首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
Two strains of reovirus were propagated in Vero cells grown in stationary or microcarriers cultures. Vero cells grown as monolayers on T-flasks or in spinner cultures of Cytodex-1 or Cultispher-G microcarriers could be infected with reovirus serotype 1, strain Lang (T1L), and serotype 3, strain Dearing (T3D). A regime of intermittent low speed stirring at reduced culture volume was critical to ensure viral infection of cells in microcarrier cultures. The virus titre increased by 3 to 4 orders of magnitude over a culture period of 150 h. Titres of the T3D reovirus strain were higher (43%) compared to those of the T1L strain in all cultures. Titres were significantly higher in T-flask and Cytodex-1 microcarrier cultures compared to Cultispher-G cultures with respect to either reovirus type. The viral productivity in the microcarrier cultures was dependent upon the multiplicity of infection (MOI) and the cell/bead ratio at the point of infection. A combination of high MOI (5 pfu/cell) and high cell/bead loading (>400 for Cytodex-1 and >1,000 for Cultispher-G) resulted in a low virus productivity per cell. However, at low MOI (0.5 pfu/cell) the virus productivity per cell was significantly higher at high cell/bead loading in cultures of either microcarrier type. The maximum virus titre (8.5 x 10(9) pfu/mL) was obtained in Cytodex-1 cultures with a low MOI (0.5 pfu/cell) and a cell/bead loading of 1,000. The virus productivity per cell in these cultures was 4,000 pfu/cell. The lower viral yield in the Cultispher-G microcarrier cultures is attributed to a decreased accessibility of the entrapped cells to viral infection. The high viral productivity from the Vero cells in Cytodex-1 cultures suggests that this is a suitable system for the development of a vaccine production system for the Reoviridae viruses.  相似文献   

2.
The rates of cell attachment of the anchorage-dependent mammalian cell line Vero to the gelatin-based macroporous microcarrier Cultispher-G were determined under various conditions. An optimal rate of attachment (0.98 x 10(-2) min(-1)) occurred by an intermittent stirring regimen of 3 min stirring at 40 rpm per 33 min. This stirring regimen appeared to maximize cell-to-bead attachment and minimized cell aggregation which occurred at a broadly comparable rate.A further increase in the rate of cell-to-bead attachment occurred by preincubation of the microcarriers in serum-supplemented medium prior to cell inoculation in a serum-free medium. However, serum supplementation (>5%) was required for maximal cell growth. The pH of the medium had little effect on cell attachment over a broad range (pH 7.1-8.0). An initial cell/bead inoculum of 30 ensured an even distribution of cells on the available microcarriers with a low proportion of unoccupied beads.The rate of cell attachment to Cultispher-G was an order of magnitude lower than the determined value for the charged dextran microcarrier Cytodex-1, which was measured as 9.05 x 10(-2) min(-1). The optimal conditions for cell attachment were significantly different for the two bead types. Cell attachment to the electrostatic surface of the Cytodex-1 microcarriers was highly dependent on pH and serum supplementation. Cell aggregation during attachment to the Cytodex-1 microcarriers was minimal because of the higher rate of cell-microcarrier attachment.The porous nature of the Cultispher-G microcarriers allowed a maximum cell/bead loading of >1400, which was at least 3 times higher than equivalent loading of the cells on Cytodex-1. The Cultispher-G matrix also allowed the use of higher agitation rates (up to 100 rpm) in spinner flasks without affecting the cell growth rate or maximum cell density. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
Macroporous microcarriers entrap cells in a mesh network allowing growth to high densities and protect them from high shear forces in stirred bioreactor cultures. We report the growth of Chinese hamster ovary (CHO) cells producing either recombinant human beta-interferon (β-IFN) or recombinant human tissue-plasminogen activator (t-PA) in suspension or embedded in macroporous microcarriers (Cytopore 1 or 2). The microcarriers enhanced the volumetric production of both β-IFN and t-PA by up to 2.5 fold compared to equivalent suspension cultures of CHO cells. Under each condition the cell specific productivity (Q P) was determined as units of product/cell per day based upon immunological assays. Cells grown in Cytopore 1 microcarriers showed an increase in Q P with increasing cell densities up to a threshold of >1 × 108 cells/ml. At this point the specific productivity was 2.5 fold higher than equivalent cells grown in suspension but cell densities above this threshold did not enhance Q P any further. A positive linear correlation (r 2 = 0.93) was determined between the specific productivity of each recombinant protein and the corresponding cell density for CHO cells grown in Cytopore 2 cultures. With a cell density range of 25 × 106 to 3 × 108 cells/ml within the microcarriers there was a proportional increase in the specific productivity. The highest specific productivity measured from the microcarrier cultures was ×5 that of suspension cultures. The relationship between specific productivity and cell density within the microcarriers leads to higher yields of recombinant proteins in this culture system. This could be attributed to the environment within the microcarrier matrix that may influence the state of cells that could affect protein synthesis or secretion.  相似文献   

