首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The brain relies on the salvage of preformed purine and pyrimidine rings, mainly in the form of nucleosides, to maintain its nucleotide pool in the proper qualitative and quantitative balance. The transport of nucleosides from blood into neurons and glia is considered to be an essential prerequisite to enter their metabolic utilization in the brain. Recent lines of evidence have also suggested that local extracellular nucleoside triphosphate (NTP) degradation may contribute to brain nucleosides. Plasma membrane-located ectonucleotidases, with their active sites oriented toward the extracellular space, catalyze the successive hydrolysis of NTPs to their respective nucleosides. Apart from the well-established modulation of ATP, ADP, adenosine (the purinergic agonists), UTP, and UDP (the pyrimidinergic agonists) availability at their respective receptors, ectonucleotidases may also serve the local reutilization of nucleosides in the brain. After their production in the extracellular space by the ectonucleotidase system, nucleosides are transported into neurons and glia and converted back to NTPs via a set of purine and pyrimidine salvage enzymes. Finally, nucleotides are transported into brain cell vescicles or granules and released back into the extracellular space. The key teaching concepts to be included in a two-to three-lecture block on the molecular mechanisms of the local nucleoside recycling process, based on a cross talk between the brain extracellular space and cytosol, are discussed in this article.  相似文献   

2.
We have recently characterised the presence of a Ca2(+)-mobilising receptor for ATP which stimulates exocytosis in differentiated HL60 cells. Here we demonstrate that the undifferentiated HL60 cells also respond to extracellular ATP by stimulating an increase in inositol phosphates and exocytosis. Of the nucleotides (ATP, UTP, ITP, ATP gamma S, AppNHp, XTP, CTP, GTP, 8-Br-ATP and GTP gamma S) that were active in stimulating inositol phosphate formation, only UTP, ATP, ITP, ATP gamma S and AppNHp were active in stimulating secretion. On differentiation, the extent of secretion due to the purinergic agonists ATP, ITP, ATP gamma S and AppNHp remained unchanged whilst secretion due to UTP, a pyrimidine, was substantially increased. These results indicate that the effect of ATP and UTP may be mediated via separate purinergic and pyrimidinergic receptors, respectively.  相似文献   

3.
Uridine, a pyrimidine nucleoside essential for the synthesis of RNA and biomembranes, has several trophic functions in the central nervous system, that involve a physiological regulation of pyrimidine nucleotides and phospholipids content, and a maintenance of brain metabolism under ischemia, or pathological situations. The understanding of uridine production in the brain is therefore of fundamental importance. Brain has a limited capacity to synthesize ex novo the pyrimidine ring, and a reasonable source of brain uridine is UTP. The kinetics of UTP breakdown, as catalysed by post-mitochondrial brain extracts and membrane preparations reported herein suggests that in normoxic conditions uridine is locally generated in brain exclusively in the extracellular space, and that any uptaken uridine is salvaged to UTP. It is now well established that cytosolic UTP can be released to interact with a subset of P2Y receptors, inducing a variety of molecular and cellular effects, leading to neuroprotection, while uridine is uptaken via an equilibrative or a Na+-dependent transport system, to exert its trophic effects in the cytosol. An ATP driven uridine–UTP cycle can be envisaged, based on the strictly compartmentalized processes of uridine salvage to UTP and uridine generation from UTP, in which uptaken uridine is anabolised to UTP in the cytosol, and converted back to uridine in extracellular space.  相似文献   

4.
Extracellular nucleotides and nucleosides promote a vast range of physiological responses, via activation of cell surface purinergic receptors. Virtually all tissues and cell types exhibit regulated release of ATP, which, in many cases, is accompanied by the release of uridine nucleotides. Given the relevance of extracellular nucleotide/nucleoside-evoked responses, understanding how ATP and other nucleotides are released from cells is an important physiological question. By facilitating the entry of cytosolic nucleotides into the secretory pathway, recently identified vesicular nucleotide and nucleotide-sugar transporters contribute to the exocytotic release of ATP and UDP-sugars not only from endocrine/exocrine tissues, but also from cell types in which secretory granules have not been biochemically characterized. In addition, plasma membrane connexin hemichannels, pannexin channels, and less-well molecularly defined ATP conducting anion channels have been shown to contribute to the release of ATP (and UTP) under a variety of conditions.  相似文献   

