首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Invasive plants are often associated with greater productivity and soil nutrient availabilities, but whether invasive plants with dissimilar traits change decomposer communities and decomposition rates in consistent ways is little known. We compared decomposition rates and the fungal and bacterial communities associated with the litter of three problematic invaders in intermountain grasslands; cheatgrass (Bromus tectorum), spotted knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula), as well as the native bluebunch wheatgrass (Pseudoroegneria spicata). Shoot and root litter from each plant was placed in cheatgrass, spotted knapweed, and leafy spurge invasions as well as remnant native communities in a fully reciprocal design for 6 months to see whether decomposer communities were species‐specific, and whether litter decomposed fastest when placed in a community composed of its own species (referred to hereafter as home‐field advantage–HFA). Overall, litter from the two invasive forbs, spotted knapweed and leafy spurge, decomposed faster than the native and invasive grasses, regardless of the plant community of incubation. Thus, we found no evidence of HFA. T‐RFLP profiles indicated that both fungal and bacterial communities differed between roots and shoots and among plant species, and that fungal communities also differed among plant community types. Synthesis. These results show that litter from three common invaders to intermountain grasslands decomposes at different rates and cultures microbial communities that are species‐specific, widespread, and persistent through the dramatic shifts in plant communities associated with invasions.  相似文献   

2.
Overexploitation of forests to increase wood production has led to the replacement of native forest by large areas of monospecific tree plantations. In the present study, the effects of different monospecific tree cover plantations on density and composition of the indigenous soil microbial community are described. The experimental site of “Breuil-Chenue” in the Morvan (France) was the site of a comparison of a similar mineral soil under Norway spruce (Picea abies), Douglas fir (Pseudotuga menziesii), oak (Quercus sessiflora), and native forest [mixed stand dominated by oak and beech (Fagus sylvatica)]. Sampling was performed during winter (February) at three depths (0–5, 5–10, and 10–15 cm). Abundance of microorganisms was estimated via microbial biomass measurements, using the fumigation–extraction method. The genetic structure of microbial communities was investigated using the bacterial- and fungal-automated ribosomal intergenic spacer analysis (B-ARISA and F-ARISA, respectively) DNA fingerprint. Only small differences in microbial biomass were observed between tree species, the highest values being recorded under oak forest and the lowest under Douglas fir. B- and F-ARISA community profiles of the different tree covers clustered separately, but noticeable similarities were observed for soils under Douglas fir and oak. A significant stratification was revealed under each tree species by a decrease in microbial biomass with increasing depths and by distinct microbial communities for each soil layer. Differences in density and community composition according to tree species and depth were related to soil physicochemical characteristics and organic matter composition.  相似文献   

3.
树种选择是林下山参护育成败的关键,研究树叶凋落物对人参土壤养分、微生物群落结构组成的影响,旨在为林下山参护育选择适宜林地及农田栽参土壤改良提供科学依据和理论指导。通过盆栽试验,研究添加5.0 g色木槭Acer mono.Maxim.var.mono(A)、赤松Pinus densiflora Sieb.et Zucc.(B)、胡桃楸Juglans mandshurica Maxim.(C)、紫椴Tilia amurensis Rupr.(D)、蒙古栎Quercus mongolica Fisch.ex Ledeb.(E)树叶凋落物到土壤中,种植人参(Panax ginseng C.A.meyer)后研究土壤理化性质以及微生物群落结构的变化。结果表明:添加不同树叶处理后人参土壤性质发生改变,土壤p H值显著高于对照土壤5.91(P0.05),土壤全氮、速效氮磷、微生物碳氮在所有树叶处理中显著增加(P0.05),而土壤容重、速效钾和C/N在添加树叶处理中降低。18个土壤样品基因组,经16S和ITS1测序分别得到6064和1900个OUTs。其中细菌涵盖了42门、117纲、170目、213科、225属,真菌涵盖了24门、98纲、196目、330科、435属。不同树叶处理人参土壤细菌和真菌地位发生改变,细菌Proteobacteria是树叶分解的关键微生物,添加树叶后其多样性显著高于对照(P0.05)。而细菌Bacteroidetes和真菌Basidiomycota可能是区别阔叶林和针叶林树种的关键微生物,针叶林中含量显著低于阔叶林(P0.05),而真菌Ascomycota是针叶林分解的关键微生物。进一步从不同分类水平上得到特定树叶凋落物的特异细菌和真菌。典型相关分析(CDA)表明细菌Bacteroidetes、Chloroflexi、Actinobacteria及真菌Basidiomycota、Zygomycota、Chytridiomycota及Ascomycota的位置及多样性的改变均与土壤因子SMBN、TN、AP、SOC、AK、C/N、p H有关。综上所述,添加不同树叶后不仅提高土壤微生物量碳氮、改善土壤理化性质,同时改变微生物群落结构组成,不同树叶处理土壤理化性质不同导致人参土壤微生物组成的差异,本结果对于林下参选地和农田栽参土壤微生物改良具有理论指导作用。  相似文献   