4.
Phanerochaete chrysosporium was grown in fermentors on NaOH-extracted maple, pine, and cedar barks at the optimum substrate concentration of 1% (w/v). The yields (mg protein/liter) on maple, pine, and cedar were 1500, 1200, and 880, respectively, which are probably due to the different lignin contents of the barks. Lignin is not utilized. The productivities at 30°C obtained for pine (4.07 × 10?2 g protein/liter hr) and cedar (2.63 × 10?2 g protein/liter hr) barks were greater than for maple (2.63 × 10?2 g protein/liter hr). The substrate (bark) was the limiting component of the fermentation. Over the 26–38°C temperature range protein productivity increased by a factor of three (1.55 × 10?2 vs. 4.61 × 10?2 g protein/liter hr) for maple bark. Low agitation rates resulted in an overproduction of cellulase and reduced levels of microbial protein.  相似文献   

5.
Von Willebrand protein was synthesized and secreted by human endothelial cells in culture. Ca2+ ionophore A23187 and phorbol myristate acetate stimulated the release of Von Willebrand protein from the cultured cells. Stimulated release was accompanied by the disappearance of rod-like structures from the cultured endothelial cells immunostained for Von Willebrand protein, suggesting the existence of a storage organelle for Von Willebrand protein in these cells (Loesberg, C., Gonsalves, M.D., Zandbergen, J., Willems, C., Van Aken, W.G., Stel, H.V., Van Mourik, J.A. and De Groot, P.G. (1983) Biochim. Biophys. Acta 763, 160–168). Cultured human endothelial cells were fractionated on a density gradient of colloidal silica. Von Willebrand protein was found in two organelle populations: a buoyant one sedimenting with a variety of cell organelle marker enzymes, including those of the Golgi apparatus, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum and plasma membrane fragments (peak density of this fraction: 1.08 g·ml?1), and a dense one with a peak density of 1.12 g·ml?1. The dense organelles containing Von Willebrand protein were apparently free of other organelles. Stimulating Von Willebrand protein release with phorbol myristate acetate or Ca2+ ionophore A23187 resulted in a decrease or even complete disappearance of Von Willebrand protein from the high-density organelle fraction, implying a role of this organelle in the stimulus-induced release of Von Willebrand protein. The Von Willebrand protein content of the buoyant fraction was lowered to some extent or did not change upon incubation of the cells with ionophore A23187 and phorbol myristate acetate. Restoration of Von Willebrand protein content of the dense organelle fraction after stimulation occurred within 2 days; this was accompanied by recurrence of immunostaining of rod-shaped structures in cells and an increase in cellular Von Willebrand protein. The excretion of restored Von Willebrand protein could be stimulated again.  相似文献   