5.
Cellular injury induces a complex series of events that involves Ca2+ signaling, cell communication, and migration. One of the first responses following mechanical injury is the propagation of a Ca2+ wave (Klepeis et al. [2001] J Cell Sci 114(Pt 23):4185-4195). The wave is generated by the extracellular release of ATP, which also induces phosphorylation of ERK (Yang et al. [2004] J Cell Biochem 91(5):938-950). ATP and other nucleotides, which bind to and activate specific purinergic receptors were used to mimic injury. Our goal was to determine which of the P2Y purinergic receptors are expressed and stimulated in corneal epithelial cells and which signaling pathways are activated leading to changes in cell migration, an event critical for wound closure. In this study, we demonstrated that the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors were present in corneal epithelial cells. A potency profile was determined by Ca2+ imaging for nucleotide agonists as follows: ATP > or = UTP > ADP > or = UDP. In contrast, negligible responses were seen for beta,gamma-meATP, a general P2X receptor agonist and adenosine, a P1 receptor agonist. Homologous desensitization of the Ca2+ response was observed for the four nucleotides. However, P2Y receptor internalization and degradation was not detected following stimulation with ATP, which is in contrast to EGFR internalization observed in response to EGF. ATP induced cell migration was comparable to that of EGF and was maximal at 1 microM. Cells exposed to ATP, UTP, ADP, and UDP demonstrated a rapid twofold increase in phosphorylation of paxillin at Y31 and Y118, however, there was no activation elicited by beta,gamma-meATP or adenosine. Additional studies demonstrated that wound closure was inhibited by reactive blue 2. These results indicate that P2Y receptors play a critical role in the injury repair process.  相似文献   

6.
Extracellular purines, principally adenosine triphosphate and adenosine, are among the oldest evolutionary and widespread chemical messengers. The integrative view of purinergic signaling as a multistage coordinated cascade involves the participation of nucleotides/nucleosides, their receptors, enzymes metabolizing extracellular nucleosides and nucleotides as well as several membrane transporters taking part in the release and/or uptake of these molecules. In view of the emerging data, it is evident and widely accepted that an extensive network of diverse enzymatic activities exists in the extracellular space. The enzymes regulate the availability of nucleotide and adenosine receptor agonists, and consequently, the course of signaling events. The current data indicate that mesenchymal stem cells (MSCs) and cells induced to differentiate exhibit different sensitivity to purinergic ligands as well as a distinct activity and expression profiles of ectonucleotidases than mature cells. In the proposed review, we postulate for a critical role of these enzymatic players which, by orchestrating a fine-tune regulation of nucleotides concentrations, are integrally involved in modulation and diversification of purinergic signals. This specific hallmark of the MSC purinome should be linked with cell-specific biological potential and capacity for tissue regeneration. We anticipate this publication to be a starting point for scientific discussion and novel approach to the in vitro and in vivo regulation of the MSC properties.  相似文献   

7.
Nucleotides are released during vascular injury from activated platelets and broken cells, which could stimulate human neutrophils. In this study, we characterized the P2Y receptors and investigated the functional effects of extracellular nucleotides on human neutrophils. Pharmacological characterization using selective agonists and pertussis toxin revealed that human neutrophils express only functional P2Y2 receptors. However, P2Y2 receptor agonists ATP or uridine triphosphate (UTP) caused intracellular Ca2+ increases in isolated human neutrophils with an EC50 of 1 µM but failed to cause release of primary granules from human neutrophils. ATP and UTP were equally potent in causing elastase release from human neutrophils in the presence of exogenous soluble fibrinogen, whereas ADP and UDP were without effect. We investigated whether nucleotides depend on generated arachidonic acid metabolites to cause degranulation. However, phenidone and MK-886, inhibitors of the 5-lipoxygenase pathway, failed to block nucleotide-induced intracellular calcium mobilization and elastase release. ATP and UTP caused activation of p38 MAPK and ERK1/2 in human neutrophils. In addition, the inhibitors of the MAPK pathway, SB-203580 and U-0126, inhibited nucleotide-induced elastase release. We conclude that fibrinogen is required for nucleotide-induced primary granule release from human neutrophils through the P2Y2 receptor without a role for arachidonic acid metabolites. Both ERK1/2 and p38 MAPK play an important role in nucleotide-induced primary granule release from human neutrophils. elastase release; fibrinogen; extracellular nucleotides; uridine triphosphate; adenosine triphosphate  相似文献   

