首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The RCSB protein databank contains 266 crystal structures of green fluorescent proteins (GFP) and GFP-like proteins. This is the first systematic analysis of all the GFP-like structures in the pdb. We have used the pdb to examine the function of fluorescent proteins (FP) in nature, aspects of excited state proton transfer (ESPT) in FPs, deformation from planarity of the chromophore and chromophore maturation. The conclusions reached in this review are that (1) The lid residues are highly conserved, particularly those on the "top" of the β-barrel. They are important to the function of GFP-like proteins, perhaps in protecting the chromophore or in β-barrel formation. (2) The primary/ancestral function of GFP-like proteins may well be to aid in light induced electron transfer. (3) The structural prerequisites for light activated proton pumps exist in many structures and it's possible that like bioluminescence, proton pumps are secondary functions of GFP-like proteins. (4) In most GFP-like proteins the protein matrix exerts a significant strain on planar chromophores forcing most GFP-like proteins to adopt non-planar chromophores. These chromophoric deviations from planarity play an important role in determining the fluorescence quantum yield. (5) The chemospatial characteristics of the chromophore cavity determine the isomerization state of the chromophore. The cavities of highlighter proteins that can undergo cis/trans isomerization have chemospatial properties that are common to both cis and trans GFP-like proteins.  相似文献   

2.
The green fluorescent protein (avGFP), its variants, and the closely related GFP-like proteins are characterized structurally by a cyclic tri-peptide chromophore located centrally within a conserved beta-can fold. Traditionally, these GFP family members have been isolated from the Cnidaria although recently, distantly related GFP-like proteins from the Bilateria, a sister group of the Cnidaria have been described, although no representative structure from this phylum has been reported to date. We have determined to 2.1A resolution the crystal structure of copGFP, a representative GFP-like protein from a copepod, a member of the Bilateria. The structure of copGFP revealed that, despite sharing only 19% sequence identity with GFP, the tri-peptide chromophore (Gly57-Tyr58-Gly59) of copGFP adopted a cis coplanar conformation within the conserved beta-can fold. However, the immediate environment surrounding the chromophore of copGFP was markedly atypical when compared to other members of the GFP-superfamily, with a large network of bulky residues observed to surround the chromophore. Arg87 and Glu222 (GFP numbering 96 and 222), the only two residues conserved between copGFP, GFP and GFP-like proteins are involved in autocatalytic genesis of the chromophore. Accordingly, the copGFP structure provides an alternative platform for the development of a new suite of fluorescent protein tools. Moreover, the structure suggests that the autocatalytic genesis of the chromophore is remarkably tolerant to a high degree of sequence and structural variation within the beta-can fold of the GFP superfamily.  相似文献   

3.
Green fluorescent protein (GFP) from the jellyfish Aequorea victoria, its GFP variants (Aequorea GFPs), and more recently the novel GFP-like proteins from Anthozoa have greatly advanced our technologies for fluorescently labeling cells, organelles, and proteins. It has been shown, however, that some GFP-like proteins have a tendency to oligomerize and aggregate. Transfection of GFP-like proteins into cultured mammalian cells results in bright punctate structures, which are thought to be cytosolic protein aggregates. In this study, we demonstrate that these structures are not cytosolic aggregates but lysosomes that have accumulated the GFP-like proteins. Our biochemical and immunocytochemical experiments have revealed that certain GFP-like proteins expressed in the cytosol enter lysosomes possibly by an autophagy-related mechanism, but retain their fluorescence because of resistance not only to acidity but also to lysosomal proteases.  相似文献   