6.
Bacterioplankton productivity in Antarctic waters of the eastern South Pacific Ocean and Drake Passage was estimated by direct counts and frequency of dividing cells (FDC). Total bacterioplankton assemblages were enumerated by epifluorescent microscopy. The experimentally determined relationship between in situ FDC and the potential instantaneous growth rate constant (μ) is best described by the regression equation ln μ = 0.081 FDC − 3.73. In the eastern South Pacific Ocean, bacterioplankton abundance (2 × 105 to 3.5 × 105 cells per ml) and FDC (11%) were highest at the Polar Front (Antarctic Convergence). North of the Subantarctic Front, abundance and FDC were between 1 × 105 to 2 × 105 cells per ml and 3 to 5%, respectively, and were vertically homogeneous to a depth of 600 m. In Drake Passage, abundance (10 × 105 cells per ml) and FDC (16%) were highest in waters south of the Polar Front and near the sea ice. Subantarctic waters in Drake Passage contained 4 × 105 cells per ml with 4 to 5% FDC. Instantaneous growth rate constants ranged between 0.029 and 0.088 h−1. Using estimates of potential μ and measured standing stocks, we estimated productivity to range from 0.62 μg of C per liter · day in the eastern South Pacific Ocean to 17.1 μg of C per liter · day in the Drake Passage near the sea ice.  相似文献   

7.
A novel system useful for aeration and cell retention in continuous perfused microcarrier cultures is described. The system is based on a vibrating cage that separates cells and microcarriers from the oxygenation chamber and allows gas bubble free oxygen transfer. In the cultivation of monkey kidney cells (VERO) on gelatin coated microcarriers, using different concentrations (5, 10 and 15 g Cytodex 3/liter) cell densities up to 107 cells per ml were obtained. The described system is scaleable.  相似文献   

8.
Recombinant Chinese Hamster Ovary (CHO) cells, engineered for the production of human gamma-glutamyl transferase (GGT), have been grown on Cytodex 1 microcarriers, as aggregates, or as single cells in suspension after adaptation. GGT is a membrane bound enzyme which was not secreted during the culture period. The maximal enzyme activity was found to be directly related to the achieved maximal cell density. Culture of CHO on microcarriers yielded the fastest growth, with a specific growth rate of 0.04 h–1, the highest cell density (near 1.3×106 cells ml–1), and the highest enzyme activity around 300 mU ml–1, which corresponded to a specific cellular level of 20 mU 10–5 cells. GGT could also be produced by growing CHO cells in suspension as single cells or as aggregates. Under these conditions, however, the specific CHO growth rate was significantly slower and the GGT level per cell was divided by a factor 6. Growing CHO cells without microcarriers also resulted in differences in cell metabolism, with a higher conversion yield of glutamine into ammonia, and a higher cell lysis. The catalytic kinetic constants of the enzyme were found identical for the three culture systems.  相似文献   

9.
Primary bovine aortic endothelial cells were cultivated in serum supplemented medium without any additional growth factors. The anchorage dependent cells were propagated on Dormacell® microcarriers with covalently bound dimeric DEAE-groups at the surface of the dextrane beads. Cultivations were performed in 200 ml spinner cultures containing 1 g l–1 to 3 g l–1 of microcarriers. Out of five types of Dormacell® microcarriers with different ion exchange capacities ranging from 0.30 up to 0.65 meq g–1, corresponding to nitrogen contents from 1.2% to 2.9%, respectively, optimal attachment and growth of endothelial cells were obtained with beads of highest nitrogen content (2.9%). Cells were seeded withca. 5 viable cells per microcarrier being sufficient to achieve fully confluent microcarriers after 4 to 5 days. Glucose concentrations decreased from 21 mM to uppermost half of the original concentrations. 4 mM glutamine was rapidly consumed and virtually exhausted after the cells reached confluency. Lactate concentrations raised to a maximum of 7 mM in spinner cultures, but was found to be reutilized in the stationary phase after glutamine limitation occurred. Serine was found to be the second most prominent amino acid being almost exhausted at confluency whereas alanine was produced in noteworthy amounts. Considerable decrease was determined for threonine, lysine and arginine; low consumption rates were observed for leucine, phenylalanine and methionine. All other amino acids did not alter significantly throughout cultivation. These data support that bovine aortic endothelial cells are capable to utilize glucose and glutamine as well as lactic acid (after glutamine exhaustion) as energy and/or carbon source. Finally, batch cultures in a 2 liter membrane stirred bioreactor with bubble-free aeration were performed to produce large quantities of endothelial cells using microcarrier concentrations of 3 g l–1.Abbreviations BAE cells bovine aortic endothelial cells - NCS newborn calf serum - PBS phosphate buffered saline  相似文献   

