首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The majority of T-cell clones derived from a donor who experienced dengue illness following receipt of a live experimental dengue virus type 3 (DEN3) vaccine cross-reacted with all four serotypes of dengue virus, but some were serotype specific or only partially cross-reactive. The nonstructural protein, NS3, was immuno-dominant in the CD4+ T-cell response of this donor. The epitopes of four NS3-specific T-cell clones were analyzed. JK15 and JK13 recognized only DEN3 NS3, while JK44 recognized DEN1, DEN2, and DEN3 NS3 and JK5 recognized DEN1, DEN3, and West Nile virus NS3. The epitopes recognized by these clones on the DEN3 NS3 protein were localized with recombinant vaccinia viruses expressing truncated regions of the NS3 gene, and then the minimal recognition sequence was mapped with synthetic peptides. Amino acids critical for T-cell recognition were assessed by using peptides with amino acid substitutions. One of the serotype-specific clones (JK13) and the subcomplex- and flavivirus-cross-reactive clone (JK5) recognized the same core epitope, WITDFVGKTVW. The amino acid at the sixth position of this epitope is critical for recognition by both clones. Sequence analysis of the T-cell receptors of these two clones showed that they utilize different VP chains. The core epitopes for the four HLA-DR15-restricted CD4+ CTL clones studied do not contain motifs similar to those proposed by previous studies on endogenous peptides eluted from HLA-DR15 molecules. However, the majority of these dengue virus NS3 core epitopes have a positive amino acid (K or R) at position 8 or 9. Our results indicate that a single epitope can induce T cells with different virus specificities despite the restriction of these T cells by the same HLA-DR15 allele. This finding suggests a previously unappreciated level of complexity for interactions between human T-cell receptors and viral epitopes with very similar sequences on infected cells.  相似文献   

2.
XAGE-1b belongs to cancer/testis (CT) antigens, and has been shown to be expressed frequently in lung cancers and to elicit an antibody response in patients with XAGE-1b-expressing tumors. In this study, we investigated an XAGE-1b peptide recognized by CD4 T cells. CD4 T cells were purified from PBMC of a healthy donor and stimulated with pooled 25-mer peptides overlapped with 15 amino acids spanning the entire XAGE-1b protein. The generation of XAGE-1b-specific CD4 T cells was shown by IFNgamma secretion assay. A CD4 T cell clone OHD1 was obtained by limiting dilution. OHD1 recognized two overlapping peptides, XAGE1-b(33-49) and XAGE-1b(37-52), by ELISPOT assay. A peptide XAGE-1b(38-46) which was included in both XAGE-1b(33-49) and XAGE-1b(37-52) was predicted to be a DRB1*0410-restricted 9-mer peptide by a computer-based program. We identified the 12-mer peptide XAGE-1b(37-48) as a new XAGE-1b epitope restricted to HLA-DRB1*0410.  相似文献   

3.
NY-ESO-1 is expressed by a broad range of human tumors and is often recognized by Abs in the sera of cancer patients with NY-ESO-1-expressing tumors. The NY-ESO-1 gene also encodes several MHC class I- and class II-restricted tumor epitopes recognized by T lymphocytes. In this study we report one novel pan-MHC class II-restricted peptide sequence, NY-ESO-1 87-111, that is capable of binding to multiple HLA-DR and HLA-DP4 molecules, including HLA-DRB1*0101, 0401, 0701, and 1101 and HLA-DPB1*0401 and 0402 molecules. We also demonstrate that peptide NY-ESO-1 87-111 stimulates Th1-type and Th-2/Th0-type CD4(+) T cells and clones when presented in the context of these HLA-DR and HLA-DP4 molecules. Both bulk CD4(+) T cells and CD4(+) T cell clones were capable of recognizing not only peptide-pulsed APCs, but also autologous dendritic cells, either loaded with the NY-ESO-1 protein or transfected with NY-ESO-1 cDNAs. Using IFN-gamma and IL-5 ELISPOT assays and PBL from patients with NY-ESO-1-expressing tumors, we observed the existence of Th1-type circulating CD4(+) T cells recognizing peptide NY-ESO-1 87-111 in the context of HLA-DP4 molecules. Taken together, these data represent the first report of an HLA-DR- and HLA-DP-restricted epitope from a tumor Ag. They also support the relevance of cancer vaccine trials with peptides NY-ESO-1 87-111 in the large number of cancer patients with NY-ESO-1-expressing tumors.  相似文献   

