首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Sequence-specific cleavage of RNA using chimeric DNA splints and RNase H   总被引:5,自引:0,他引:5  
To cleave RNA molecules using E. coli RNase H in a site-specific manner, a short oligodeoxyribonucleotide (3-5 mer) linked with oligo(2'-O-methyl)ribonucleotide(s) was designed to be used as a DNA splint. Our model experiments with ribooligomer the splint duplexes (9 mers) and RNase H demonstrated that a tetradeoxynucleotide cluster seems to be sufficient for the enzyme recognition and the short DNA-containing splint directs a unique cleavage of RNA by RNase H. The method could be applied to longer ribooligonucleotide substrates. For example, when 3'm (GA)d(AGAA)m(GGU)5' was used as a hybridization strand, 32pUCUUUCUUCUUCCAGGAU was cleaved specifically between U11 and C12 to yield 32pUCUUUCUUCUU. This method will have a variety of applications for the study of RNA.  相似文献   

2.
3.
G F Gerard 《Biochemistry》1981,20(2):256-265
The mechanism of action of the ribonuclease H (RNase H) activity associated with Moloney murine leukemia virus RNA-directed DNA polymerase (RNase H I) and the two-subunit (alpha beta) form of avian myeloblastosis virus DNA polymerase were compared by utilizing the model substrate (A)n.(dT)n and polyacrylamide gel electrophoresis in 7 M urea to analyze digestion products. Examination on 25% polyacrylamide gels revealed that a larger proportion of the RNase H I oligonucleotide products generated by limited digestion of [3H](A)(1100).(dT)n were acid insoluble (15-26 nucleotides long) than acid soluble (less than 15 nucleotides long), while the opposite was true for products generated by alpha beta RNase H. RNase H I was capable of attacking RNA in RNA.DNA in the 5' to 3' and 3' to 5' directions, as demonstrated by the use of [3H,3'- or 5'-32P](A)(380).(dT)n and cellulose--[3H](A)n.(dT)n. Both RNase H I and alpha beta RNase H degraded [3H]-(A)n.(dT)n with a partially processive mechanism, based upon classical substrate competition experiments and analyses of the kinetics of degradation of [3H,3'- or 5'-32P](A)(380).(dT)n. That is, both enzymes remain bound to a RNA.DNA substrate through a finite number of hydrolytic events but dissociate before the RNA is completely degraded. Both RNase H I and alpha beta RNase H were capable of degrading [14C](A)n in [3H](C)n-[14C](A)n-[32P](dA)n.(dT)n, suggesting that retroviral RNase H is capable of removing the tRNA primer at the 5' terminus of minus strand DNA at the appropriate time during retroviral DNA synthesis in vitro.  相似文献   

4.
H Inoue  Y Hayase  S Iwai  E Ohtsuka 《FEBS letters》1987,215(2):327-330
We found that, in the presence of chimeric oligonucleotides containing complementary deoxyribo- and 2'-O-methylnucleosides, a nonaribonucleotide, [5'-32P]pACUUACCUG, was cleaved specifically upon treatment with RNase H. When 3'm(UG)d(AATG)m(GAC)5' was used as a hybridization strand, pACUUACCUG was cleaved between C6 and C7 to yield pACUUAC. In the presence of 3'm(UGAA)d(TGGA)m(C)5', the nonaribonucleotide was hydrolyzed, mainly between U8 and C9, to give pACUUACCU. This method will have a variety of applications in the field of RNA engineering.  相似文献   

5.
6.
Dodecadeoxyribonucleotides derivatized with 1,10-phenanthroline or psoralen were targeted to the point mutation (G<-->U) in codon 12 of the Ha-ras mRNA. DNA and RNA fragments, 27 nucleotides in length, and containing the complementary sequence of the 12mers, were used to compare the reactivity of the activatable dodecamers (cleavage of the target by the phenanthroline-12mer conjugates; photo-induced cross-linking of psoralen-12mer conjugates to the target). The reactivity of the RNA with the dodecamers was weaker than that of the DNA target. With psoralen-substituted oligonucleotides, it was possible to obtain complete discrimination between the mutated target (which contained a psoralen-reactive T(U) in the 12th codon) and the normal target (which contained G at the same position). When longer Ha-ras RNA fragments were used as targets (120 and 820 nucleotides), very little reactivity was observed. Part of the reactivity could be recovered by using 'helper' oligonucleotides that hybridized to adjacent sites on the substrate. A 'helper' chain length greater than 13 was required to improve the reactivity of dodecamers. However, the dodecanucleotides induced RNase H cleavage of the target RNA in the absence of 'helper' oligonucleotide. Therefore, in the absence of the RNase H enzyme, long oligonucleotides are needed to compete with the secondary structures of the mRNA. In contrast, formation of a ternary complex oligonucleotide-mRNA-RNase H led to RNAT cleavage with shorter oligonucleotides.  相似文献   