10.
The influence of the microcarrier type on the performance of a controlled release process used to produce a recombinant glycosyl-phosphatidylinositol anchored protein was investigated. Chinese hamster ovary (CHO) cells expressing the human melanoma tumor antigen (p97) were cultured in 10% serum on Cultispher-GH porous microcarriers and then, for protein production, maintained in 2% serum. Cells were harvested every 48 h and p97 was recovered at 90 mug/mL and 40% purity. Harvested p97 concentrations were increased by harvestingfrom spheroid (241 mug/mL) and smaller porous microcarrier, Cultispher-G (167 mug/mL) cultures. The low total cell specific p97 production of cells cultured on Cultispher-GH was due to necrosis of cells within the beads, decreased p97 expression of the immobilized cells, dilution by the liquid (up to 40% volume) associated with settled beads, and incomplete recovery of p97 from within the beads. Cells cultured on solid microcarriers, Cytodex-1, had the highest cell viability and cell specific p97 production, It is recommended that a two-stage cyclic harvesting process of cells cultured on small Cultispher-G or on Cytodex-1 beads would minimize protein loss and maximize cell specific protein recovery. (c) 1995 John Wiley & Sons Inc.  相似文献   

11.
Pilot production of u-PA with porous microcarrier cell culture   总被引:8,自引:0,他引:8  
A recombinant DNA CHO cell line secretingurokinase-type plasminogen activator (u-PA) wascultivated with Cytopore cellulose porousmicrocarriers in a 30l Biostat UC stirred tankreactor. After 26 days of culture, using a spinfilter toretain cells in bioreactor, the cell density couldreach 1.33 × 107 ml-1. The maximal u-PAactivity in supernatant was 7335 IU·ml-1, and204l supernatant containing 7.1 g u-PA was harvested.After 100 days of culture with 0.1% fetal bovineserum medium, a modified cell retention system whichcan be washed-out backward, substituted thespinfilter to prevent filter clogging. The maximalcell density was over 107 ml-1, the maximalu-PA activity in supernatant reached 6250IU·ml-1, and 1604l supernatant containing about51 g u-PA was harvested. Compared to perfusionculture, batch medium-replaced culture could raiseutilizing efficiency of the medium, increase cell specificproductivity and improve the quality of the product which wasnot steady in a 37 °C environment. Cells can movefrom seed porous microcarriers occupied by cells tovacant microcarriers spontaneously, withouttrypsinization, and continue to grow until all microcarriers contained cells. It shows that Cytoporeporous microcarriers are very useful and convenient toscale up cultivation step by step.  相似文献   

