首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Question: This study evaluates how fire regimes influence stand structure and dynamics in old‐growth mixed conifer forests across a range of environmental settings. Location: A 2000‐ha area of mixed conifer forest on the west shore of Lake Tahoe in the northern Sierra Nevada, California. Methods: We quantified the age, size, and spatial structure of trees in 12 mixed conifer stands distributed across major topographic gradients. Fire history was reconstructed in each stand using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing the fire history with the age, size, and spatial structure of trees in a stand. Results: There was significant variation in species composition among stands, but not in the size, age and spatial patterning of trees. Stands had multiple size and age classes with clusters of similar aged trees occurring at scales of 113 ‐ 254 m2. The frequency and severity of fires was also similar, and stands burned with low to moderate severity in the dormant season on average every 9–17 years. Most fires were not synchronized among stands except in very dry years. No fires have burned since ca. 1880. Conclusions: Fire and forest structure interact to perpetuate similar stand characteristics across a range of environmental settings. Fire occurrence is controlled primarily by spatial variation in fuel mosaics (e.g. patterns of abundance, fuel moisture, forest structure), but regional drought synchronizes fire in some years. Fire exclusion over the last 120 years has caused compositional and structural shifts in these mixed conifer forests.  相似文献   

2.
Question: What is the relative importance of low‐ and high‐severity fires in shaping forest structure across the range of Pinus ponderosa in northern Colorado? Location: Colorado Front Range, USA. Methods: To assess severities of historic fires, 24 sites were sampled across an elevation range of 1800 to 2800 m for fire scars, tree establishment dates, tree mortality, and changes in tree‐ring growth. Results: Below 1950 m, the high number of fire scars, scarcity of large post‐fire cohorts, and lack of synchronous tree mortality or growth releases, indicate that historic fires were of low severity. In contrast, above 2200 m, fire severity was greater but frequency of widespread fires was substantially less. At 18 sites above 1950 m, 34 to 80% of the live trees date from establishment associated with the last moderate‐ to high‐severity fire. In these 18 sites, only 2 to 52% of the living trees pre‐date these fires suggesting that fire severities prior to any effects of fire suppression were sufficient to kill many trees. Conclusions: These findings for the P. ponderosa zone above ca. 2200 m (i.e. most of the zone) contradict the widespread perception that fire exclusion, at least at the stand scale of tens to hundreds of hectares, has resulted in unnaturally high stand densities or in an atypical abundance of shade‐tolerant species. At relatively mesic sites (e.g. higher elevation, north‐facing), the historic fire regime consisted of a variable‐severity regime, but forest structure was shaped primarily by severe fires rather than by surface fires.  相似文献   

3.
Abstract. At ca. 40° S in northern Patagonia, Andean rain forests are replaced eastwards by woodlands and shrublands and eventually by steppe. Along this gradient we examined stand dynamics by analyzing tree population age structures and tree growth patterns. We also examined spatial and temporal characteristics of disturbance regimes by dating disturbances and mapping stands of differing disturbance history. From west to east, the ecological importance of earthquake-related disturbance decreases, whereas that of fire, logging, and livestock increases. Abrupt changes in rates of tree growth correspond with earthquakes in 1837, 1939 and 1960. In the mesic western forests earthquakes can result in massive new tree establishment on landslide-affected sites and increased rates of treefall. Fire, however, is the more pervasive disturbance over most of the gradient and creates extensive even-aged patches dominated by the regionally dominant trees, Nothofagus and Austrocedrus. Although some lightning-ignited and aboriginal-set fires occurred in these forests prior to European settlement, much of the present forest structure may be attributed to the massive burning associated with European settlement of this area near the turn of the present century. In contrast to the settlement-related increase in fire frequency in the western forested district, at the woodland/steppe ecotone the demise of the native American population resulted in a decrease in fire frequency. Heavy browsing and grazing following fire can seriously impede post-fire tree regeneration. These preliminary results document the important influences of varying disturbance regimes along a major environmental gradient in creating landscape-scale vegetation patterns.  相似文献   