4.
To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.  相似文献   

5.
To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate.  相似文献   

6.
Communities of archaea, bacteria, and fungi were examined in forest soils located in the Oregon Coast Range and the inland Cascade Mountains. Soils from replicated plots of Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) were characterized using fungal ITS (internal transcribed spacer region), eubacterial 16S rRNA, and archaeal 16S rRNA primers. Population size was measured with quantitative (Q)-PCR and composition was examined using length heterogeneity (LH)-PCR for fungal composition, terminal restriction fragment length (T-RFLP) profiles for bacterial and archaeal composition, and sequencing to identify dominant community members. Whereas fungal and archaeal composition varied between sites and dominant tree species, bacterial communities only varied between sites. The abundance of archaeal gene copy numbers was found to be greater in coastal compared to montane soils accounting for 11% of the prokaryotic community. Crenarchaea groups 1.1a-associated, 1.1b, 1.1c, and 1.1c-associated were putatively identified. A greater abundance of Crenarchaea 1.1b indicator fragments was found in acidic (pH 4) soils with low C:N ratios under red alder. In coastal soils, 25% of fungal sequences were putatively identified as basidiomycetous yeasts belonging to the genus Cryptococcus. Although the function of these yeasts in soil is not known, they could significantly contribute to decomposition processes in coastal soils distinguished by rapid tree growth, high N content, low pH, and frequent water-saturation events.  相似文献   

7.
为深入理解进入凋落物层生长的林下植物根系对森林凋落物分解的影响,本研究通过分解袋模拟试验探讨不同生物量多花黑麦草根系对中亚热带常绿阔叶林优势树种四川山矾凋落叶分解中微生物及酶活性的影响.结果表明: 在分解的240 d进程中,无根(N)、少根(L)、多根(M)3种处理下凋落叶表面细菌和真菌群落多样性指数均表现为多根>少根>无根处理,并且不同根生物量处理对真菌群落组成和数量的影响较细菌更为显著.随着多花黑麦草生长季结束,生长进入分解袋中的活根生物量逐渐减少,根系对真菌群落组成的影响减小.同一分解阶段,凋落叶表面酸性磷酸酶、β-葡萄糖苷酶、多酚氧化酶、过氧化物酶活性在有根条件下均高于无根条件.表明根系的生长能够改变微生物群落组成与数量,并提高微生物胞外酶活性,从而对分解产生促进作用.  相似文献   

