首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract Efficient and accurate vegetation sampling techniques are essential for the assessment of wetland restoration success. Remotely acquired data, used extensively in many locations, have not been widely used to monitor restored wetlands. We compared three different vegetation sampling techniques to determine the accuracy associated with each method when used to determine species composition and cover in restored Pacific coast wetlands dominated by Salicornia virginica (perennial pickleweed). Two ground‐based techniques, using quadrat and line intercept sampling, and a remote sensing technique, using low altitude, high resolution, color and color infrared photographs, were applied to estimate cover in three small restoration sites. The remote technique provided an accurate and efficient means of sampling vegetation cover, but individual species could not be identified, precluding estimates of species density and distribution. Aerial photography was determined to be an effective tool for vegetation monitoring of simple (i.e., single‐species) habitat types or when species identities are not important (e.g., when vegetation is developing on a new restoration site). The efficiency associated with these vegetation sampling techniques was dependent on the scale of the assessment, with aerial photography more efficient than ground‐based sampling methods for assessing large areas. However, the inability of aerial photography to identify individual species, especially mixed‐species stands common in southern California salt marshes, limits its usefulness for monitoring restoration success. A combination of aerial photography and ground‐based methods may be the most effective means of monitoring the success of large wetland restoration projects.  相似文献   

2.
High mountain ecosystems are defined by low temperatures and are therefore considered to react sensitively to climate warming. Responding to observed changes in plant species richness on high peaks of the European Alps, an extensive setup of 1 m × 1 m permanent plots was established at the alpine‐nival ecotone (between 2900 and 3450 m) on Mount Schrankogel, a GLORIA master site in the central Tyrolean Alps, Austria, in 1994. Recording was repeated in a representative selection of 362 quadrats in 2004. Ten years after the first recording, we observed an average change in vascular plant species richness from 11.4 to 12.7 species per plot, an increase of 11.8% (or of at least 10.6% at a 95% confidence level). The increase in species richness involved 23 species (about 43% of all taxa found at the ecotone), comprising both alpine and nival species and was pronouncedly higher in plots with subnival/nival vegetation than in plots with alpine grassland vegetation. Only three species showed a decrease in plot occupancy: one was an annual species, one was rare, and one a common nival plant that decreased in one part of the area but increased in the uppermost part. Species cover changed in relation to altitudinal preferences of species, showing significant declines of all subnival to nival plants, whereas alpine pioneer species increased in cover. Recent climate warming in the Alps, which has been twice as high as the global average, is considered to be the primary driver of the observed differential changes in species cover. Our results indicate an ongoing range contraction of subnival to nival species at their rear (i.e. lower) edge and a concurrent expansion of alpine pioneer species at their leading edge. Although this was expected from predictive distribution models and different temperature‐related habitat preferences of alpine and nival species, we provide first evidence on – most likely – warming‐induced species declines in the high European Alps. The projected acceleration of climate warming raises concerns that this phenomenon could become the major threat to biodiversity in high mountains.  相似文献   

3.
Question: What is the impact of grazing and/or afforestation on grassland diversity, species composition and cover parameters? Location: Semi‐arid Mediterranean grasslands of Jordan. Methods: Vegetation, litter, bare soil and rock cover were compared among four management types – free grazing and protected from grazing with three levels of tree cover. Species composition, plant cover, species richness and evenness were used to evaluate differences in vegetation among management types. Species composition differences among management types were also investigated. Results: Semi‐arid Mediterranean grasslands harbour appreciable levels of plant biodiversity. Grazing did not affect plant diversity, indicating the high resilience against and adaptation to grazing; however,grazing affected species composition and cover parameters. Afforestation seems to protect soil through higher litter cover but its impact on plant biodiversity was negative and markedly affected species composition. Conclusions: Neither protection from grazing or massive afforestation alone are sufficient for conserving biodiversity in this system. A management model is suggested where the landscape should be maintained as a mosaic of four management types: complete protection from grazing, grazing rotation, planting sparse trees in eroded areas and revegetating degraded areas using native, herbaceous and grazing tolerant species.  相似文献   