8.
1. The metabolism of extracellular nucleotides in NG108-15 cells, a neuroblastoma × glioma hybrid cell line, was studied by means of capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC).2. In NG108-15 cells ATP, ADP, AMP, UTP, UDP, and UMP were hydrolyzed to the nucleosides adenosine and uridine indicating the presence of ecto-nucleotidases and ecto-phosphatases. The hydrolysis of the purine nucleotides ATP and ADP was significantly faster than the hydrolysis of the pyrimidine nucleotides UTP and UDP.3. ATP and UTP breakdown appeared to be mainly due to an ecto-nucleotide- diphosphohydrolase. ADP, but not UDP, was initially also phosphorylated to some extent to the corresponding triphosphate, indicating the presence of an adenylate kinase on NG108-15 cells. The alkaline phosphatase (ALP) inhibitor levamisole did not only inhibit the hydrolysis of AMP to adenosine and of UMP to uridine, but also the degradation of ADP and to a larger extent that of UDP. ATP and UTP degradation was only slightly inhibited by levamisole.4. These results underscore the important role of ecto-alkaline phosphatase in the metabolism of adenine as well as uracil nucleotides in NG108-15 cells. Dipyridamole, a potent inhibitor of nucleotide breakdown in superior cervical ganglion cells, had no effect on nucleotide degradation in NG108-15 cells.5. Dipyridamole, which is a therapeutically used nucleoside reuptake inhibitor in humans, reduced the extracellular adenosine accumulation possibly by allosteric enhancement of adenosine reuptake into the cells.  相似文献   

9.
Purinergic P2 receptors are a class of plasma membrane receptors that are express in many tissues and are ligated by extracellular nucleotides [such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine 5'-triphosphate (UTP) and uridine 5'-diphosphate (UDP)], which are released as a consequence of cell damage, cell stress, bacterial infection or other noxious stimuli. According to the molecular structure, P2 receptors are divided into two subfamilies: P2X and P2Y receptors. The P2X receptors are ligand-gated channels, whereas P2Y receptors are G-protein-coupled seven-membrane-spanning receptors. Several studies indicate that nucleotides play an important role in immune response modulation through their action on multiple cell types, including monocytes, mast cells, dendritic cells, neutrophils, and eosinophils. Recent work by our group and others identified extracellular nucleotides as chemotaxins for various human immune cells, including eosinophils, neutrophils and dendritic cells. In this review, we summarise recent findings in this field and put forward a hypothesis on the role of P2 receptors in the early recruitment of human immune cells to the site of inflammation.  相似文献   

10.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFN gamma-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFN gamma-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y2 and P2Y6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFN gamma-induced NO production. BzATP, a potent P2X7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFN gamma-induced ERK1/2 phosphorylation. Consistent with activation of the P2X7 receptor, periodate-oxidized ATP, a P2X7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFN gamma-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.  相似文献   

11.
The dynamics of cardiac adenine and uracil nucleotides, following a subcutaneous injection of isoproterenol, was studied on the rat in vivo. The effect of continuous supply of adenosine, uridine, or ribose on the level of ATP and UTP was investigated on control rats and on isoproterenol-treated animals. The precursors were administered by continuous infusion (1 ml.h-1) into the superior caval vein. 1. ATP and UTP levels were decreased within one hour after a single dose of isoproterenol (5 mg.kg-1) (Fig. 1). 2. Then, the level of ATP rose slowly toward the control value. The normal level was not reached within 48 h (Fig. 1). 3. On the contrary, the initial drop in UTP concentration was followed by a rapid restoration. The control value was reached in 3 h, and then the UTP pool was increased to 180% of the normal level, 12 h after isoproterenol application. 4. As previously shown by other authors, the restoration of ATP was accelerated by a continuous supply of adenosine (37 micromoles per hour) or ribose (170 micromoles per hour) (Fig. 2). 5. The infusion of ribose (170 micromoles per hour) or uridine (41 micromoles per hour) completely suppressed the initial decrease in UTP level caused by beta-receptor stimulation. The further enlargement of the UTP pool was greatly enhanced by ribose or uridine (Fig. 3). 6. The infusion of adenosine was also positive on UTP regeneration. On the contrary, uridine had no effect on the ATP pool (Fig. 3). 7. When supplied to non-treated animals, all precursors caused an enhancement of the UTP level. Adenosine and ribose increased the ATP pool (Fig. 2 and 3). These results contribute to the comparison of the efficiency of the various pathways of cardiac nucleotide synthesis. They show that both de novo synthesis and salvage pathways are limited by the amount of precursors. The increase in UTP synthesis caused by ribose is consistent with the theory put forward for purines (ZIMMER et GERLACH, 1974) that phosphoribosyl-pyrophosphate availability limits the efficiency of de novo synthesis of nucleotides; it demonstrates that this concept is also true for de novo synthesis of pyrimidine nucleotides.  相似文献   