8.
Both bacteria and fungi play critical roles in decomposition processes in many natural environments, yet only rarely have they been studied as an integrated community. We examined whether physical associations exist between individual bacterial and fungal species that co-occur on decaying smooth cordgrass, Spartina alterniflora, in a south-eastern US salt marsh. Fungal-pervaded decaying Spartina was used as "bait" for potential bacterial associates. The bundles (infiltrated with one of three dominant fungal members of the decomposer assemblage, or an autoclaved control) were placed in a salt marsh and collected biweekly for 6 weeks during the first experiment (late summer 2002), and weekly for 3 weeks during the second experiment (early summer 2003). Terminal-restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes was used to track colonization by bacterial taxa in association with the established fungal species. T-RFLP analysis of 18S-to-28S internal transcribed spacer (ITS) regions was used to monitor changes in fungal communities once bundles had been placed in the field. Results from both years were nearly identical, and showed that invasion by fungi other than the bait species was slow, resulting in a virtual fungal monoculture for several weeks into the experiments. Surprisingly, bacterial communities were unaffected by the identity of the fungal bait. Regardless of the fungal species, and even in the absence of prior fungal colonization, bacterial 16S rRNA profiles were remarkably similar. These results suggest that few species-specific associations, either positive or negative, exist between bacterial and fungal members of the Spartina decomposer community during initial colonization.  相似文献   

9.
Despite the major role of Collembola in forest soil animal food webs, ecological and evolutionary determinants of their community composition are not well understood. We investigated abundance, community structure, life forms, and reproductive mode of Collembola in four different forest types (coniferous, young managed beech, old managed beech, and unmanaged beech forests) representing different management intensities. Forest types were replicated within three regions across Germany: the Schorfheide‐Chorin, the Hainich, and the Swabian Alb, differing in geology, altitude, and climate. To account for temporal variation, samples were taken twice with an interval of 3 years. To identify driving factors of Collembola community structure, we applied structural equation modeling, including an index of forest management intensity, abiotic and biotic factors such as pH, C‐to‐N ratio of leaf litter, microbial biomass, and fungal‐to‐bacterial ratio. Collembola abundance, biomass, and community composition differed markedly between years, with most pronounced differences in the Schorfheide, the region with the harshest climatic conditions. There, temporal fluctuations of parthenogenetic Collembola were significantly higher than in the other regions. In the year with the more favorable conditions, parthenogenetic species flourished, with their abundance depending mainly on abiotic, density‐independent factors. This is in line with the “Structured Resource Theory of Sexual Reproduction,” stating that parthenogenetic species are favored if density‐independent factors, such as desiccation, frost or flooding, prevail. In contrast, sexual species in the same year were mainly influenced by resource quality‐related factors such as the fungal‐to‐bacterial ratio and the C‐to‐N ratio of leaf litter. The influence of forest management intensity on abundances was low, indicating that disturbance through forest management plays a minor role. Accordingly, differences in community composition were more pronounced between regions than between different forest types, pointing to the importance of regional factors.  相似文献   

10.
Forest conversion influences soil organic carbon (SOC) decomposition through cascading effects on forest structure, soil properties, and soil microbial communities. However, interactive effects of these drivers and the key pathways that mediate forest SOC decomposition remain relatively unexplored. In this study, we compared relative importance of variables describing forest structure, soil properties, and soil microbial community on affecting SOC decomposition response to the conversion of a broadleaved Korean pine mixed forest into three other forests in the Changbai Mountains of China. We quantified SOC decomposition rate of these four forest types by measuring incubation soil respiration (SR). We then employed univariate regressions to quantify effect size of individual factor on SOC decomposition rate. A structural equation model (SEM) was developed to analyze pathways, relative importance, and interactive effects of these factors on SR. Our results showed strong marginal effects of dissolved organic carbon (DOC) content, fungal Phospholipid fatty acids (PLFAs) to bacterial PLFAs ratio (F/B), broadleaved to conifer ratio (B/C), and total PLFAs content (TPC) on SR. Measured SOC decomposition rate was most closely related to F/B, which was in turn influenced primarily by soil C/N ratio and fraction of non-oxidized carbon (NOC%). Our study identified “Aboveground forest composition → SOC chemistry → Soil microbial composition → SOC decomposition” as the key pathway by which forest conversion affected SOC decomposition. This research work highlights the critical role of soil microbial community composition in altering SOC decomposition response to forest conversion.  相似文献   