4.
In acute hepatitis C virus infection, 50 to 70% of patients develop chronic disease. Considering the low rate of spontaneous viral clearance during chronic hepatitis C infection, the first few months of interaction between the patient's immune system and the viral population seem to be crucial in determining the outcome of infection. We previously reported the association between a strong and sustained CD4+ T-cell response to nonstructural protein 3 (NS3) of the hepatitis C virus and a self-limited course of acute hepatitis C infection. In this study, we identify an immunodominant CD4+ T-cell epitope (amino acids 1248 to 1261) that was recognized by the majority (14 of 23) of NS3-specific CD4+ T-cell clones from four of five patients with acute hepatitis C infection. This epitope can be presented to CD4+ T cells by HLA-DR4, -DR11, -DR12, -DR13, and -DR16. HLA-binding studies revealed a high binding affinity for 10 of 13 common HLA-DR alleles. Two additional CD4+ T-cell epitopes, amino acids 1388 to 1407 and amino acids 1450 to 1469, showed a very narrow pattern of binding to individual HLA-DR alleles. Our data suggest that the NS3-specific CD4+ T-cell response in acute hepatitis C infection is dominated by a single, promiscuous peptide epitope which could become a promising candidate for the development of a CD4+ T-cell vaccine.  相似文献   

5.
Mutations in ras proto-oncogenes are commonly found in a diversity of malignancies and may encode unique, non-self epitopes for T cell-mediated antitumor activity. In a BALB/c (H-2(d)) murine model, we have identified a single peptide sequence derived from the ras oncogenes that contained both CD8(+) and CD4(+) T cell epitopes in a nested configuration. This peptide reflected ras sequence 4-16, and contained the substitution of Gly to Val at position 12 ?i.e., 4-16(Val12)?. Mice immunized with this 13-mer peptide induced a strong antigen (Ag)-specific CD4(+) proliferative response in vitro. In contrast, mice inoculated with the wild-type ras sequence failed to generate a peptide-specific T cell response. Additionally, mice immunized with the ras 4-16(Val12) peptide concomitantly displayed an Ag-specific CD8(+) cytotoxic T lymphocyte (CTL) response, as determined by lysis of syngeneic tumor target cells incubated with the nominal 9-mer nested epitope peptide ?i.e., 4-12(Val12)?, as well as lysis of tumor target cells expressing the corresponding ras codon 12 mutation. Analysis of the Valpha- and Vbeta-chains of the T cell receptor (TCR) expressed by these CTL revealed usage of the Valpha1 and Vbeta9 subunits, consistent with the TCR phenotype of anti-ras Val12 CTL lines produced by in vivo immunization with the nominal peptide epitope alone. Moreover, immunization with the nested epitope peptide, as compared to immunization with either the 9-mer CTL peptide alone or an admixture of the 9-mer CTL peptide with an overlapping 13-mer CD4(+) T cell helper peptide ?i.e., 5-17(Val12)? lacking the class I N-terminus anchor site, enhanced the production of the CD8(+) T cell response. Finally, immunization with plasmid DNA encoding the ras 4-16(Val12) sequence led to the induction of both Ag-specific proliferative and cytotoxic responses. Overall, these results suggested that a single peptide immunogen containing nested mutant ras-specific CD4(+) and CD8(+) T cell epitopes: (1) can be processed in vivo to induce both subset-specific T lymphocyte responses; and (2) leads to the generation of a quantitatively enhanced CD8(+) CTL response, likely due to the intimate coexistence of CD4(+) help, which may have implications in peptide- or DNA-based immunotherapies.  相似文献   