7.
RNA consisting 43 nucleotides bearing cap structure was synthesized (Figure). In the first place, 9 mer of a leader sequence with the cap structure (F-1) was synthesized by the phosphotriester method and followed by the capping reaction. Next, 32 mer of a cistron was divided into two fragments and each was synthesized by the phosphoramidite method. The 3'-end nucleotide of the RNA, a modified guanosine 5'-phosphate, was introduced to F-3 by use of P1-2',3'-O-methoxymethylene guanosine-5'-yl P2-adenosine-5'-yl diphosphate (A5' ppGmM) with T4 RNA ligase. The chemically synthesized RNA fragments were ligated with T4 RNA ligase to afford the desired RNA.  相似文献   

8.
The kinetic properties of Escherichia coli ribonuclease H (RNase H) were investigated using oligonucleotide substrates that consist of a short stretch of RNA, flanked on either side by DNA (DNA-RNA-DNA). In the presence of a complementary DNA strand, RNase H cleavage is restricted to the short ribonucleotide stretch of the DNA/RNA heteroduplex. The DNA-RNA-DNA substrate utilized for kinetic studies: (formula; see text) is cleaved at a single site (decreases) in the presence of a complementary DNA strand, to generate (dT)7-(rA)2-OH and p-(rA)2-(dT)9. Anion exchange high performance liquid chromatography was used to separate and quantitate the cleavage products. Under these conditions, RNase H-specific and nonspecific degradation products could be resolved. Kinetic parameters were measured under conditions of 100% hybrid formation (1.2-1.5 molar excess of complementary DNA, T much less than Tm). A linear double reciprocal plot was obtained, yielding a Km of 4.2 microM and a turnover number of 7.1 cleavages per s per RNase H monomer. The kinetic properties of substrate analogs containing varying lengths of RNA (n = 3-5) and 2'-O-methyl modifications were also investigated. Maximal turnover was observed with DNA-RNA-DNA substrates containing a minimum of four RNA residues. Kcat for the rA3 derivative was decreased by more than 100-fold. The Km appeared to decrease with the size of the internal RNA stretch (n = 3-5). No significant difference in turnover number of Km was observed when the flanking DNA was replaced with 2'-O-methyl RNA, suggesting that RNase H does not interact with this region of the heteroduplex.  相似文献   

9.
It is possible to enhance targeting of a DNA stem flank domain with a complementary DNA when it is conjugated with diphenyl ether at the branch point. The nucleoside 2'-deoxy-5-methyl- N 4-(4-phenoxyphenyl)cytidine (5) was synthesized from thymidineby tritylation, acetylation, amination via 2,4, 6-trimethylbenzenesulfonyl activation and subsequent de-protection. When a three-way junction is formed with a bulged nucleoside 5 at the branch point, the thermal melting temperature was increased by 9 degreesC when compared with wild-type DNA. When hybridizing to one of the flanks at a stem allowing coaxial stacking to the stem, modification at the branch point resulted in DeltaTm= 5.8 degreesC. For targeting to RNA the results were more ambiguous. RNase H activity was observed in some cases when an intercalating aromatic ring was addressed at the branch point. RNase H activity was observed even for a short 7mer ODN.  相似文献   