4.
Question: Species optima or indicator values are frequently used to predict environmental variables from species composition. The present study focuses on the question whether predictions can be improved by using species environmental amplitudes instead of single values representing species optima. Location: Semi‐natural, deciduous hardwood forests of northwestern Germany. Methods: Based on a data set of 558 relevés, species responses (presence/absence) to pH were modelled with Huisman‐Olff‐Fresco (HOF) regression models. Species amplitudes were derived from response curves using three different methods. To predict the pH from vegetation, a maximum amplitude overlap method was applied. For comparison, predictions resulting from several established methods, i. e. maximum likelihood/present and absent species, maximum likelihood/present species only, mean weighted averages and mean Ellenberg indicator values were calculated. The predictive success (squared Pearson's r and root mean square error of prediction) was evaluated using an independent data set of 151 relevés. Results: Predictions based upon amplitudes defined by maximum Cohen's x probability threshold yield the best results of all amplitude definitions (R2= 0.75, RMSEP = 0.52). Provided there is an even distribution of the environmental variable, amplitudes defined by predicted probability exceeding prevalence are also suitable (R2= 0.76, RMSEP = 0.55). The prediction success is comparable to maximum likelihood (present species only) and – after rescaling – to mean weighted averages. Predicted values show a good linearity to observed pH values as opposed to a curvilinear relationship of mean Ellenberg indicator values. Transformation or rescaling of the predicted values is not required. Conclusions: Species amplitudes given by a minimum and maximum boundary for each species can be used to efficiently predict environmental variables from species composition. The predictive success is superior to mean Ellenberg indicator values and comparable to mean indicator values based on species weighted averages.  相似文献   

5.
Question: How does grazing intensity affect plant density, cover and species richness in an Patagonian arid ecosystem? Location: Monte steppe ecoregion, SW Argentina. Methods: I analysed the effect of grazing on plant density, cover and species richness using a stocking rate gradient within the same habitat. Six paddocks were used with stocking rates ranging between 0.002 – 0.038 livestock/ha. Plant density, species richness, plant cover and percentage of grazed branches were determined by sampling plots within each paddock. The percentage of grazed branches was used as an independent measurement of grazing intensity. Results: Higher stocking rates were related to lower plant density, species richness and plant cover. The paddock with the lowest grazing intensity had 86% more plants per unit area, 63% more plant cover and 48% higher species richness. The percentage of grazed branches and the quantity of dung increased with stocking rate. Conclusions: Introduced livestock seriously affect native vegetation in the Patagonian Monte. The damage observed in this xerophytic plant community suggests that plant adaptations to aridity do not provide an advantage to tolerate or avoid grazing by vertebrate herbivores in this region. Plant degradation in this arid environment is comparable to the degradation found in more humid ecosystems.  相似文献   

6.
Relationships between changes of two species of terrestrial chironomids(Smittia cf. aterrima andBryophaenocladius cf. virgo) and changes of vegetation cover during succession were studied with respect to plant — chironomid interaction in particular stages of chironomid life cycle. Several vegetation types forming vegetation mosaics in suburban fallow were distinguished according to their spatial architecture (height; density etc.). Abundance of chironomid larvae in particular type of vegetation and an area covered by these vegetation types were studied for three years. During one year the effect of vegetation types on density of aerial drift, oviposition habitat preference and adult emergence was studied in detail. Aerial drift was studied using pan traps, oviposition using soil sampling and adult emergence using emergence trap. Main results were similar for both species. Chironomid larvae were abundant in soil in initial years of succession. They were concentrated in patches with open and low height vegetation. Later their abundance decreased corresponding to a reduction of open and low vegetation areas. Greater density of aerial drift and oviposition preference was observed in areas of open and low vegetation. The success of larval development agreed with oviposition preference for winter larval generation only. The less preferred habitats seemed to be more suitable for summer generation. The results indicated that successional changes of terrestrial chironomids can be explained by the effect of vegetation cover on oviposition habitat preference.  相似文献   