4.
Fire is the prevalent disturbance in the Araucaria–Nothofagus forested landscape in south‐central Chile. Although both surface and stand‐replacing fires are known to characterize these ecosystems, the variability of fire severity in shaping forest structure has not previously been investigated in Araucaria–Nothofagus forests. Age structures of 16 stands, in which the ages of approximately 650 trees were determined, indicate that variability in fire severity and frequency is key to explaining the mosaic of forest patches across the Araucaria–Nothofagus landscape. High levels of tree mortality in moderate‐ to high‐severity fires followed by new establishment of Nothofagus pumilio typically result in stands characterized by one or two cohorts of this species. Large Araucaria trees are highly resistant to fire, and this species typically survives moderate‐ to high‐severity fires either as dispersed individuals or as small groups of multi‐aged trees. Small post‐fire cohorts of Araucaria may establish, depending on seed availability and the effects of subsequent fires. Araucaria's great longevity (often >700 years) and resistance to fire allow some individuals to survive fires that kill and then trigger new Nothofagus cohorts. Even in relatively mesic habitats, where fires are less frequent, the oldest Araucaria–Nothofagus pumilio stands originated after high‐severity fires. Overall, stand development patterns of subalpine AraucariaN. pumilio forests are largely controlled by moderate‐ to high‐severity fires, and therefore tree regeneration dynamics is strongly dominated by a catastrophic regeneration mode.  相似文献   

5.
Abstract. We studied the characteristics of understorey regeneration on two sites with different fire history in a mature Pinus sylvestris forest in eastern Finland. The study area was a 4‐ha plot, which was divided into two parts based on fire history analysis. In one part the last fire event was a stand‐replacing fire in the early 19th century, after which the whole stand regenerated, while the other part of the study plot was subsequently burnt by a surface fire in 1906. Understorey P. sylvestris individuals were much more abundant in the area of the 1906 burn compared to the old burn. In both areas the size frequency distribution of living trees was bimodal, with frequency peaks at the < 5 cm and 30–150 cm height classes. In the old burn small understorey trees were mainly associated with microsites created by treefall disturbances while in the 1906 burn most small understorey trees occurred on vegetation‐covered microsites. This indicates that with increasing time since last fire establishment of new understorey trees becomes more restricted by the availability of microsites created by treefall disturbances. In both areas the proportion of vigorous small understorey trees was highest on decayed wood. In the older burn uprooted pits and mounds also had a significant proportion of healthy small understorey trees, while the majority of trees classified as seriously weakened or dying were growing on microhabitats characterized by undisturbed vegetation. Ripley's K‐function analyses showed that spatial distribution of understorey trees was clustered in both areas in all microsite types and clustering at small scales was most pronounced in understorey trees growing in uprooted spots or in association with decayed wood. The bivariate analysis showed a significant repulsion effect between large trees and understorey trees at intermediate spatial scales, indicating that competition had an effect on understorey tree distribution and this effect was more pronounced in the younger burn. The analysis suggests that in Pinus sylvestris forests the abundance, quality and spatial pattern of understorey tree population may vary considerably as a function of disturbance history.  相似文献   