6.
Although HLA class I alleles can bind epitopes up to 14 amino acids in length, little is known about the immunogenicity or the responding T-cell repertoire against such determinants. Here, we describe an HLA-B*3508-restricted cytotoxic T lymphocyte response to a 13-mer viral epitope (LPEPLPQGQLTAY). The rigid, centrally bulged epitope generated a biased T-cell response. Only the N-terminal face of the peptide bulge was critical for recognition by the dominant clonotype SB27. The SB27 public T-cell receptor (TcR) associated slowly onto the complex between the bulged peptide and the major histocompatibility complex, suggesting significant remodeling upon engagement. The broad antigen-binding cleft of HLA-B*3508 represents a critical feature for engagement of the public TcR, as the narrower binding cleft of HLA-B*3501(LPEPLPQGQLTAY), which differs from HLA-B*3508 by a single amino acid polymorphism (Arg156 --> Leu), interacted poorly with the dominant TcR. Biased TcR usage in this cytotoxic T lymphocyte response appears to reflect a dominant role of the prominent peptide x major histocompatibility complex class I surface.  相似文献   

7.
The NS1 protein of influenza A virus has been shown to enter and accumulate in the nuclei of virus-infected cells independently of any other influenza viral protein. Therefore, the NS1 protein contains within its polypeptide sequence the information that codes for its nuclear localization. To define the nuclear signal of the NS1 protein, a series of recombinant simian virus 40 vectors that express deletion mutants or fusion proteins was constructed. Analysis of the proteins expressed resulted in identification of two regions of the NS1 protein which affect its cellular location. Nuclear localization signal 1 (NLS1) contains the stretch of basic amino acids Asp-Arg-Leu-Arg-Arg (codons 34 to 38). This sequence is conserved in all NS1 proteins of influenza A viruses, as well as in that of influenza B viruses. NLS2 is defined within the region between amino acids 203 and 237. This domain is present in the NS1 proteins of most influenza A virus strains. NLS1 and NLS2 contain basic amino acids and are similar to previously defined nuclear signal sequences of other proteins.  相似文献   

8.
We have previously demonstrated that fresh CD8+ T cells proliferate in response to autologous, alloantigen-primed CD4+ T cells, and differentiate into Ts cells, which inhibit the response of fresh T cells to the primary allogeneic stimulator cell but not irrelevant stimulators. Although such Ts do not have discernible cytolytic activity, like classical cytotoxic T cells (Tc) they express CD3 and CD8 on their surface and function in a class I MHC-restricted manner. Our study was an attempt to compare the surface phenotype and mechanism of action of Ts and Tc clones derived from the same individual. Ts clones were generated from donor JK by repeated stimulation of CD8+ T cells with an autologous CD4+ T inducer line specific for an allogeneic lymphoblastoid cell line (LCL). These clones were noncytolytic for either the inducer line or the allogeneic stimulator LCL. Tc clones, generated by direct stimulation of JK CD8+ T cells with the same allogeneic LCL, mediated potent, alloantigen-specific cytolysis. All Tc clones were alpha, beta TCR+, CD3+, CD4-, CD8+, CD11b-, and CD28+. Ts clones were also alpha, beta TCR+, CD3+, and CD8+, but in contrast to Tc clones, Ts clones were CD11b+ and CD28-. When added to MLR both Ts and Tc clones inhibited the response of fresh JK CD4+ T cells to the original but not irrelevant allogeneic LCL. However, Ts inhibited the response of only those CD4+ T cells that shared class I)MHC determinants with the Ts donor, whereas Tc inhibited the response of CD4+ T cells from all responders, regardless of HLA type. Pretreatment of Ts clones with mAb to CD2, CD3, or CD8 blocked suppression, whereas similar pretreatment of Tc clones blocked cytotoxicity in 4-h 51Cr release assays but had no effect on Tc-mediated suppression of the MLR. These results suggest that both Ts and Tc clones can inhibit the MLR but they do so through different mechanisms. Moreover, the maintenance of distinct surface phenotypes on these long term clones suggests that Ts may be a distinct sublineage of CD8+ T cells rather than a variant of CD8+ Tc.  相似文献   