7.
Question: How does the composition and species richness of understorey vegetation associate with changing abundance of deciduous shrub canopies? What are the species‐specific associations between shrubs and understorey plants? Location: Tundra habitats along an over 1000‐km long range, spanning from NW Fennoscandia to the Yamal Peninsula in northwest Russia. Methods: The data from 758 vegetation sample plots from 12 sites comprised cover estimates of all plant species, including bryophytes and lichens, and canopy height of deciduous shrubs. The relationships between shrub volume and cover of plant groups and species richness of vegetation were investigated. In addition, species‐specific associations between understorey species and shrub volume were analysed. Results: Shrub abundance was shown to be associated with the composition of understorey vegetation, and the association patterns were consistent across the study sites. Increased forb cover was positively associated with shrub volume, whereas bryophyte, lichen, dwarf shrub and graminoid cover decreased in association with increasing volume of deciduous shrubs. The total species richness of vegetation declined with increasing shrub volume. Conclusions: The results suggest that an increase of shrubs – due to climatic warming or a decrease in grazing pressure – is likely to have strong effects on plant–plant interactions and lead to a decrease in the diversity of understorey vegetation.  相似文献   

8.
The abundance and vegetation cover of plant species with different seed masses growing on crude oil contaminated and uncontaminated field plots were examined. In addition, seedling mass and relative growth rate of eight plants in four seed mass classes were compared in contaminated and uncontaminated soils. Species producing seed in the second largest seed class (1.0 to 9.9 mg) were more common on contaminated than uncontaminated field plots. Species with seed in the smallest seed class (< 0.1 mg) were less common on contaminated than uncontaminated plots. Species with seed masses between 1.0 and 9.9 mg formed 15% more vegetation cover, and those with masses between 0.1 and 0.9 mg formed nearly 15% less vegetation cover on contaminated compared to uncontaminated field plots. In the growth chamber, species with larger seeds produced approximately 25% less seedling mass and exhibited a 32% reduction in relative growth rate, when grown in contaminated compared to uncontaminated soil. Small-seeded species had reductions of 95% in seedling mass and 72% in relative growth rate. Species with the highest relative growth rates in uncontaminated soil had the lowest seedling mass in contaminated soil. Seed mass and relative growth rate were negatively correlated (r = 0.866).  相似文献   

9.
Abstract Leaf miners are insects whose larval stages live between layers of leaf epidermis, feeding on mesophyll and lower epidermis to create mine‐like cavities. Little is known about the ecology or distribution of leaf miners in Australia. We investigated the incidence of leaf miners in relation to aridity, vegetation types, host plant taxonomy, leaf traits, canopy cover and latitude. We surveyed leaf miners at 15 sites in NSW, eastern Australia, situated along a rainfall gradient from 300 to 1700 mm per annum and a latitudinal gradient of 28°S to 33°S, within four vegetation types (mallee, heath, woodland and rainforest). Leaf mining was recorded from 36 plant species, 89% of which had no previous record of mining. The proportion of mined plant species at each site varied, but there was no significant difference between vegetation types. Leaf mining presence was positively correlated with both total leaf length and leaf thickness. No significant correlations were found between the proportion of mined species at a site and rainfall, latitude or foliar projected cover. We conclude that leaf mining is a widespread type of insect herbivory whose distribution patterns are more likely to be influenced by biotic than abiotic factors.  相似文献   