12.
We have recently developed a protein-free medium (PFS) able to support the growth of Chinese hamster ovary (CHO) cells in suspension. Upon further supplementation with some plant protein hydrolysates, medium performances reached what could be observed in serum-containing media [Burteau et al. In Vitro Cell. Dev. Biol.-Anim. 39 (2003) 291]. Now, we describe the use of rice and wheat protein hydrolysates, as non-nutritional additives to the culture medium to support productivity and cell growth in suspension or in microcarriers. When CHO-320 cells secreting recombinant interferon-gamma (IFN-γ) were cultivated in suspension in a bioreactor with our PFS supplemented with wheat hydrolysates, the maximum cell density increased by 25% and the IFN-γ secretion by 60% compared to the control PFS. A small-scale perfusion system consisting of CHO-320 cells growing on and inside fibrous microcarriers under discontinuous operation was first developed. Under these conditions, rice protein hydrolysates stimulated recombinant IFN-γ secretion by 30% compared to the control PFS. At the bioreactorscale, similar results were obtained but when compared to shake-flasks studies, nutrients, oxygen or toxic by-products gradients inside the microcarriers seemed to be the main limitation of the system. An increase of the perfusion rate to maintain glucose concentration over 5.5 mM and dissolved oxygen (DO) at 60% was able to stimulate the production of IFN-γ to a level of 6.6 μg h−1 g−1 of microcarriers after 160 h when a cellular density of about 4 × 108 cell g−1 of carriers was reached.  相似文献   

13.
Summary Recombinant Chinese hamster ovary cells were successfully cultured semi-continuously on microcarriers of gelatin or modified dextran under non-selective conditions for up to three weeks. High and constant production rates for human immune interferon and tissue-type plasminogen activator were obtained. For cells that produced interferon, the highest cell concentration and interferon production was obtained with gelatin microcarriers though the specific production when grown in the presence of 0.2% fetal calf serum was slightly higher for cells cultured on dextran microcarriers (0.12 U/cell day versus 0.11 U/cell day). For cells that produced plasminogen activator, a slightly higher cell concentration was obtained for cells grown on dextran microcarriers (9x105 cells/ml versus 7x105 cells/ml). However, the specific and total production rates were significantly higher for cells cultured on gelatin microcarriers (6.7 pg/cell day versus 2.1 pg/cell day). The maximum cell concentration and specific production rate could be increased to 2.3x106 cells/ml and 3.4 pg/cell day for dextran microcarriers by adding 6-aminohexanoic acid to the medium. For gelatin microcarriers, the addition of 6-aminohexanoic acid increased the specific production rate to 14.4 pg/cell day. Cell growth, however, was inhibited.  相似文献   

14.
Adherent cells can be cultivated in a stirred-tank bioreactor by attaching to microcarriers. Macroporous microcarriers, with their intraparticle space and surface area for cell growth, can potentially support a higher cell concentration than conventional microcarriers, which support cell growth only on the external surface. Chinese hamster ovary (CHO) cells and green monkey kidney (Vero) cells were cultivated on macroporous microcarriers, Cultispher-G. Cells attached to the microcarriers at a slow rate and grew to a high density. Thin sections of the microcarriers demonstrate that cells were initially on the exterior of the microcarriers and migrated into the interior as cell concentration increased. Vero cells cultivated on these microcarriers were successfully used for the production of vesicular stomatitis virus (VSV).  相似文献   

15.
The applicability of a new aeration-agitation type fermentor with a grid-paddle type impeller and a spiral-sparger, Maxblend Fermentor® (MBF) for high density cultivation of plant cells, was investigated. The MBF showed a high capacity for oxygen supply and extremely low hydrodynamic stress in aeration and mixing compared with a conventional fermentor (CF). When Oryza sativa cells were cultivated at a kLa of 20 h−1, a high cell density cultivation of about 30 g dry cell weight per liter was accomplished in both fermentors and there were few differences in culture performance between the two. On the contrary, considerable differences were observed when Catharanthus roseus cells, which seemed to be sensitive to physical stress, were cultivated at a kLa of 20 h−1 in both fermentors. The MBF exhibited excellent cell growth characteristics, achieving about 19 g dry cell weight per liter, because of its superior oxygen supply and low hydrodynamic stress in aeration and mixing in highly viscous cultures containing high density cells. In CF only about 9.5 g dry cell weight per liter was achieved because of its high hydrodynamic stress.  相似文献   