9.
EBV transformation of human B cells in vitro results in establishment of immortalized cell lines (lymphoblastoid cell lines (LCL)) that express viral transformation-associated latent genes and exhibit a fixed, lymphoblastoid phenotype. In this report, we show that CD4(+) T cells can modify the differentiation state of EBV-transformed LCL. Coculture of LCL with EBV-specific CD4(+) T cells resulted in an altered phenotype, characterized by elevated CD38 expression and decreased proliferation rate. Relative to control LCL, the cocultured LCL were markedly less susceptible to lysis by EBV-specific CD8(+) CTL. In contrast, CD4(+) T cell-induced differentiation of LCL did not diminish sensitivity of LCL to lysis by CD8(+) CTL specific for an exogenously loaded peptide Ag or lysis by alloreactive CD8(+) CTL, suggesting that differentiation is not associated with intrinsic resistance to CD8(+) T cell cytotoxicity and that evasion of lysis is confined to EBV-specific CTL responses. CD4(+) T cell-induced differentiation of LCL and concomitant resistance of LCL to lysis by EBV-specific CD8(+) CTL were associated with reduced expression of viral latent genes. Finally, transwell cocultures, in which direct LCL-CD4(+) T cell contact was prevented, indicated a major role for CD4(+) T cell cytokines in the differentiation of LCL.  相似文献   

10.
There is considerable interest in the potential of Epstein-Barr virus (EBV) latent antigen-specific CD4+ T cells to act as direct effectors controlling EBV-induced B lymphoproliferations. Such activity would require direct CD4+ T-cell recognition of latently infected cells through epitopes derived from endogenously expressed viral proteins and presented on the target cell surface in association with HLA class II molecules. It is therefore important to know how often these conditions are met. Here we provide CD4+ epitope maps for four EBV nuclear antigens, EBNA1, -2, -3A, and -3C, and establish CD4+ T-cell clones against 12 representative epitopes. For each epitope we identify the relevant HLA class II restricting allele and determine the efficiency with which epitope-specific effectors recognize the autologous EBV-transformed B-lymphoblastoid cell line (LCL). The level of recognition measured by gamma interferon release was consistent among clones to the same epitope but varied between epitopes, with values ranging from 0 to 35% of the maximum seen against the epitope peptide-loaded LCL. These epitope-specific differences, also apparent in short-term cytotoxicity and longer-term outgrowth assays on LCL targets, did not relate to the identity of the source antigen and could not be explained by the different functional avidities of the CD4+ clones; rather, they appeared to reflect different levels of epitope display at the LCL surface. Thus, while CD4+ T-cell responses are detectable against many epitopes in EBV latent proteins, only a minority of these responses are likely to have therapeutic potential as effectors directly recognizing latently infected target cells.  相似文献   

11.
Avian influenza virus (AIV) non-structural protein 1 (NS1) is a multifunctional protein. It is present at high levels in infected cells and can be used for AIV detection and diagnosis. In this study, we generated monoclonal antibody (MAb) D7 against AIV NS1 protein by immunization of BALB/c mice with purified recombinant NS1 protein expressed in Escherichia coli. Isotype determination revealed that the MAb was IgG1/κ-type subclass. To identify the epitope of the MAb D7, the NS1 protein was truncated into a total of 225 15-mer peptides with 14 amino acid overlaps, which were spotted for a peptide microarray. The results revealed that the MAb D7 recognized the consensus DAPF motif. Furthermore, the AIV NS1 protein with the DAPF motif deletion was transiently expressed in 293T cells and failed to react with MAb D7. Subsequently, the DAPF motif was synthesized with an elongated GSGS linker at both the C- and N-termini. The MAb D7 reacted with the synthesized peptide both in enzyme-linked immunosorbent assay (ELISA) and dot-blot assays. From these results, we concluded that DAPF motif is the epitope of MAb D7. To our knowledge, this is the first report of a 4-mer epitope on the NS1 protein of AIV that can be recognized by MAb using a peptide microarray, which is able to simplify epitope identification, and that could serve as the basis for immune responses against avian influenza.  相似文献   