10.
Aims: The primary objective of this study is to map the distribution and quantify the cover of vegetation alliances over the entirety of San Clemente Island (SCI). To this end, we develop and evaluate the mapping method of hierarchical object‐based classification with a rule‐based expert system. Location: San Clemente Island, California, USA. Methods: We developed and tested an approach based on hierarchical object‐based classification with a rule‐based expert system to effectively map vegetation communities on SCI following the Manual of California Vegetation classification system. In this mapping approach, the shrub species defining each vegetation community and non‐shrub growth forms were first mapped using aerial imagery and lidar data, then used as input in an automated mapping rule set that incorporates the percent cover rules of a field‐based mapping rule set. Results: The final vegetation map portrays the distribution of 19 vegetation communities across SCI, with the largest areas comprised of California Annual and Perennial Grassland (35%) and three types of coastal sage scrub and maritime succulent scrub, comprising a combined 53% of the area. Map accuracy was assessed to be 79% based on fuzzy methods and 61% with a traditional accuracy assessment. The accuracy of tree identification was assessed to be 81%, but species‐level tree accuracy was 45%. Conclusions: Semi‐automated approaches to vegetation community mapping can produce repeatable maps over large spatial extents that facilitate ecological management efforts. However, some low‐statured shrub community types were difficult to differentiate due to patchy canopies of co‐occurring species including abundant non‐native grasses characteristic of complex disturbance histories. Species‐level tree mapping accuracy was low due to the difficulty of identifying species within poorly illuminated canyons, resulting from sub‐optimal image acquisition timing.  相似文献   

11.
The distribution and frequency of bryophyte and lichen vegetation on ice-free regions of the Windmill Islands are presented using data derived from aerial photography and ground surveying. The qualitative and quantitative plant cover of sites are listed and related to the topography and major soil characteristics of each site. The richest associations of macrolichens and bryophytes occurred on the metamorphic northern peninsulas. Species richness and frequency was generally reduced on the charnockitic southern peninsula and the islands which have been deglaciated longer. Salinity varied significantly throughout the region with the highest levels in the northern islands reflecting the presence of penguin colonies. In such sites bryophytes and lichens were virtually absent. Wind blown sea-spray contributed far less salts than direct excretion from penguins. On the peninsulas snow cover and site exposure appeared to delimit plant distribution. Higher salt levels from sea-spray on the northern aspects of the peninsulas seemed to have negligible impact on vegetation patterns with the possible exception ofBiatorella cerebriformis which was encountered only inland. The total phosphorus and nitrogen levels of the skeletal soils were generally low except in eutrophic sites adjacent to penguin colonies. The vegetation patterns are discussed in terms of the climate, topography and species autecology.  相似文献   

12.
The distribution and ecology of the assemblages of myxomycetes associated with four different microhabitats were studied in Big Bend National Park in Texas. During Mar. 2005, twelve plots (30 × 30 m) were established along an elevational gradient that extended from 564 to 1807 m. Samples of aerial bark from dead and living trees, aerial litter (dead but still attached plant parts), ground litter (fallen dead plant parts) and ground bark (fragments of fallen bark) were collected from these plots, which encompassed all of the major vegetation types found in the Park. Four hundred forty-seven moist chambers were prepared, and 95.8 % (428) produced some evidence (either fruit bodies or plasmodia) of myxomycetes. A total of 71 species were recorded, with ground litter yielding most (45 species). Aerial litter, aerial bark and ground bark yielded 44, 39 and 37 species, respectively. Species abundance distribution measures (diversity, dominance and similarities) varied among the four microhabitats as well as among the major vegetation types. Canonical Correspondence Analysis (CCA) showed that species distribution patterns were closely related to: (1) the major environmental-complex gradients associated with differences in elevation/temperature/moisture conditions that occur from one locality to another; and (2) the different types of microhabitat.  相似文献   

13.
ABSTRACT. A rapid assessment survey on the occurrence and distribution of protosteloid amoebae was carried out in central Kenya. Samples of dead plant materials were collected from 46 study sites (each 20 × 20 m) situated along an elevation gradient (1,785–3,396 m) that encompassed five major land use/cover types. Twenty-four species and subspecific taxa were recovered and included 23 protostelids and one minute myxomycete, often included in surveys for protostelids. All of these were the first records for Kenya, and six were new for Africa. Numbers of taxa were highest in ground litter and aerial litter microhabitats (20 taxa each) and lowest on aerial bark (10) and ground bark (7). Relative species abundance was greatest in aerial litter, moderate in ground litter, and low on aerial and ground bark microhabitats. The most frequently occurring species on ground litter were Schizoplasmodiopsis pseudoendospora, Schizoplasmodiopsis amoeboidea , and Protostelium mycophaga var. mycophaga , whereas the most common species on aerial litter were P. mycophaga var. mycophaga and Soliformovum irregularis . Species richness and abundance decreased with increasing elevation.  相似文献   