6.
Aim To assess the importance of drought and teleconnections from the tropical and north Pacific Ocean on historical fire regimes and vegetation dynamics in north‐eastern California. Location The 700 km2 study area was on the leeward slope of the southern Cascade Mountains in north‐eastern California. Open forests of ponderosa pine (Pinus ponderosa var. ponderosa Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf) surround a network of grass and shrub‐dominated meadows that range in elevation from 1650 to 1750 m. Methods Fire regime characteristics (return interval, season and extent) were determined from crossdated fire scars and were compared with tree‐ring based reconstructions of precipitation and temperature and teleconnections for the period 1700–1849. The effect of drought on fire regimes was determined using a tree‐ring based proxy of climate from five published chronologies. The number of forest‐meadow units that burned was compared with published reconstructions of the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Results Landscape scale fires burned every 7–49 years in meadow‐edge forests and were influenced by variation in drought, the PDO and ENSO. These widespread fires burned during years that were dryer and warmer than normal that followed wetter and cooler years. Less widespread fires were not associated with this wet, then dry climate pattern. Widespread fires occurred during El Niño years, but fire extent was mediated by the phase of the PDO. Fires were most widespread when the PDO was in a warm or normal phase. Fire return intervals, season and extent varied at decadal to multi‐decadal time scales. In particular, an anomalously cool, wet period during the early 1800s resulted in widespread fires that occurred earlier in the year than fires before or after. Main conclusions Fire regimes in north‐eastern California were strongly influenced by regional and hemispheric‐scale climate variation. Fire regimes responded to variation that occurred in both the north and tropical Pacific. Near normal modes of the PDO may influence fire regimes more than extreme conditions. The prevalence of widespread teleconnection‐driven fires in the historic record suggests that variation in the Pacific Ocean was a key regulator of fire regimes through its influence on local fuel production and successional dynamics in north‐eastern California.  相似文献   

7.
We examined forest structure and regeneration in a 350‐ha forest dominated by Pinus sylvestris 31 yr after a wildfire in the Vienansalo wilderness, Russian Karelia. In most parts of the area, the 1969 fire was not stand replacing but had left larger trees alive so that the area generally remained forest covered. In some localities, however, all trees apparently died and distinct gaps were formed, suggesting that the fire severity varied considerably, contributing to increased variation in stand structure. Living and dead wood volumes were similar, 112 and 96 m3.ha‐1, respectively. The tree species proportions of dead vs living wood indicated that prior to fire disturbance Picea was more common in the area. Regeneration was abundant (saplings, ca. 14 000 ind.ha‐1, height 20 ‐200 cm) and tree seedling recruitment had occurred over a long period of time. Regeneration density was highest on the mesic Vaccinium‐Myrtillus forest site type, decreasing towards nutrient‐poor site types. The most common regeneration microsites were level ground (56% of saplings), immediate surroundings of decayed wood (23%) and depressions (11%). The high proportion of saplings on level ground suggests that after the fire regeneration conditions have been favourable across the whole forest floor. Nevertheless, the areas in the vicinity of decayed wood have been particularly important microsites for seedling establishment. The results provide an example of the effects of wildfire on forest structure in a natural Pinus sylvestris dominated forest, demonstrating the non stand replacing character of fire, high variability in stand structure and the abundance of post‐fire regeneration.  相似文献   

8.
Abstract. Question: Which are the structural attributes and the history of old‐growth Fagus forest in Mediterranean montane environments? What are the processes underlying their structural organization? Are these forests stable in time and how does spatial scale affect our assessment of stability? How do these forests compare to other temperate deciduous old‐growth forests? Location: 1600–1850 m a.s.l., Fagus forest near the tree line, central Apennines, Italy. Methods: An old‐growth Fagus forest was studied following historical, structural and dendroecological approaches. History of forest cover changes was analysed using aerial photographs taken in 1945, 1954, 1985 and 1994. The structural analysis was carried out in the primary old‐growth portion of the forest using 18 circular and two rectangular plots. Dendroecological analyses were conducted on 32 dominant or co‐dominant trees. Results: These primary old‐growth Fagus remnants consist of four patches that escaped logging after World War II. Both living and dead tree components are within the range of structural attributes recognized for old‐growth in temperate biomes. Dendroecological analyses revealed the roles of disturbance, competition and climate in structuring the forest. We also identified a persistent Fagus community in which gap‐phase regeneration has led to a mono‐specific multi‐aged stand at spatial scales of a few hectares, characterized by a rotated‐sigmoid diameter distribution. Conclusion: Even at the relatively small spatial scale of this study, high‐elevation Apennine Fagus forests can maintain structural characteristics consistent with those of old‐growth temperate forests. These results are important for managing old‐growth forests in the Mediterranean montane biome.  相似文献   