10.
11.
Antisense properties of duplex- and triplex-forming PNAs.   总被引:12,自引:3,他引:9       下载免费PDF全文
The potential of peptide nucleic acids (PNAs) as specific inhibitors of translation has been studied. PNAs with a mixed purine/pyrimidine sequence form duplexes, while homopyrimidine PNAs form (PNA)2/RNA triplexes with complementary sequences on RNA. We show here that neither of these PNA/RNA structures are substrates for RNase H. Translation experiments in cell-free extracts showed that a 15mer duplex-forming PNA blocked translation in a dose-dependent manner when the target was 5'-proximal to the AUG start codon on the RNA, whereas similar 10-, 15- or 20mer PNAs had no effect when targeted towards sequences in the coding region. Triplex-forming 10mer PNAs were efficient and specific antisense agents with a target overlapping the AUG start codon and caused arrest of ribosome elongation with a target positioned in the coding region of the mRNA. Furthermore, translation could be blocked with a 6mer bisPNA or with a clamp PNA, forming partly a triplex, partly a duplex, with its target sequence in the coding region of the mRNA.  相似文献   

12.
Ribonuclease H (RNase H) which recognizes and cleaves the RNA strand of mismatched RNA-DNA heteroduplexes can induce non-specific effects of antisense oligonucleotides. In a previous paper [Larrouy et al. (1992), Gene, 121, 189-194], we demonstrated that ODN1, a phosphodiester 15mer targeted to the AUG initiation region of alpha-globin mRNA, inhibited non-specifically beta-globin synthesis in wheat germ extract due to RNase H-mediated cleavage of beta-globin mRNA. Specificity was restored by using MP-ODN2, a methylphosphonate-phosphodiester sandwich analogue of ODN1, which limited RNase H activity on non-perfect hybrids. We report here that 2'-O-alkyl RNA-phosphodiester DNA sandwich analogues of ODN1, with the same phosphodiester window as MP-ODN2, are non-specific inhibitors of globin synthesis in wheat germ extract, whatever the substituent (methyl, allyl or butyl) on the 2'-OH. These sandwich oligomers induced the cleavage of non-target beta-globin RNA sites, similarly to the unmodified parent oligomer ODN1. This is likely due to the increased affinity of 2'-O-alkyl-ODN2 chimeric oligomers for both fully and partly complementary RNA, compared to MP-ODN2. In contrast, the fully modified 2'-O-methyl analogue of ODN1 was a very effective and highly specific antisense sequence. This was ascribed to its inability (i) to induce RNA cleavage by RNase H and (ii) to physically prevent the elongation of the polypeptide chain.  相似文献   

13.
Short oligonucleotides that can bind to adjacent sites on target mRNA sequences are designed and evaluated for their binding affinity and biological activity. Sequence-specific binding of short tandem oligonucleotides is compared with a full-length single oligonucleotide (21mer) that binds to the same target sequence. Two short oligonucleotides that bind without a base separation between their binding sites on the target bind cooperatively, while oligonucleotides that have a one or two base separation between the binding oligonucleotides do not. The binding affinity of the tandem oligonucleotides is improved by extending the ends of the two oligonucleotides with complementary sequences. These extended sequences form a duplex stem when both oligonucleotides bind to the target, resulting in a stable ternary complex. RNase H studies reveal that the cooperative oligonucleotides bind to the target RNA with sequence specificity. A short oligonucleotide (9mer) with one or two mismatches does not bind at the intended site, while longer oligonucleotides (21mers) with one or two mismatches still bind to the same site, as does a perfectly matched 21mer, and evoke RNase H activity. HIV-1 inhibition studies reveal an increase in activity of the cooperative oligonucleotide combinations as the length of the dimerization domain increases.  相似文献   

14.
15.
Procedures are described for identification of very infrequent in vivo 3'-ends of RNA. After purification by filter hybridization, the 3'-ends were labeled with [5'-32P] cytosine-3'-P in the RNA ligase reaction. Significantly fewer counts were incorporated in the ligase reaction than in the polynucleotide kinase reaction to label 5'-ends. The incorporation was increased by increasing the RNA concentration 5-10 fold by using only one round of filter hybridization. Non-specific RNA binding could be eliminated by RNase A treatment of the filter if a great excess of denatured heterologous DNA was immobilized along with the DNA probe. Significant amounts of DNA were released when eluting the hybrid RNA from such filters. DNA inhibited the ligase reaction, while its DNase products were even more inhibitory. Treatment of the DNase products with alkaline phosphatase completely eliminated the inhibition. We detected no spurious 5'- or 3'-ends generated in the hybrid RNA by RNase A activity used to reduce the non-specific RNA. Also, RNase T1 could be used in place of RNase A to eliminate non-specific RNA binding, but about 25 times more RNase T1 (microgram/microgram) was needed. We used partial alkali digestion to sequence 3'-ends. A major (one hit) and minor (two hit) set of products were produced which could be distinguished from each other by alkaline phosphatase treatment and homochromatography of the products.  相似文献   