14.
Questions: How long may it take for desert perennial vegetation to recover from prolonged human disturbance and how do different plant community variables (i.e. diversity, density and cover) change during the recovery process? Location: Sonoran Desert, Arizona, USA. Methods: Since protection from grazing from 1907 onwards, plant diversity, density and cover of perennial species were monitored intermittently on ten 10 m × 10 m permanent plots on Tumamoc Hill, Tucson, Arizona, USA. Results: The study shows an exceptionally slow recovery of perennial vegetation from prolonged heavy grazing and other human impacts. Since protection, overall species richness and habitat heterogeneity at the study site continued to increase until the 1960s when diversity, density and cover had been stabilized. During the same period, overall plant density and cover also increased. Species turnover increased gradually with time but no significant relation between any of the three community variables and precipitation or Palmer Drought Severity Index (PDSI) was detected. Conclusions: It took more than 50 yr for the perennial vegetation to recover from prolonged human disturbance. The increases in plant species richness, density, and cover of the perennial vegetation were mostly due to the increase of herbaceous species, especially palatable species. The lack of a clear relationship between environment (e.g. precipitation) and community variables suggests that site history and plant life history must be taken into account in examining the nature of vegetation recovery processes after disturbance.  相似文献   

15.
1. We conducted field experiments to examine factors influencing macroinvertebrate colonization of seasonally flooded marshes. Few macroinvertebrate species were found aestivating in soils within non-flooded wetlands indicating that most taxa colonize these marshes from other flooded habitats.
2. We manipulated amounts of salt grass ( Distichlis spicata ) to examine how emergent plant cover affects aerial colonization by macroinvertebrates. Areas mowed 3 weeks before flooding had low plant cover, areas mowed 5 and 9 weeks before flooding had medium and high plant cover, respectively, and non-mowed control areas had the most plant cover. Macroinvertebrate numbers and biomass were generally higher in mowed treatment areas than in control areas, but overall diversity was generally higher in high plant cover and control areas than in low plant cover areas.
3. Mosquitoes (Culicidae), brine flies (Ephydridae) and hover flies (Syrphidae) were positively correlated with amount of plant cover, and waterboatmen (Corixidae), midges (Chironomidae) and water scavenger beetles (Hydrophilidae) were negatively correlated with plant cover. Species assemblages changed seasonally among treatment areas because these taxa colonize wetlands at different times in the year.
4. These results demonstrate that invertebrate communities may be different within plant stands with heterogeneous amounts of emergent cover, and management practices that alter the structure of wetland vegetation can influence macroinvertebrate communities colonizing seasonal marshes.  相似文献   

16.
The ability to carry out systematic, accurate and repeatable vegetation surveys is an essential part of long-term scientific studies into ecosystem biodiversity and functioning. However, current widely used traditional survey techniques such as destructive harvests, pin frame quadrats and visual cover estimates can be very time consuming and are prone to subjective variations. We investigated the use of digital image techniques as an alternative way of recording vegetation cover to plant functional type level on a peatland ecosystem. Using an established plant manipulation experimental site at Moor House NNR (an Environmental Change Network site), we compared visual cover estimates of peatland vegetation with cover estimates using digital image classification methods, from 0.5 m × 0.5 m field plots. Our results show that digital image classification of photographs taken with a standard digital camera can be used successfully to estimate dwarf-shrub and graminoid vegetation cover at a comparable level to field visual cover estimates, although the methods were less effective for lower plants such as mosses and lichens. Our study illustrates the novel application of digital image techniques to provide a new way of measuring and monitoring peatland vegetation to the plant functional group level, which is less vulnerable to surveyor bias than are visual field surveys. Furthermore, as such digital techniques are highly repeatable, we suggest that they have potential for use in long-term monitoring studies, at both plot and landscape scales.  相似文献   