9.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

10.
Question: Can the direct regeneration hypothesis (DRH) be used to predict post‐disturbance regeneration after fire, wind disturbance, and clearcutting in northern forests? Do life‐history traits such as regeneration strategy and shade tolerance influence post‐disturbance regeneration success of tree species? Location: Northern forests in North America. Methods: A meta‐analysis was conducted by collecting published data on pre‐ and post‐disturbance stand compositional characteristics in the northern forests. For each tree species, compositional difference (CD) was calculated as the difference between basal area proportions of the post‐ and pre‐disturbance stands, but for post‐disturbance stands <25 years of age, post‐disturbance proportions were calculated based on relative stem density. Results: Species response to disturbances was best explained by regeneration strategy, while disturbance type had no effect on CD. The proportion of broadleaf trees with either strong or weak vegetative reproduction ability increased after all disturbances. Serotinous species had CD values not significantly different from zero after fire, while CD for semi‐serotinous species was negative. The post‐disturbance proportions of non‐serotinous conifers decreased after all forms of disturbance. Conclusions: All disturbances promote broadleaf trees, regardless of regeneration strategy (suckering, sprouting, or seeding). The DRH is supported for conifers with serotinous cones after fire. Fire causes local extinction of non‐serotinous conifers, while wind and clearcutting only decrease the proportion of non‐serotinous conifers because of partial survival of seed sources and advanced regeneration. This study suggests that increasing stand‐replacing disturbances associated with global climate change will promote broadleaf trees in northern forests.  相似文献   

11.
Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.  相似文献   

12.
Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630‐ha area of mid‐ and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire‐vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid‐ and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4–6 years, 16 years) and Jeffrey pine–white fir (Abies concolor) (JP‐WF) (5–10 years, 22 years) and longer in high elevation red fir (Abies magnifica)— western white pine (Pinus monticola) (RF‐WWP) forests (9–27 years, 70 years). Median fire return intervals were also shorter on east‐facing (6–9 years, 16.3 years) and longer on south‐ (11 years, 32.5 years) and west‐facing slopes (22–28 years, 54‐years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP‐WF (17.5%) than in RF‐WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid‐ and upper montane forests due to twentieth‐century fire exclusion. Forest density increased in JP and JP‐WF forests and white fir increased in JP‐WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF‐WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre‐settlement role in montane forest dynamics.  相似文献   

13.
Abstract. Changes in disturbance due to fire regime in southwestern Pinus ponderosa forests over the last century have led to dense forests that are threatened by widespread fire. It has been shown in other studies that a pulse of native, early‐seral opportunistic species typically follow such disturbance events. With the growing importance of exotic plants in local flora, however, these exotics often fill this opportunistic role in recovery. We report the effects of fire severity on exotic plant species following three widespread fires of 1996 in northern Arizona P. ponderosa forests. Species richness and abundance of all vascular plant species, including exotics, were higher in burned than nearby unburned areas. Exotic species were far more important, in terms of cover, where fire severity was highest. Species present after wildfires include those of the pre‐disturbed forest and new species that could not be predicted from above‐ground flora of nearby unburned forests.  相似文献   

14.
Questions: Fire appears to affect both replacement patterns and coexistence of Araucaria araucanaNothofagus pumilio forests in the Andean Araucarian region of south‐central Chile. A quantitative assessment of coexistence in the absence of recent fires, however, is lacking. In this study, we considered the life‐history attributes, time of recruitment and spatial pattern of individuals of both tree species to address the following questions. How regular has recruitment of both species been in time? Is there any temporal niche differentiation? Are the two species positively or negatively associated in space and, if so, at what scale and for what age and size classes? Is there any spatial niche differentiation? Location: Andean Araucarian region of Chile, Villarrica National Park (39°35′S, 71°31′W; 1300 m a.s.l.). Methods: We stem‐mapped and cored a total of 1073 trees in a 1ha plot in a late‐successional post‐fire stand to examine spatiotemporal patterns of establishment. We used semivariogram modelling and the pair‐correlation function to distinguish between regeneration modes and describe species interactions. Results: The two species differ in their regeneration mode: whereas A. araucana appeared to recruit more continuously in time and space, episodic pulses of establishment were dominant for N. pumilio. At small scales, younger ageclass stems of A. araucana were randomly distributed, while older ageclass stems were aggregated. This was in contrast to common patterns for temperate tree species, including N. pumilio, following processes of self‐thinning. Younger age classes of A. araucana were distributed independently of older trees of both species, but younger age classes of N. pumilio had a negative association with older conspecifics at scales similar to crown diameter. Conclusions: In the absence of recent fires, it is likely that A. araucana would dominate the stand alone, given its greater shade tolerance, greater longevity and continuous recruitment. However, while canopy closure is still incomplete, the shade‐intolerant N. pumilio will be able to recruit in those open areas after seed masting and will coexist with A. araucana.  相似文献   