16.
Mechanism of action of Moloney murine leukemia virus RNase H III.   总被引:2,自引:1,他引:1       下载免费PDF全文
The mechanism of action of Moloney murine leukemia virus RNase H III was studied, utilizing the model substrate (A)n. (dT)n and polyacrylamide gel electrophoresis to assay enzyme activity. Examination by electrophoresis on 15% polyacrylamide gels in 7 M urea and on DEAE-cellulose paper in 7 M urea revealed that, early in a reaction with [3H](A)n. (dT)n as substrate, RNase H III generated products ranging in length from 80 to 90 nucleotides to less than 10 nucleotides and that after extended incubation the limit digest products generated were 3 to 15 nucleotides long. Product oligomers were of the following configuration: [5'-P, 3'-OH](A)n. RNase H III was shown to be an exonuclease requiring free ends in its substrate for activity by the inability to degrade RNA inserted in Escherichia coli ColE1 plasmid DNA. The enzyme was capable of attacking RNA in RNA-DNA hybrids in the 5' to 3' and 3' to 5' directions as demonstrated by the use of [3H, 5'-32P](A)600. (dT)n and cellulose-[3H](A)n. (dT)n. Rnase H III was random in its mode of action because addition of excess unlabeled (A)n. (dT)n to an ongoing reaction with [3H](A)n. (dT)n as substrate resulted in immediate inhibition of enzyme activity.  相似文献   

17.
18.
Use of RNase H and primer extension to analyze RNA splicing.   总被引:5,自引:2,他引:3       下载免费PDF全文
A new method for the characterization of pre-mRNA splicing products is presented. In this method RNA molecules are hybridized to an oligodeoxynucleotide complementary to exon sequences upstream of a given 5' splice site, and the RNA strands of the resulting RNA:DNA hybrids are cleaved by RNase H. The cleaved RNAs are then subjected to primer extension using a 32P-labelled primer complementary to exon sequences downstream of an appropriate 3' splice site. Since the primer extension products all terminate at the site of RNase H cleavage, their lengths are indicative of the splice sites utilized. The method simplifies the study of the processing of complex pre-mRNAs by allowing the splicing events between any two exons to be analyzed. We have used this approach to characterize the RNAs generated by expression of the rat tropomyosin 1 (Tm 1) gene in various rat tissues and in cultured cells after transient transfection. The results demonstrate that this method is suitable for the analysis of alternative RNA processing in vivo.  相似文献   

19.
alpha and beta-anomeric d(G2T12G2) oligodeoxyribonucleotides were compared for their hybridization to rA12: the observed melting temperatures are 27 degrees C for beta-oligodeoxyribonucleotide/RNA hybrid and 53 degrees C for alpha-oligodeoxyribonucleotide/RNA. alpha-oligonucleotides with the four bases, complementary to natural mRNAs, were synthesized for the first time, labeled at their 5'-end with [32P] and used as probes in Northern blot experiments. In spite of these higher affinities for their target RNA's, they were unable to block translation of natural or synthetic mRNA's in rabbit reticulocyte lysate. We have studied the RNase H activity on model rA12:alpha- or beta-d(G2T12G2) hybrids or on mRNA:alpha- or beta-oligonucleotides hybrids. Specific hybridization protects RNA strech when using alpha-oligonucleotides but not beta-oligonucleotides. Thus, our results show the inability of RNase H to degrade RNA in alpha-oligodeoxyribonucleotides:RNA duplexes.  相似文献   

20.
通过RT-PCR技术扩增了甲肝病毒减毒株(H2)全长RNA,并对长片段RT-PCR扩增进行了方法学上的探讨.采用抗血清特异沉淀病毒;盐酸胍-酸性酚、氯仿一步法分离纯化病毒RNA,可得到高质量的RNA样品;以此RNA为模板,在无RNA酶的逆转录酶作用下,合成单链cDNA;继续以此cDNA为模板,利用32 mer寡核苷酸引物, 在Taq和Deep Vent DNA多聚酶的作用下进行PCR扩增,得到7.4 kb的扩增产物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号