12.
Here, we sought to determine whether peptide vaccines designed harbor both class I as well as class II restricted antigenic motifs could concurrently induce CD4 and CD8 T cell activation against autologous tumor antigens. Based on our prior genome-wide interrogation of human prostate cancer tissues to identify genes over-expressed in cancer and absent in the periphery, we targeted SIM2 as a prototype autologous tumor antigen for these studies. Using humanized transgenic mice we found that the 9aa HLA-A*0201 epitope, SIM2237–245, was effective at inducing an antigen specific response against SIM2-expressing prostate cancer cell line, PC3. Immunization with a multi-epitope peptide harboring both MHC-I and MHC-II restricted epitopes induced an IFN-γ response in CD8 T cells to the HLA-A*0201-restricted SIM2237–245 epitope, and an IL-2 response by CD4 T cells to the SIM2240–254 epitope. This peptide was also effective at inducing CD8+ T-cells that responded specifically to SIM2-expressing tumor cells. Collectively, the data presented in this study suggest that a single peptide containing multiple SIM2 epitopes can be used to induce both a CD4 and CD8 T cell response, providing a peptide-based vaccine formulation for potential use in immunotherapy of various cancers.  相似文献   

13.
Antibodies raised against the synthetic peptide corresponding to the carboxy-terminal 24 amino acids (305-328) of the heavy chain of the hemagglutinin molecule of influenza virus A/X-31 (H3) bind this peptide at three antigenic sites. These sites were identified by assaying binding of polyclonal BALB/c mouse antipeptide sera to the complete set of all possible di-, tri, tetra-, penta-, hexa-, hepta-, and octapeptides homologous with the 24-residue sequence. Individual epitopes were defined and essential residues identified by testing the binding of monoclonal antibodies to sets of peptide analogues in which every one of the homologous residues was replaced in turn by each of the 19 alternative genetically coded amino acids. The immunodominant epitope was shown to be a linear sequence of five amino acids, 314LKLAT318. Replacement of any one of these residues with any other amino acid resulted in loss of antibody binding, indicating that all five are essential to the interaction and that they are probably contact residues. Another antigenic site contains at least two overlapping epitopes: polyclonal sera recognize predominantly an epitope or epitopes encompassed by the linear sequence 320MRNVPEKQT328, whereas the epitope defined by a particular monoclonal antibody comprises the seven amino acids 322NVPEKQT328, of which N322, E325, and Q327 were implicated as contact residues.  相似文献   

14.
DP gene typing using in vitro DNA amplification combined with sequence-specific oligonucleotide probes (SSOP) has recently been reported. The amplification step may be specific for theHLA-DPB locus, or it may be specific for one or a group ofHLA-DPB alleles, thus increasing the discriminatory power of the system. We report the combined use of group-specific DNA in vitro amplification followed by SSOP in typing forDPB1*02 andDPB1*04 variants. The method was used to type for these variants in 96 randomly selected, healthy Danes, in 37 patients with pauciarticular juvenile rheumatoid arthritis (PJRA); and in 38 patients with multiple sclerosis (MS). Increased frequencies of the cellularly defined HLA-DPw2 in PJRA and of HLA-DPw4 in MS have previously been reported. In the patient groups, the frequencies of theDPB1*02 andDPB1*04 variants did not differ significantly from those expected based on the cellularly defined HLA-DP types of the patients and the frequencies of theDPB1*02 andDPB1*04 variants among healthy Danes.  相似文献   

15.
We have previously defined a panel of fully human CD20 mAb. Most of these were unexpectedly efficient in their ability to recruit C1q to the surface of CD20-positive cells and mediate tumor lysis via activation of the classical pathway of complement. This complement-dependent cytotoxicity (CDC) potency appeared to relate to the unusually slow off-rate of these human Abs. However, we now present epitope-mapping data, which indicates that all human mAb bind a novel region of CD20 that may influence CDC potency. Epitope mapping, using both mutagenesis studies and overlapping 15-mer peptides of the extracellular loops of CD20, defined the amino acids required for binding by an extensive panel of mouse and human mAb. Binding by rituximab and mouse CD20 mAb, had an absolute requirement for alanine and proline at positions 170 and 172, respectively, within the large extracellular loop of CD20. Surprisingly, however, all of the human CD20 mAb recognize a completely novel epitope located N-terminally of this motif, also including the small extracellular loop of CD20. Thus, although off-rate may influence biological activity of mAb, another critical factor for determining CDC potency by CD20 mAb appears to be the region of the target molecule they recognize. We conclude that recognition of the novel epitope cooperates with slow off-rate in determining the activity of CD20 Ab in activation of complement and induction of tumor cell lysis.  相似文献   