15.
Question: What are tree mortality rates and how and why do they vary in late‐successional Picea abies‐dominated forests? Do observed tree mortality patterns allow comparative assessment of models of long‐term stand development? Location: Northern boreal Fennoscandia. Methods: We measured stand structure in 10 stands in two different areas. We determined age distributions and constructed a chronology of tree deaths by cross‐dating the years of death of randomly sampled dead trees. Results: The stands in the two areas had contrasting tree age distributions, despite similar live tree structure. In one area, stands were relatively even‐aged and originated following a stand‐replacing fire 317 years earlier. The stands in the second area had an uneven age structure and virtually no signs of past fires, suggesting a very long period since the last major disturbance. The younger stands were characterized by a high mortality rate and inter‐annual variation, which we attributed to senescence of the relatively even‐aged stands approaching the maximum age of P. abies. In contrast, the tree mortality rates in the older stands were low and relatively stable. Conclusions: Patterns of tree mortality were, to a large extent, dependent on the time since the last stand‐replacing disturbance, suggesting that northern boreal P. abies stands eventually reach a shifting mosaic state maintained through small‐scale dynamics, but the time needed to reach this state appears to be lengthy; even 300 years after a forest fire stands showed changes in patterns of tree mortality that were related to the developmental stage of the stands.  相似文献   

16.
Fire is a common but poorly understood disturbance in the forested ecosystems of the Sierra Madre Occidental of Mexico. In this study, fire history, forest structure (density, species composition, regeneration, forest floor fuels, herbaceous cover, and age of pines), and the dendrochronological tree-ring record were measured at two unharvested 70-ha pine-oak sites near Ojito de Camellones, Durango, Mexico. Study sites were matched in slope, aspect, elevation, slope position, and plant composition, but they differed in fire history since 1945 and in forest structure. The long-term mean fire intervals (MFI) for all fires at both sites up to 1945 were similar—4.0 years at Site 1 (1744–1945) and 4.1 years at Site 2 (1815–1945)—but Site 1 burned only three times at the site margins since 1945 while Site 2 had 9 fires that scarred two or more sample trees and 15 total fires since 1945. Density measurements and age and diameter distributions showed that Site 1 was dominated by numerous, younger, smaller trees (mean total basal area of 23.4 m2/ha and 2730 trees/ha), while Site 2 had fewer, older, larger trees (basal area of 37.2 m2/ha, 647 trees/ha). Large, rotten fuel loading and duff depth were also greater at Site 1. Because regeneration averaged 6200 stems/ha at Site 1 and 8730 stems/ha at Site 2 (no significant difference), forest density at Site 2 was not limited by regeneration capability. The distributions of overstory diameter and pine age at both sites indicate that tree establishment occurred in pulses, with the largest cohort of trees establishing at Site 1 following the 1945 fire. The dense regeneration and heavy fuel accumulation at Site 1 are likely to support a switch from the former low-intensity fire regime to a high-intensity, stand-replacing fire across the site when the next suitable combination of ignition and weather occurs. Baseline quantitative information on fire frequency and ecological effects is essential to guide conservation or restoration of Madrean forests and may prove valuable for restoration of related fire-dependent ecosystems that have experienced extended fire exclusion elsewhere in North America.  相似文献   

