we report the development of a bacterial artificial chromosome (BAC) contig to define the breakpoint and the identification of a novel gene SSBP2, the target of disruption in ML3 cells. A preliminary evaluation of SSBP2 as a tumor suppressor gene in primary leukemic blasts and cell lines suggests that the remaining allele does not undergo intragenic mutations. SSBP2 is one of three members of a closely related, evolutionarily conserved, and ubiquitously expressed gene family. SSBP3 is the human ortholog of a chicken gene, CSDP, that encodes a sequence-specific single-stranded DNA-binding protein. SSBP3 localizes to chromosome 1p31.3, and the third member, SSBP4, maps to chromosome 19p13.1. Chromosomal localization and the putative single-stranded DNA-binding activity suggest that all three members of this family are capable of potential tumor suppressor activity by gene dosage or other epigenetic mechanisms.  相似文献   

15.
16.
DOC-2/DAB2 is a potent tumor suppressor in many cancer types including prostate cancer. In prostate cancer, expression of DOC-2/DAB2 can inhibit its growth. Our recent studies demonstrate that DOC-2/DAB2 can suppress both protein kinase C and peptide growth factor-elicited signal pathways via the Ras-mitogen-activated protein kinase pathway. In this study, we further showed that the proline-rich domain of DOC-2/DAB2 could also interact with proteins containing the Src homology 3 domain, such as Src and Fgr. The binding of c-Src to DOC-2/DAB2 was enhanced in cells treated with growth factor, and this interaction resulted in c-Src inactivation. The c-Src inactivation was evidenced by the decreased tyrosine 416 phosphorylation of c-Src and reduced downstream effector activation. It appears that DOC-2/DAB2 can bind to Src homology 3 domain of c-Src and maintain it in an inactive conformation. Thus, this study provides a new mechanism for modulating c-Src in prostatic epithelium and cancer.  相似文献   

17.
Previous work in our laboratory using functional assays for tumorigenicity identified a tumor suppressor element on human chromosome 11q for the cutaneous squamous cell carcinoma cell line A388.6TG.c2. In this report, we screened a variety of agents for differential effects on A388.6TG.c2 compared to a growth-suppressed chromosome 11 microcell hybrid of A388.6TG.c2. One of the agents, 1, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3); calcitriol), exerted a growth-altering effect on A388.6TG.c2, which formed rounded cell clusters across the surface of the raft by Day 6 of treatment. In contrast, full-length chromosome 11 hybrids of A388.6TG.c2, as well as two other squamous cell carcinoma cell lines (FaDu and A431), when treated with 1,25(OH)(2)D(3), failed to demonstrate this cell-clumping phenotype. To pursue the hypothesis that the growth suppressor element is involved in altering the response to 1, 25(OH)(2)D(3), we tested microcell hybrids carrying t(X;11) chromosomes lacking large portions of 11q. Although these hybrids, like the parent A388.6TG.c2 cells, demonstrated extensive growth in organotypic cultures, they failed to form cell clusters with 1, 25(OH)(2)D(3) treatment. These results suggest that the chromosome 11 element that alters the response to 1,25(OH)(2)D(3) is distinct from the growth-suppressing element. An examination of differentiation marker expression revealed identical patterns of basal and suprabasal markers for A388.6TG.c2 and for a chromosome 11 hybrid with or without treatment with 1,25(OH)(2)D(3). Finally, characterization of candidate tumor suppressor gene PPP2R1B, which encodes for a subunit of protein phosphatase 2A (PP2A), showed seemingly insignificant alterations by cDNA sequence analysis. Collectively, the data suggest that human chromosome 11 contains two different tumor suppressor elements that may account for the two areas of loss of heterozygosity observed on the long arm of this chromosome.  相似文献   

18.
19.
Zhou J  Fogelgren B  Wang Z  Roe BA  Biegel JA 《Gene》2000,241(1):133-141
We employed exon trapping and large-scale genomic sequence analysis of two bacterial artificial chromosome clones to isolate genes from the region between the IGLC and BCR in chromosome 22q11.2. At the time these studies were initiated, one previously identified gene, GNAZ, was known to map to this region. Two genes, RTDR1 and RAB36, were cloned from this portion of 22q11, which is heterozygously or homozygously deleted in pediatric rhabdoid tumors of the brain, kidney and soft tissues. RTDR1 is a novel gene with a slight homology to a yeast vacuolar protein. RAB36 is a member of the Rab family of proteins. A series of primary rhabdoid tumors with chromosome 22q11 deletions were screened for mutations in the coding sequences of RTDR1, GNAZ and RAB36, but did not demonstrate any disease-specific alterations. Recently, INI1, which maps to the distal portion of the deletion region in 22q11, was identified as the candidate rhabdoid tumor suppressor gene. Further studies of RTDR1 and RAB36 are required to determine whether their absence contributes to the progression of rhabdoid tumors. Alternatively, these genes may be candidates for other diseases that map to human chromosome 22.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号