12.
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to β-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.  相似文献   

13.
The effects of nutritional variables on the processing of exogenous precursors into RNA was examined. General nutritional deprivation, or asparagine depletion, led to significant changes in the absolute pool sizes, especially of ATP, UTP and CTP. Fluctuations were found depending on the elapsed time after the nutritional perturbations occurred, and the cell density of the cultures. Depletion of the medium by 28 h of growth, or 1 h of guinea pig asparaginase action, led to considerable inhibition of the conversion of exogenous uridine to CTP by the cells. A series of experiments indicated that in 6C3HED lymphoma cells the uridine nucleotide pool which provided the immediate precursors to RNA (denoted UTP-NA) behaves as a small compartment in rapid equilibrium with exogenously supplied nucleosides. The resemblance to the compartmentation model described by Plagemann (Plagemann, P.G.W. (1972) J. Cell Biol. 52, 131-146 and (1971) J. Cell. Physiol. 77, 241-258) for rat hepatoma cells was close. The UTP-NA pool of the 6C3HED cells constitutes no more than 5% of the cellular UTP pool and is relatively slow in equilibrating with the general cell pool. Correction of the rates of incorporation of isotope into RNA by using some function of the whole cell UTP specific activity to normalize the pool effects, was shown to be invalid.  相似文献   

14.
ATP and adenosine are well-known neuroactive compounds. Other nucleotides and nucleosides may also be involved in different brain functions. This paper reports on extracellular concentrations of nucleobases and nucleosides (uracil, hypoxanthine, xanthine, uridine, 2'-deoxycytidine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenosine) in response to sustained depolarisation, using in vivo brain microdialysis technique in the rat thalamus. High-potassium solution, the glutamate agonist kainate, and the Na(+)/K(+) ATPase blocker ouabain were applied in the perfusate of microdialysis probes and induced release of various purine and pyrimidine nucleosides. All three types of depolarisation increased the level of hypoxanthine, uridine, inosine, guanosine and adenosine. The levels of measured deoxynucleosides (2'-deoxycytidine, 2'-deoxyuridine and thymidine) decreased or did not change, depending on the type of depolarisation. Kainate-induced changes were TTX insensitive, and ouabain-induced changes for inosine, guanosine, 2'-deoxycytidine and 2'-deoxyuridine were TTX sensitive. In contrast, TTX application without depolarisation decreased the extracellular concentrations of hypoxanthine, uridine, inosine, guanosine and adenosine.Our data suggest that various nucleosides may be released from cells exposed to excessive activity and, thus, support several different lines of research concerning the regulatory roles of nucleosides.  相似文献   

15.
Uridine, the major circulating pyrimidine nucleoside, participating in the regulation of a number of physiological processes, is readily uptaken into mammalian cells. The balance between anabolism and catabolism of intracellular uridine is maintained by uridine kinase, catalyzing the first step of UTP and CTP salvage synthesis, and uridine phosphorylase, catalyzing the first step of uridine degradation to β-alanine in liver. In the present study we report that the two enzymes have an additional role in the homeostatic regulation of purine and pyrimidine metabolism in brain, which relies on the salvage synthesis of nucleotides from preformed nucleosides and nucleobases, rather than on the de novo synthesis from simple precursors. The experiments were performed in rat brain extracts and cultured human astrocytoma cells. The rationale of the reciprocal regulation of purine and pyrimidine salvage synthesis in brain stands (i) on the inhibition exerted by UTP and CTP, the final products of the pyrimidine salvage pathway, on uridine kinase and (ii) on the widely accepted idea that pyrimidine salvage occurs at the nucleoside level (mostly uridine), while purine salvage is a 5-phosphoribosyl-1-pyrophosphate (PRPP)-mediated process, occurring at the nucleobase level. Thus, at relatively low UTP and CTP level, uptaken uridine is mainly anabolized to uridine nucleotides. On the contrary, at relatively high UTP and CTP levels the inhibition of uridine kinase channels uridine towards phosphorolysis. The ribose-1-phosphate is then transformed into PRPP, which is used for purine salvage synthesis.  相似文献   