17.
Question: Are long‐unburnt patches of eucalypt forest important for maintaining floristic diversity? Location: Eucalyptus forests of southeastern New South Wales, Australia. Methods: Data from 976 sites representing a range of fire history from three major vegetation formations – shrubby dry sclerophyll forest (SF), grassy dry SF and wet SF – were analysed. Generalized linear models were used to examine changes in species richness with increasing time since wildfire and analysis of similarities to examine changes in community composition. Chi‐squared tests were conducted to examine the distribution of individual species across four time since fire categories. Results: Plant species relationships to fire varied between the three formations. Shrubby dry SF supported lower plant species richness with increasing time since wildfire and this was associated with shifts in community composition. Grassy dry SF showed significant shifts in community composition and species richness in relation to time, with a peak in plant species richness 20–30 yr post fire (either prescribed fire or wildfire). Wet SF increased in species richness until 10–20 yr post wildfire then displayed a general declining trend. Species richness in each vegetation type was not related to the fire frequencies and fire intervals observed in this study. Conclusions: Long‐unburnt (30–50 yr post wildfire) forests appeared to play a minor role in the maintenance of plant species diversity in dry forest systems, although this was more significant in wet forests. Maintenance of a range of fire ages within each vegetation formation will assist in maintaining floristic diversity within regions.  相似文献   

18.
《新西兰生态学杂志》2011,15(2):171-175
Stem density, basal area, vegetation cover and vegetation surface area were compared as measures of the proportions of plant species present in North Okarito Forest, South Westland, for use in determining bird preferences for plant species. In general, stem density estimates of the proportions of canopy species were about 10 times lower than basal area estimates. The converse was true for estimates of the proportions of sub- canopy and understorey species. The proportions estimated from vegetation cover and vegetation surface area were similar for most species, and were intermediate between the proportions estimated from stem density and basal area. However, in the upper forest tiers, vegetation cover gave lower estimates for the proportions of canopy species and higher estimates for the proportions of sub-canopy species than given by vegetation surface area. These differences affect calculation of bird preferences for plant species. We recommend vegetation surface area as a measure of the proportional availability of plant species to birds because it is appropriate to most birds in New Zealand forests, is likely to be more accurate than visual estimates of vegetation cover, and can be measured on the same plots separately for trunks, branches, foliage, and fruit.  相似文献   

19.
Questions: Are species richness and species abundances higher in the presence of tidal creeks? Do species richness and species abundances vary with plot size? Location: Intertidal plain of Volcano Marsh, Bahia de San Quintin, Mexico. Methods: We analysed vegetation patterns in large areas (cells) with tidal creeks (+creek) and without (‐creek). We surveyed vegetation cover, microtopography, habitat type, and distance to creeks in nested plots of five sizes, 0.1, 0.25, 1, 2.5, and 10 m2. Results: Species richness, frequency, cover, and assemblages differed between ±creek cells. Richness tended to be higher in +creek cells, and cover and frequency of individual species differed significantly between ±creek cells. We found consistent patterns in vegetation structure across plot sizes. We encountered 13 species that occurred in 188 unique assemblages. The most common assemblage had six species: Batis maritima, Frankenia salina, Salicornia bigelovii, S. virginica, Salicornia spec. and Triglochin concinna. This assemblage occurred in ±creek cells and at all spatial scales. Of the most common assemblages all but one were composed of multiple species (3–9 species/plot). Conclusions: The persistence of vegetation patterns across a 100‐fold range in spatial scale suggests that similar environmental factors operate broadly to determine species establishment and persistence. Differences in assemblage composition result from variation of frequency and cover of marsh plain species, particularly Suaeda esteroa and Monanthochloe littoralis. The recommendation for restoration of Californian salt marshes is to target (and plant) multi‐species assemblages, not monocultures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号