16.
A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity   总被引:5,自引:0,他引:5       下载免费PDF全文
Compared with normal cells, tumor cell lines exhibit an unusual plasma membrane localization of heat shock protein 70 (Hsp70). This tumor-selective Hsp70 membrane expression has been found to correlate with an increased sensitivity to lysis mediated by human natural killer (NK) cells that transiently adhere to plastic following cytokine stimulation. A human Hsp70-specific monoclonal antibody (mAb) detects membrane-bound Hsp70 on viable tumor cells and blocks the immune response of NK cells against Hsp70-expressing tumor cells. By peptide scanning (pep-scan) analysis, the epitope of this mAb was mapped as the C-terminal-localized 8-mer NLLGRFEL (NLL, amino acids [aa] 454-461). Most interestingly, similar to full-length Hsp70 protein, the N-terminal-extended 14-mer peptide TKDNNLLGRFELSG (TKD, aa 450-463) was able to stimulate the cytolytic and proliferative activity of NK cells at concentrations equivalent to full-length Hsp70 protein. Blocking studies revealed that an excess of the 14-mer peptide TKDNNLLGRFELSG inhibits the cytolytic activity of NK cells similar to that of Hsp70 protein. In comparison, other TKD-related peptides, including the 8-mer antibody epitope NLLGRFEL (aa 454-461), the 12-mer TKDNNLLGRFEL (aa 450-461), the 13-mer C-terminal-extended peptide NLLGRFELSGIPP (aa 454-466), the 14-mer TKD-equivalent sequences of Hsp70hom TKDNNLLGRFELTG (aa 450-463), Hsc70 TKDNNLLGKFELTG (aa 450-463), and DnaK AADNKSLGQFNLDG (aa 447-460) failed to activate NK activity.  相似文献   

17.
Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone recognized dengue virus types 1, 2, and 3. Four dengue virus serotype-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4. One flavivirus-cross-reactive clone recognized dengue virus types 1, 2, 3, and 4 and West Nile virus (WNV), but did not recognize yellow fever virus (YFV), whereas three flavivirus-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4, WNV, and YFV. HLA restriction in the lysis by these T-cell clones was also heterogeneous. HLA-DP, HLA-DQ, and HLA-DR were used as restriction elements by various T-cell clones. We also examined the recognition of viral nonstructural protein NS3, purified from cells infected with dengue virus type 3 or WNV, by these T-cell clones. One serotype-specific clone, two dengue virus subcomplex-specific clones, and three dengue virus serotype-cross-reactive clones recognized NS3 of dengue virus type 3. One flavivirus-cross-reactive clone recognized NS3 of dengue virus type 3 and WNV. These results indicate that heterogeneous dengue virus-specific CD4+ cytotoxic T cells are stimulated in response to infection with a dengue virus and that a nonstructural protein, NS3, contains multiple dominant T-cell epitopes.  相似文献   