16.
Growth of Fish Cell Lines on Microcarriers   总被引:1,自引:1,他引:0       下载免费PDF全文
Microcarrier beads were evaluated as substrates for the propagation of five anchorage-dependent fish cell lines. Growth of rainbow trout gonad (RTG-2) and Atlantic salmon cells was limited on microcarriers maintained in suspension. However, stationary microcarriers were suitable substrates for the growth of RTG-2, AS, Chinook salmon embryo (CHSE-214), and fathead minnow cells. Cell yields ranged from 2 × 106 to 2.9 × 106 cells per ml, representing 7- to 10-fold increases over the initial cell concentrations. The yield of new RTG-2 cells per unit volume of growth medium was 2.8 times greater in microcarrier cultures than in standard monolayer cultures. Northern pike cells failed to grow on microcarriers. Yields of infectious pancreatic necrosis virus propagated in microcarrier cultures of RTG-2 cells were more than twice the yields in standard monolayer cultures. The greater economy of microcarrier cultures in terms of growth vessel and medium requirements holds great promise for the large-scale production of anchorage-dependent fish cell cultures and fish viruses.  相似文献   

17.
A cell-detaching reactor was developed to collect cells growing on microcarriers for inoculation between stepwise-expanded bioreactors. It consisted of a trypsinization zone and a separation zone, which were separated by a 200-mesh stainless steel screen. The screen allowed the cells only to pass through to the next bioreactor, after the cells have been trypsinized and detached from microcarriers. The operating feasibility of the cell-detaching reactor was tested with anchorage-dependent recombinant Chinese hamster ovary (rCHO) and African green monkey kidney (Vero) cells. rCHO and Vero cells were first cultured in a small microcarrier bioreactor, and then inoculated via the cell-detaching reactor into either a packed-bed bioreactor (for rCHO cells) or a larger microcarrier bioreactor (for Vero cells). For rCHO cells, the cell density reached 1.3 × 107 cells/ml in the perfusion culture, and Vero cells reached 1.3 × 106 cells/ml in the batch culture.  相似文献   

18.
The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of 0.01 h−1 in a single-stage continuous fermentation process. But after the production period was beyond 150 h, the significant decrease of 2KGA productivity was observed. When the non-spore forming bacteria Xanthomonas maltophilia IFO 12692 was used instead of B. megaterium DSM 4026 as a partner strain for K. vulgare DSM 4025, the 2KGA productivity was significantly improved in a two-stage continuous culture mode, in which two fermentors of the same size and volume were connected in series. In this mode, with two sets of 3-L jar fermentors, the steady state could be continued to over 1,331.5 h at least, when the dilution rates were 0.0382 h−1 and 0.0380 hour−1, respectively, for the first and second fermentors. The overall productivity was calculated to be 2.15 g/L/h at 113.1 g/L and a molar conversion yield of 90.1%. In the up-scaling fermentation to 30-L jar fermentors, 118.5 g/L of 2KGA was produced when dilution rates in both stages were 0.0430 hour−1, and the overall productivity was calculated to be 2.55 g/L/h.  相似文献   

19.
Originally described in vascular endothelial cells, Weibel-Palade bodies were considered as specific of this cellular type, as they have never been reported elsewhere. Weibel-Palade bodies serve as storage granules for von Willebrand factor which is stored in microtubular form. Besides endothelial cells von Willebrand factor is also synthetized by bone marrow megakaryocytes. Von Willebrand factor has been located in alpha-granules of megakaryocytes and blood platelets. We describe true Weibel-Palade bodies in pig megakaryocytes, and also alpha-granules which look like an evolutionary form of Weibel-Palade bodies. Von Willebrand Factor is most likely stored in microtubular form in these two types of structure. This is supported by the absence of microtubules in these granules in cells obtained from pigs homozygous for the von Willebrand disease (lacking totally this protein).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号