首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis   总被引:30,自引:0,他引:30  
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and augments beta cell mass via activation of beta cell proliferation and islet neogenesis. We examined whether GLP-1 receptor signaling modifies the cellular susceptibility to apoptosis. Mice administered streptozotocin (STZ), an agent known to induce beta cell apoptosis, exhibit sustained improvement in glycemic control and increased levels of plasma insulin with concomitant administration of the GLP-1 agonist exendin-4 (Ex-4). Blood glucose remained significantly lower for weeks after cessation of exendin-4. STZ induced beta cell apoptosis, which was significantly reduced by co-administration of Ex-4. Conversely, mice with a targeted disruption of the GLP-1 receptor gene exhibited increased beta cell apoptosis after STZ administration. Exendin-4 directly reduced cytokine-induced apoptosis in purified rat beta cells exposed to interleukin 1beta, tumor necrosis fator alpha, and interferon gamma in vitro. Furthermore, Ex-4-treated BHK-GLP-1R cells exhibited significantly increased cell viability, reduced caspase activity, and decreased cleavage of beta-catenin after treatment with cycloheximide in vitro. These findings demonstrate that GLP-1 receptor signaling directly modifies the susceptibility to apoptotic injury, and provides a new potential mechanism linking GLP-1 receptor activation to preservation or enhancement of beta cell mass in vivo.  相似文献   

2.
In this study, we describe pancreatic cell ontogeny in renal capsule-transplanted embryonic stem cells (ES) after injury by streptozocin (STZ), showing pancreatogenesis in situ. Seven-week-old female BALB/c nude mice were treated with either a single 175- or 200-mg/kg STZ dose, a regimen that induces substantial beta-cell damage without overt hyperglycemia, and transplanted 24 hr later with 1 x 10(5) ES. Immunohistochemistry was performed on ES tissue at 15, 21, and 28 days after transplantation using antibodies against stage- and lineage-specific pancreatic markers. After 21 days, PDX-1+ pancreatic foci first appeared in the renal capsule and expressed both amylase and endocrine hormones (insulin, glucagon, and somatostatin). These foci increased in size by day 28 because of acinar and duct cell proliferation, whereas endocrine cells remained non-dividing, and made up 2-4% of ES tumor volume. PDX-1, Nkx6.1, Ngn3, and ISL-1 protein localization patterns in pancreatic foci were comparable with embryonic pancreatogenesis. A prevalence of multihormonal endocrine cells, a characteristic of adult beta-cell regeneration, indicated a possible divergence from embryonic islet cell development. The results indicate that beta-cell damage, without overt hyperglycemia, induces a process of fetal-like pancreatogenesis in renal capsule-transplanted ES, leading to beta-cell neogenesis.  相似文献   

3.
4.
5.
It remains controversial whether adult pancreatic ducts harbor facultative beta cell progenitors. Because neurogenin3 (Ngn3) is a key determinant of pancreatic endocrine cell neogenesis during embryogenesis, many studies have also relied upon Ngn3 expression as evidence of beta cell neogenesis in adults. Recently, however, Ngn3 as a marker of adult beta cell neogenesis has been called into question by reports of Ngn3 expression in fully-developed beta cells. Nevertheless, direct evidence as to whether Ngn3 activation in adult pancreatic duct cells may lead to duct-to-beta cell transdifferentiation is lacking. Here we studied two models of Ngn3 activation in adult pancreatic duct cells (low-dose alloxan treatment and pancreatic duct ligation) and lineage-traced Ngn3-activated duct cells by labeling them through intraductal infusion with a cell-tagging dye, CFDA-SE No dye-labeled beta cells were found during the follow-up in either model, suggesting that activation of Ngn3 in duct cells is not sufficient to direct their transdifferentiation into beta cells. Therefore, Ngn3 activation in duct cells is not a signature for adult beta cell neogenesis.  相似文献   

6.
Numerous studies have sought to identify diabetes mellitus treatment strategies with fewer side effects. Mesenchymal stem cell (MSC) therapy was previously considered as a promising therapy; however, it requires the cells to be trans-differentiated into cells of the pancreatic-endocrine lineage before transplantation. Previous studies have shown that PDX-1 expression can facilitate MSC differentiation into insulin-producing cells (IPCs), but the methods employed to date use viral or DNA-based tools to express PDX-1, with the associated risks of insertional mutation and immunogenicity. Thus, this study aimed to establish a new method to induce PDX-1 expression in MSCs by mRNA transfection. MSCs were isolated from human umbilical cord blood and expanded in vitro, with stemness confirmed by surface markers and multipotentiality. MSCs were transfected with PDX-1 mRNA by nucleofection and chemically induced to differentiate into IPCs (combinatorial group). This IPC differentiation was then compared with that of untransfected chemically induced cells (inducer group) and uninduced cells (control group). We found that PDX-1 mRNA transfection significantly improved the differentiation of MSCs into IPCs, with 8.3±2.5% IPCs in the combinatorial group, 3.21±2.11% in the inducer group and 0% in the control. Cells in the combinatorial group also strongly expressed several genes related to beta cells (Pdx-1, Ngn3, Nkx6.1 and insulin) and could produce C-peptide in the cytoplasm and insulin in the supernatant, which was dependent on the extracellular glucose concentration. These results indicate that PDX-1 mRNA may offer a promising approach to produce safe IPCs for clinical diabetes mellitus treatment.  相似文献   