16.
Nucleotides and nucleosides play an important role in neurodevelopment acting through specific receptors. Ectonucleotidases are the major enzymes involved in controlling the availability of purinergic receptors ligands. ATP is co-released with several neurotransmitters and is the most important source of extracellular adenosine by catabolism exerted by ectonucleotidases. The main ectonucleotidases are named NTPDases (1–8) and 5′-nucleotidase. Adenosine is a powerful modulator of neurotransmitter release. Caffeine blocks adenosine receptor activity as well as adenosine-mediated neuromodulation. Considering the susceptibility of the immature brain to caffeine and the need for correct purinergic signaling during fetal development, we have analyzed the effects of caffeine exposure during gestational and lactational periods on nucleotide degradation and ectonucleotidase expression from the hippocampi of 7-, 14- and 21-days-old rats. Nucleotides hydrolysis was assessed by colorimetric determination of inorganic phosphate released. Ectonucleotidases expression was performed by RT-PCR. ATP and ADP hydrolysis displayed parallel age-dependent decreases in both control and caffeine-treated groups. AMP hydrolysis increased with caffeine treatment in 7-days-old rats (75%); although there was no significant difference in AMP hydrolysis between control (non caffeine-treated) rats and 14- or 21-days caffeine-treated rats. ADP hydrolysis was not affected by caffeine treatment. Caffeine treatment in 7- and 14-days-old rats decreased ATP hydrolysis when compared to the control group (19% and 60% decrease, respectively), but 21-days-treated rats showed an increase in ATP hydrolysis (39%). Expression levels of NTPDase 1 and 5 decreased in hippocampi of caffeine-treated rats. The expression of 5′-nucleotidase was not affected after caffeine exposure. The changes observed in nucleotide hydrolysis and ectonucleotidases expression could promote subtle effects on normal neural development considering the neuromodulatory role of adenosine.  相似文献   

17.
The activation of P2-receptors has a wide range of diverse effects in many tissues. Here we show that extracellular ATP stimulates lipogenesis in adipocytes derived from the epididymal fat pads of male Wistar rats. The lipogenic effect of ATP is not susceptible to treatment of adipocytes with adenosine deaminase or an adenosine receptor antagonist. Degradation of ATP in adipocyte suspension by ectonucleotidases is slow and remaining ATP concentrations are sufficient to activate P2-receptors. ATP does not affect basal or insulin stimulated glucose transport, or basal or isoproterenol stimulated lipolysis, respectively. The lipogenic effect of ATP is mimicked by the adenine compounds, ADP, AMP, and beta,gamma-methylene-ATP, but not by other nucleotides (UTP, UDP, CTP, GTP, ITP, and diadenosine tetraphosphate), indicating that extracellular nucleotides stimulate lipogenesis via a P2-receptor. ATP and its receptor may define a signalling system in adipocytes, which regulates fat stores independently from established hormones.  相似文献   

18.
In this paper we show that phosphoribomutase is induced in Bacillus cereus by the same metabolizable purine and pyrimidine ribonucleosides previously shown to induce the purine nucleoside phosphorylase (Tozzi, M.G., Sgarrella, F. and Ipata, P.L. (1981) Biochim. Biophys. Acta 678, 460-466). The mutase allows ribose 1-phosphate formed from nucleosides to be utilized by the cell through the pentose cycle, upon transformation to ribose 5-phosphate. The equilibrium constant of the mutase reaction is towards ribose-5-phosphate formation. The coordinate induction of the two enzymes completes the picture of the molecular events leading to the utilization of the sugar moiety of purine nucleotides and nucleosides as an energy source (Mura. U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905-7909).  相似文献   

19.
20.
目的:观察几种细胞外核苷如ATP、urIP和四磷酸脲腺苷(Up4A)在胃纵行平滑肌(Ⅲ)和胃环行平滑肌(CM)中引起不同的反应,P2X和P2Y受体拮抗剂以及环氧合酶抑制剂五磷酸二肌苷(11'5I)、苏拉明(suramin)和吲哚美辛对№A在删和CM中引起的收缩的影响。方法:取大鼠全胃,分离LM和CM,使用organbath系统测量平滑肌收缩。结果:Up4A可以在I_aM和CM中引起与ATP和U1P类似的收缩;IP5I对LM和CM中由Up4A引起的收缩并无影响;但suramin和吲哚美辛则能在CaM中显著抑制由Up4A引起的收缩,而LM中无此现象。结论:两种胃平滑肌对核苷类药物及其抑制剂的反应有差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号