17.
Abstract Despite its small size, New Caledonia has a flora which includes 43 endemic species of conifer. This study examines the stand structure of the New Caledonian conifer, Araucaria laubenfelsii Corbasson, a species which occurs on ukramafic soils as an emergent tree in rainforest and in an unusual structural association with maquis vegetation. Fire and cyclone blow-down are the primary disturbances in the maquis, but fire is infrequent in the rainforests which is evident from the low proportion of fire scarred trees. Preliminary results show abundant seedlings and saplings of A. laubenfelsii both in maquis and forest. Size class distributions of individuals suggest that the species is continuously regenerating in the maquis and immature forests. Variability in the stand structure in maquis communities reflects the probable patchy nature of disturbance from small-scale fires and blow-down from tropical cyclones. In mature forests, Nothofagus codonandra (Baillon) Steenis is the dominant canopy species and ‘other tree species’ are continuously regenerating, while the size class distributions and basal area of A. laubenfelsii suggest that there is, at present, limited regeneration of this species. Tree ring counts indicate that individuals in forest areas grow at a slower rate than those in maquis, but attain greater age, probably as a result of greater protection from fire.  相似文献   

18.
  1. The shift from shade‐intolerant species to shade‐tolerant mesophytic species in deciduous and mixed forests of the temperate zone is well described in studies from North America. This process has been termed mesophication and it has been linked to changes in fire regime. Fire suppression results in the cessation of establishment of heliophytic, fire‐dependent tree species such as oak (Quercus) and pine (Pinus). Due to the scarcity of old‐growth forests in Europe, data on long‐term compositional changes in mixed forests are very limited, as is the number of studies exploring whether fire played a role in shaping the dynamics.
  2. The aim of this study was to reconstruct tree succession in a 43‐ha natural mixed deciduous forest stand in Bia?owie?a Forest (BF), Poland using dendrochronological methods. In addition, the presence of aboveground fire legacies (charred and fire‐scarred deadwood) enabled the fire history reconstruction.
  3. Dendrochronological data revealed tree establishment (Quercus) back to the end of the 1500s and fires back to 1659. Under a regime of frequent fires until the end of the 18th century, only oak and pine regenerated, sporadically. A shift in the fire regime in the first half of the 19th century triggered oak and pine cohort regeneration, then gradually spruce (Picea) encroached. Under an increasingly dense canopy and less flammable conditions, regeneration of shade‐tolerant Carpinus, Tilia, and Acer began simultaneously with the cessation of oak and pine recruitment.
  4. Synthesis. The study reports the first evidence of mesophication in temperate Europe and proves that fire was involved in shaping the long‐term dynamics of mixed deciduous forest ecosystems. Our data suggest that fire exclusion promoted a gradual recruitment of fire‐sensitive, shade‐tolerant species that inhibited the regeneration of oak and pine in BF.
  相似文献   

19.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

20.
A fire history of a subalpine forest in south-eastern Wyoming, USA   总被引:4,自引:0,他引:4  
Fire history was determined for part of the Routt‐Medicine Bow National Forest in south‐eastern Wyoming using fire‐scar and age‐class analysis. A composite chronology of fire events was used to determine mean fire intervals (MFI) for pre‐EuroAmerican settlement, EuroAmerican settlement (before 1868 ad ), EuroAmerican settlement and modern (after 1912) periods, for all fires and stand‐replacing fires. Point‐scale MFI was also determined using grand means from individual trees. Stand‐replacing fires were reconstructed to determine fire rotation. MFI for the entire time period is 5.5–8.4 years. MFI decreased from 9.3 to 15.7–1.9–2.9 years from the preto post‐EuroAmerican settlement periods, and increased during the modern period. Point‐scale MFIs are longer than MFI of the study area. Fire rotation is 182 years for the total period of record, but increased from 127 years during the pre‐EuroAmerican settlement period to 170 years during the EuroAmerican settlement period. Fire rotation during the modern period dramatically increased to 27,035 years. Results suggest fire suppression may have influenced the fire regime. Comparison of regional fire events with fire events from this study indicate regional weather has an important influence on Rocky Mountain fire regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号