7.
8.
Insulin-like growth factors (IGFs) are well known to play essential roles in enhancement of myogenic differentiation. In this report we showed that initial IGF-I signal activation but long-term IGF-1 signal termination are required for myogenic differentiation. L6 myoblast stably transfected with myc-epitope tagged insulin receptor substrate-1, myc-IRS-1 (L6-mIRS1) was unable to differentiate into myotubes, indicating that IRS-1 constitutive expression inhibited myogenesis. To elucidate the molecular mechanisms underlying myogenic inhibition, IGF-I signaling was examined. IGF-I treatment of control L6 cells for 18 h resulted in a marked suppression of IGF-I stimulated IRS-1 association with the p85 PI 3-kinase and suppression of activation of Akt that correlated with a down regulation of IRS-1 protein. L6-mIRS1 cells, in contrast, had sustained high levels of IRS-1 protein following 18 h of IGF-I treatment with persistent p85 PI 3-kinase association with IRS-1, Akt phosphorylation and phosphorylation of the downstream Akt substrate, Foxo1. Consistent with Foxo1 phosphorylation, Foxo1 protein was excluded from the nuclei in L6-mIRS1 cells, whereas Foxo1 was localized in the nuclei in control L6 cells during induction of differentiation. In addition, L6 cells stably expressing a dominant-interfering form of Foxo1, Δ256Foxo1 (L6-Δ256Foxo1) were unable to differentiate into myotubes. Together, these data demonstrate that IGF-I regulation of Foxo1 nuclear localization is essential for the myogenic program in L6 cells but that persistent activation of IGF-1 signaling pathways results in a negative feedback to prevent myogenesis.  相似文献   

9.
10.
11.
We have previously demonstrated that the phosphatidylinositol-3 kinase (PI3K)/Akt signaling is essential for pancreatic regeneration after partial pancreatectomy in mice. In the present study, we examined a role of PI3K/Akt signaling for pancreatic duct cell differentiation into insulin-producing cells. Epithelial-like cells were isolated from mouse pancreas and confirmed to be positive for a duct cell marker cytokeratin-20 (CK-20) but negative for insulin. Incubation of these cells with epidermal growth factor, exhibited a gradual increase in Akt phosphorylation and expression of pancreatic duodenal homeobox-1 (PDX-1), a regulator of β-cell differentiation. Three weeks later, these CK-20-positive cells were noted to express insulin as determined by immunofluorescent double-staining. Akt phosphorylation, PDX-1 expression, and insulin production were effectively reduced by blocking the PI3K/Akt pathway using siRNA to the p85α regulatory subunit of PI3K. Our results demonstrate that PI3K/Akt activation has a critical role for pancreatic duct cell differentiation into insulin-producing cells.  相似文献   

12.
Background aimsThe success of islet transplantation for diabetes depends on the availability of an adequate number of allogeneic or autologous islets. Postnatal stem cells are now considered for the generation of physiologically competent, insulin-producing cells. Our group showed earlier that it is possible to generate functional islets from human dental pulp stem cells by using a serum-free cocktail in a three-step protocol.MethodsWe compared the yield of generated islet-like cell clusters (ICCs) from stem cells from pulps of human exfoliated deciduous teeth (SHED) and dental pulp stem cells from permanent teeth (DPSCs). ICCs derived from SHED were packed in immuno-isolatory biocompatible macro-capsules and transplanted into streptozotocin (STZ)-induced diabetic mice. Non-diabetic and diabetic controls were transplanted with macro-capsules with or without islets.ResultsSHED were superior to DPSCs. STZ diabetic mice alone and mice transplanted with empty macro-capsules exhibited hyperglycemia throughout the experiment, whereas mice transplanted with macro-capsules containing ICCs were restored to normoglycemia within 3–4 weeks, which persisted for >60 days.ConclusionsOur results demonstrate for the first time that ICCs derived from SHED reverse STZ diabetes in mice without immunosuppression and offer an autologous and non-controversial source of human tissue that could be used for stem cell therapy in diabetes.  相似文献   

13.
Islet cell replacement is considered as the optimal treatment for type I diabetes. However, the availability of human pancreatic islets for transplantation is limited. Here, we show that human bone marrow-derived mesenchymal stem cells (hMSCs) could be induced to differentiate into functional insulin-producing cells by introduction of the pancreatic duodenal homeobox-1 (PDX-1). Recombinant adenoviral vector was used to deliver PDX-1 gene into hMSCs. After being infected with Ad-PDX-1, hMSCs were successfully induced to differentiate into insulin-secreting cells. The differentiated PDX-1+ hMSCs expressed multiple islet-cell genes including neurogenin3 (Ngn3), insulin, GK, Glut2, and glucagon, produced and released insulin/C-peptide in a weak glucose-regulated manner. After the differentiated PDX-1+ hMSCs were transplanted into STZ-induced diabetic mice, euglycemia can be obtained within 2 weeks and maintained for at least 42 days. These findings validate the hMSCs model system as a potential basis for enrichment of human beta cells or their precursors, and a possible source for cell replacement therapy in diabetes.  相似文献   

14.
Oh YS  Shin S  Lee YJ  Kim EH  Jun HS 《PloS one》2011,6(8):e23894

Background

Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation.