18.
Alpha-fetoprotein (AFP) is a major serum protein produced during fetal development. Experimental findings suggest that AFP has antiestrotrophic activity and that it can be developed as a therapeutic agent to treat existing estrogen-dependent breast cancer or to prevent premalignant foci from developing into breast cancer. The antiestrotrophic activity of AFP was reported to be localized to a peptide consisting of amino acids 447-480, a 34-mer peptide termed P447. A series of parsings and substitutions of amino acids in the P447 sequence was intended to identify the shortest analog which retained antiestrotrophic activity. Peptides related to P447 were generated using solid phase peptide synthesis. Several shorter peptides, including an 8-mer called P472-2 (amino acids 472-479, peptide sequence EMTPVNPG), retained activity, whereas peptides shorter than eight amino acid residues were inactive. The dose-related antiestrotrophic activity of AFP-derived peptides was determined in an immature mouse uterine growth assay that measures their ability to inhibit estradiol-stimulated uterine growth. In this assay, the maximal inhibitory activities exhibited by peptide P472-2 (49%), by peptide P447 (45%), and by intact AFP (35-45%) were comparable. The octapeptide P472-2 was also active against estradiol-stimulated growth of T47D human breast cancer cells in culture. These data suggest that peptide P472-2 is the minimal sequence in AFP, which retains the antiestrotrophic activity found with the full-length molecule. The synthetic nature and defined structure of this 8-mer peptide suggest that it can be developed into a new drug which opposes the action of estrogen, perhaps including the promotional effects of estradiol in the development of human breast cancer.  相似文献   

19.
Using spot-synthesized peptide arrays, a functional peptide can be screened as a high-binding peptide for a target molecule. We have developed a rational screening method for functional peptides by analyzing the physicochemical rules of high-binding peptide sequences. To screen the peptides simply and strategically, we prepared an exhaustive 4-mer peptide library consisting of 256 peptides (44 = 256) characterized by four physicochemical groups of 20 amino acids: Group 1, non-charged hydrophobic amino acids; Group 2, non-charged hydrophilic amino acids; Group 3, positive-charged hydrophilic amino acids; Group 4, negative-charged hydrophilic amino acids. First, our previous screening data from cell adhesion, bile acid-binding, and nanoparticle-binding peptides were applied to the four-category analysis, and target-specific physicochemical characteristics were obtained. We then prepared an exhaustive 4-mer peptide library using these four physicochemical groups, and screened for high-binding peptides that bind model proteins interleukin-2 and IgG. We obtained individual physicochemical rules for high-binding peptides: group 1 or 4 amino acids in position (P) 1, group 1 in P2 and P4 for IL-2, and group 2 and 3 amino acids at all position for IgG. Therefore, this system, which employs the use of a simple and strategic peptide library, will be useful in the development of functional peptides.  相似文献   

20.
We analyzed the CD4+ T-lymphocyte response of a donor who had received an experimental live-attenuated dengue 4 virus (D4V) vaccine. Bulk culture proliferative responses of peripheral blood mononuclear cells (PBMC) to noninfectious dengue virus (DV) antigens showed the highest proliferation to D4V antigen, with lesser, cross-reactive proliferation to D2V antigen. We established CD4+ cytotoxic T-lymphocyte clones (CTL) by stimulation with D4 antigen. Using recombinant baculovirus antigens, we identified seven CTL clones that recognized D4V capsid protein. Six of these CTL clones were cross-reactive between D2 and D4, and one clone was specific for D4. Using synthetic peptides, we found that the D4V-specific CTL clone recognized an epitope between amino acids (aa) 47 and 55 of the capsid protein, while the cross-reactive CTL clones each recognized epitopes in a separate location, between aa 83 and 92, which is conserved between D2V and D4V. This region of the capsid protein induced a variety of CD4+ T-cell responses, as indicated by the fact that six clones which recognized a peptide spanning this region showed heterogeneity in their recognition of truncations of this same peptide. The bulk culture response of the donor's PBMC to the epitope peptide spanning aa 84 to 92 was also examined. Peptides containing this epitope induced proliferation of the donor's PBMC in bulk culture, but peptides not containing the entire epitope did not induce proliferation. Also, PBMC stimulated in bulk culture with noninfectious D4V antigen lysed autologous target cells pulsed with peptides containing aa 84 to 92. These results indicate that this donor exhibits memory CD4+ T-cell responses directed against the DV capsid protein and suggest that the response to the capsid protein is dominant not only in vitro at the clonal level but in bulk culture responses as well. Since previous studies have indicated that the CTL responses to DV infection seem to be directed mainly against the envelope (E) and NS3 proteins, these results are the first to indicate that the DV capsid protein is also a target of the antiviral T-cell response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号