11.
Coarse woody debris supports large numbers of saproxylic fungal species. However, most of the current knowledge comes from Scandinavia and studies relating the effect of stand or log characteristics on the diversity and composition of decomposer fungi have not been conducted in Northeastern Canada. Logs from five tree species were sampled along a decomposition gradient in nine stands representing three successional stages of the boreal mixed forest of Northwestern Quebec, Canada. Using a molecular fingerprinting technique, we assessed fungal community Shannon–Weaver diversity index, richness, and composition. We used linear mixed models and multivariate analyses to link changes in fungal communities to log and stand characteristics. We found a total of 33 operational taxonomic units (OTUs) including an indicator species for balsam fir (similar to Athelia sp.) and one found only in aspen stands (similar to Calocera cornea). Spruce logs supported the highest fungal Shannon–Weaver diversity index and OTU number. Our results support the hypothesis that log species influences fungal richness and diversity. However, log decay class does not. Stand composition, volume of coarse woody debris, and log chemical composition were all involved in structuring fungal communities. Maintaining the diversity of wood-decomposing communities therefore requires the presence of dead wood from diverse log species.  相似文献   

12.
This paper tests whether individual trees in a mature forest stand influence the process of litter decomposition and the macroinvertebrate communities in the soil underneath their canopies, as a result of species-specific characteristics. A field decomposition experiment was performed in a mature forest stand of tropical montane cloud forest in Mexico. The areas under the canopies of Quercus laurina Humbl. & Bompl., Oreopanax xalapensis (Kunth) Decne. & Planchon and Beilschmedia ovalis (Blake) C. K. Allen trees were used as experimental units. The natural soil and litter macroinvertebrate communities were monitored and compared to the community that invaded decomposition boxes with reciprocally transplanted leaf litter. The abundances of four macroinvertebrate taxa in natural litter differed among tree species independently of season. No differences were found in the soil community. The response to experimental litter by macroinvertebrate taxa suggests that the production of a specific quality of litter is an important mechanism by which a tree influences the litter macroinvertebrate community that develops under its canopy. However, not all differences in community composition naturally found between tree species can be explained by differences in litter quality during the first year of decomposition. Differences in nutrient release that occur after the first year, and physical properties of litter also probably play an important role. Independently of the canopy tree, the initial chemical quality (N, P, Ca, Mg and lignin) of experimental litter largely determined the decomposition rate and nutrient dynamics of decomposing leaves. However, it was found that under O. xalapensis trees the breakdown of lignin from the litter produced by the same species of tree was particularly effective. This suggests that a feedback has developed between this tree species and the decomposer community prevailing under its canopy.  相似文献   

13.
开展川西亚高山相似土壤母质背景下天然次生林土壤微生物群落结构及其多样性探究,可加深次生林更新过程中土壤微生物群落结构变化的认知。选取川西米亚罗林区20世纪60年代采伐后经自然更新恢复形成的3种天然次生林(槭-桦阔叶林,ABB;桦-槭-冷杉针阔混交林,BAA;岷江冷杉林,AFF),分析林下表层(0-20 cm)土壤微生物群落结构变化及其影响因素,结果显示:(1)3种林型土壤细菌Chao1和Shannon指数均极显著高于真菌,但仅真菌群落的Shannon指数差异显著,表现为BAA > ABB > AFF;(2)细菌群落优势门主要为变形杆菌门、酸杆菌门、疣微菌门、拟杆菌门、绿弯菌门,相对丰度占比超过82%;真菌群落则为子囊菌门和担子菌门,占比超过85%,AFF担子菌门相对丰度最高而子囊菌门最低。(3) RDA分析显示,土壤pH和乔木物种多样性(Shannon指数)是影响微生物群落结构变化的主导因子;土壤养分元素对细菌群落影响不显著,真菌群落主要受TN、TP含量显著影响。总体上,林型间乔木层物种多样性、土壤酸碱度及其氮磷含量是导致微生物群落结构变化的关键因素。  相似文献   