Methodology/Principal Findings

The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes.

Conclusions/Significance

These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells.  相似文献   

15.
16.
Park CH  Kang JS  Yoon EH  Shim JW  Suh-Kim H  Lee SH 《FEBS letters》2008,582(5):537-542
Roles of Nurr1 and neurogenin 2 (Ngn2) have been shown in midbrain dopamine (DA) neuron development. We present here rat and mouse species-dependent differences of Nurr1 and Ngn2 actions in DA neuron differentiation. Nurr1 exogene expression caused an efficient generation of tyrosine hydroxylase (TH)-positive DA cells from rat neural precursor cells (NPCs). Nurr1-induced TH+ cell yields were low and highly variable depending on the origins of NPCs in mouse cultures. Coexpression of Ngn2 repressed Nurr1-induced generation of TH+ cells in rat cultures. In clear contrast, a robust enhancement in Nurr1-induced DA cell yields was observed in mouse NPCs by Ngn2. These findings imply that DA neurons may develop differently in the midbrains of these two species.  相似文献   

17.
18.
The present study was designed to determine the antihyperglycemic function of ginsenoside Rh2 (GS-Rh2) by the regeneration of β-cells in mice that underwent 70% partial pancreatectomy (PPx), and to explore the mechanisms of GS-Rh2-induced β-cell proliferation. Adult C57BL/6J mice were subjected to PPx or a sham operation. Within 14 days post-PPx, mice that underwent PPx received GS-Rh2 (1?mg/kg body weight) or saline injection. GS-Rh2-treated mice exhibited an improved glycemia and glucose tolerance, an increased serum insulin levels, and β-cell hyperplasia. Meanwhile, increased β-cell proliferation percentages and decreased β-cell apoptosis percentages were also observed in GS-Rh2-treated mice. Further studies on the Akt/Foxo1/PDX-1 signaling pathway revealed that GS-Rh2 probably induced β-cell proliferation via activation of Akt and PDX-1 and inactivation of Foxo1. Studies on the abundance and activity of cell cycle proteins suggested that GS-Rh2-induced β-cell proliferation may ultimately be achieved through the regulation of cell cycle proteins. These findings demonstrate that GS-Rh2 administration could inhibit the tendency of apoptosis, and reverse the impaired β-cell growth potential by modulating Akt/Foxo1/PDX-1 signaling pathway and regulating cell cycle proteins. Induction of islet β-cell proliferation by GS-Rh2 suggests its therapeutic potential in the treatment of diabetes.  相似文献   

19.
20.
Melatonin, a pleiotropic hormone, has many regulatory effects on the circadian and seasonal rhythms, sleep and body immune system. It is used in the treatment of blind circadian rhythm sleep disorders, delayed sleep phase and insomnia. It is a potent antioxidant, anti-inflammatory, free radical scavenger, helpful in fighting infectious disease and cancer treatment. Decreased level of circulating melatonin was associated with an increased blood glucose level, losing the anti-oxidant protection and anti-inflammatory responses. We aimed to evaluate the effect of melatonin administration, in streptozotocin (STZ) induced diabetic rats, on blood glucose level and pancreatic beta (β) cells. Diabetes mellitus was induced in Sprague dawley male rats by the intravenous (i.v) injection of 65 mg/kg of STZ. Diabetic rats received melatonin at a dose of 10 mg/kg daily for 8 weeks by oral routes. The results showed, after 8 weeks of melatonin administration, a reduction in: 1- fasting blood glucose (FBG) and fructosamine (FTA) levels, 2- kidney and liver function parameters, 3- levels of serum triglycerides, cholesterol and LDL-C, 4- malondialdehyde (MDA), 5- NF-κB expression in treated group, 6- pro-inflammatory cytokines (IL-1β and IL-12) and immunoglobulins (IgA, IgE and IgG). Furthermore, an elevation in insulin secretion was noticed in melatonin treated group that indicated β cells regeneration. Therefore, melatonin administration, in STZ induced diabetic rats; reduced hyperglycemia, hyperlipidemia and oxidative stress. Melatonin acted as an anti-inflammatory agent that reduced pro-inflammatory cytokines (IL-1β and IL-12) and oxidative stress biomarkers (MDA). Melatonin succeeded in protecting β cells under severe inflammatory situations, which was apparent by the regeneration of islets of Langerhans in treated diabetic rats. Moreover, these results can open a gate for diabetes management and treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号