14.
Microorganisms play a crucial role in the biological decomposition of plant litter in terrestrial ecosystems. Due to the permanently changing litter quality during decomposition, studies of both fungi and bacteria at a fine taxonomic resolution are required during the whole process. Here we investigated microbial community succession in decomposing leaf litter of temperate beech forest using pyrotag sequencing of the bacterial 16S and the fungal internal transcribed spacer (ITS) rRNA genes. Our results reveal that both communities underwent rapid changes. Proteobacteria, Actinobacteria and Bacteroidetes dominated over the entire study period, but their taxonomic composition and abundances changed markedly among sampling dates. The fungal community also changed dynamically as decomposition progressed, with ascomycete fungi being increasingly replaced by basidiomycetes. We found a consistent and highly significant correlation between bacterial richness and fungal richness (= 0.76, < 0.001) and community structure (RMantel = 0.85, < 0.001), providing evidence of coupled dynamics in the fungal and bacterial communities. A network analysis highlighted nonrandom co‐occurrences among bacterial and fungal taxa as well as a shift in the cross‐kingdom co‐occurrence pattern of their communities from the early to the later stages of decomposition. During this process, macronutrients, micronutrients, C:N ratio and pH were significantly correlated with the fungal and bacterial communities, while bacterial richness positively correlated with three hydrolytic enzymes important for C, N and P acquisition. Overall, we provide evidence that the complex litter decay is the result of a dynamic cross‐kingdom functional succession.  相似文献   

15.
Introduced animals can indirectly affect decomposers through trophic cascades and habitat modifications, but whether their effects are strong enough to influence both the structure and function of decomposer communities remains unclear. We conducted an experiment on rat‐invaded and rat‐free islands off the coast of New Zealand to determine whether introduced rats affected the structure and function of wood‐decomposing fungi. Gamma‐irradiated branch segments from a single tree were placed on the forest floor on nine rat‐invaded and nine rat‐free islands, and fungal community structure and wood decomposition rates measured after two years of in situ decomposition. We found significant differences in fungal community structure in the wood between rat‐invaded and rat‐free islands. Furthermore, there was a significant correlation between fungal community structure and wood decomposition rate on rat‐free islands but not on rat‐invaded islands, because of decreased variability in decomposition rates on invaded islands. Despite these differences between rat‐free and rat‐invaded islands, mean decomposition rates were indistinguishable between the two sets of islands. These results suggest that there may be a great deal of functional redundancy in fungal communities and that removing rats from islands could reverse the rat‐induced changes that we observed in the relationship between the structure and function of decomposer communities.  相似文献   

16.
Foliar fungal species are diverse and colonize all plants, though whether forest tree species composition influences the distribution of these fungal communities remains unclear. Fungal communities include quiescent taxa and the functionally important and metabolically active taxa that respond to changes in the environment. To determine fungal community shifts along a tree species diversity gradient, needles of Norway spruce were sampled from trees from four mature European forests. We hypothesized that the fungal communities and specific fungal taxa would correlate with tree species diversity. Furthermore, the active fungal community, and not the total community, would shift along the tree diversity gradient. High-throughput sequencing showed significant differences in the fungal communities in the different forests, and in one forest, tree diversity effects were observed, though this was not a general phenomenon. Our study also suggests that studying the metabolically active community may not provide additional information about community composition or diversity.  相似文献   

17.
We assessed the impact of species composition and stand structure on the spatial variation of forest carbon density using data collected from a 4-ha plot in a subtropical forest in southern China. We found that 1) forest biomass carbon density significantly differed among communities, reflecting a significant effect of community structure and species composition on carbon accumulation; 2) soil organic carbon density increased whereas stand biomass carbon density decreased across communities, indicating that different mechanisms might account for the accumulation of stand biomass carbon and soil organic carbon in the subtropical forest; and 3) a small number of tree individuals of the medium- and large-diameter class contributed predominantly to biomass carbon accumulation in the community, whereas a large number of seedlings and saplings were responsible for a small proportion of the total forest carbon stock. These findings demonstrate that both biomass carbon and soil carbon density in the subtropical forest are sensitive to species composition and community structure, and that heterogeneity in species composition and stand structure should be taken into account to ensure accurate forest carbon accounting.  相似文献   

18.
Fungal diversity and community composition are mainly related to soil and vegetation factors. However, the relative contribution of the different drivers remains largely unexplored, especially in subtropical forest ecosystems. We studied the fungal diversity and community composition of soils sampled from 12 comparative study plots representing three forest age classes (Young: 10–40 yrs; Medium: 40–80 yrs; Old: ≥80 yrs) in Gutianshan National Nature Reserve in South-eastern China. Soil fungal communities were assessed employing ITS rDNA pyrotag sequencing. Members of Basidiomycota and Ascomycota dominated the fungal community, with 22 putative ectomycorrhizal fungal families, where Russulaceae and Thelephoraceae were the most abundant taxa. Analysis of similarity showed that the fungal community composition significantly differed among the three forest age classes. Forest age class, elevation of the study plots, and soil organic carbon (SOC) were the most important factors shaping the fungal community composition. We found a significant correlation between plant and fungal communities at different taxonomic and functional group levels, including a strong relationship between ectomycorrhizal fungal and non-ectomycorrhizal plant communities. Our results suggest that in subtropical forests, plant species community composition is the main driver of the soil fungal diversity and community composition.  相似文献   

19.
Fragmentation of natural habitats has become one of the main causes of the loss of biodiversity. To assess the effects of forest fragmentation on wood-inhabiting fungal community in a beech-dominated landscape, 15 differently shaped beech forest fragments were examined in northern Spain. This work covers all the wood-inhabiting macromycetes, including Basidiomycota and Ascomycota. A modelling approach was used to examine the predictability of the fungal community in a fragmented beech forest landscape. In the beech forest patches, a large proportion of edge, low tree densities and low levels of variety of woody debris caused a decrease of wood-inhabiting fungal richness. The fungal community composition proved complex to model due to its specific traits: it is made up of many species, most of which are rare, and each fungal group responds differently to environmental variables. Nevertheless, the dead wood availability and the exposure to light significantly affected the fungal community composition.  相似文献   

20.
Dynamics of bacterial and fungal communities on decaying salt marsh grass   总被引:4,自引:0,他引:4  
Both bacteria and fungi play critical roles in decomposition processes in many natural environments, yet only rarely have they been studied as an integrated microbial community. Here we describe the bacterial and fungal assemblages associated with two decomposition stages of Spartina alterniflora detritus in a productive southeastern U.S. salt marsh. 16S rRNA genes and 18S-to-28S internal transcribed spacer (ITS) regions were used to target the bacterial and ascomycete fungal communities, respectively, based on DNA sequence analysis of isolates and environmental clones and by using community fingerprinting based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Seven major bacterial taxa (six affiliated with the alpha-Proteobacteria and one with the Cytophagales) and four major fungal taxa were identified over five sample dates spanning 13 months. Fungal terminal restriction fragments (T-RFs) were informative at the species level; however, bacterial T-RFs frequently comprised a number of related genera. Amplicon abundances indicated that the salt marsh saprophyte communities have little-to-moderate variability spatially or with decomposition stage, but considerable variability temporally. However, the temporal variability could not be readily explained by either successional shifts or simple relationships with environmental factors. Significant correlations in abundance (both positive and negative) were found among dominant fungal and bacterial taxa that possibly indicate ecological interactions between decomposer organisms. Most associations involved one of four microbial taxa: two groups of bacteria affiliated with the alpha-Proteobacteria and two ascomycete fungi (Phaeosphaeria spartinicola and environmental isolate "4clt").  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号