4.
Pigments homologous to the green fluorescent protein (GFP) contribute up to approximately 14% of the soluble protein content of many anthozoans. Maintenance of such high tissue levels poses a severe energetic penalty to the animals if protein turnover is fast. To address this as yet unexplored issue, we established that the irreversible green-to-red conversion of the GFP-like pigments from the reef corals Montastrea cavernosa (mcavRFP) and Lobophyllia hemprichii (EosFP) is driven by violet-blue radiation in vivo and in situ. In the absence of photoconverting light, we subsequently tracked degradation of the red-converted forms of the two proteins in coral tissue using in vivo spectroscopy and immunochemical detection of the post-translational peptide backbone modification. The pigments displayed surprisingly slow decay rates, characterized by half-lives of approximately 20 days. The slow turnover of GFP-like proteins implies that the associated energetic costs for being colorful are comparatively low. Moreover, high in vivo stability makes GFP-like proteins suitable for functions requiring high pigment concentrations, such as photoprotection.  相似文献   

5.
We report an unsupervised structural motif discovery algorithm, FoldMiner, which is able to detect global and local motifs in a database of proteins without the need for multiple structure or sequence alignments and without relying on prior classification of proteins into families. Motifs, which are discovered from pairwise superpositions of a query structure to a database of targets, are described probabilistically in terms of the conservation of each secondary structure element's position and are used to improve detection of distant structural relationships. During each iteration of the algorithm, the motif is defined from the current set of homologs and is used both to recruit additional homologous structures and to discard false positives. FoldMiner thus achieves high specificity and sensitivity by distinguishing between homologous and nonhomologous structures by the regions of the query to which they align. We find that when two proteins of the same fold are aligned, highly conserved secondary structure elements in one protein tend to align to highly conserved elements in the second protein, suggesting that FoldMiner consistently identifies the same motif in members of a fold. Structural alignments are performed by an improved superposition algorithm, LOCK 2, which detects distant structural relationships by placing increased emphasis on the alignment of secondary structure elements. LOCK 2 obeys several properties essential in automated analysis of protein structure: It is symmetric, its alignments of secondary structure elements are transitive, its alignments of residues display a high degree of transitivity, and its scoring system is empirically found to behave as a metric.  相似文献   

6.
Most homologous pairs of proteins have no significant sequence similarity to each other and are not identified by direct sequence comparison or profile-based strategies. However, multiple sequence alignments of low similarity homologues typically reveal a limited number of positions that are well conserved despite diversity of function. It may be inferred that conservation at most of these positions is the result of the importance of the contribution of these amino acids to the folding and stability of the protein. As such, these amino acids and their relative positions may define a structural signature. We demonstrate that extraction of this fold template provides the basis for the sequence database to be searched for patterns consistent with the fold, enabling identification of homologs that are not recognized by global sequence analysis. The fold template method was developed to address the need for a tool that could comprehensively search the midnight and twilight zones of protein sequence similarity without reliance on global statistical significance. Manual implementations of the fold template method were performed on three folds--immunoglobulin, c-lectin and TIM barrel. Following proof of concept of the template method, an automated version of the approach was developed. This automated fold template method was used to develop fold templates for 10 of the more populated folds in the SCOP database. The fold template method developed three-dimensional structural motifs or signatures that were able to return a diverse collection of proteins, while maintaining a low false positive rate. Although the results of the manual fold template method were more comprehensive than the automated fold template method, the diversity of the results from the automated fold template method surpassed those of current methods that rely on statistical significance to infer evolutionary relationships among divergent proteins.  相似文献   

7.
Proteins homologous to Green Fluorescent Protein (GFP) are widely used as genetically encoded fluorescent labels. Many developments of this technology were spurred by discoveries of novel types of GFP-like proteins (FPs) in nature. Here we report two proteins displaying primary structures never before encountered in natural FPs: they consist of multiple GFP-like domains repeated within the same polypeptide chain. A two-domain green FP (abeGFP) and a four-domain orange-fluorescent FP (Ember) were isolated from the siphonophore Abylopsis eschscholtzii and an unidentified juvenile jellyfish (order Anthoathecata), respectively. Only the most evolutionary ancient domain of Ember is able to synthesize an orange-emitting chromophore (emission at 571 nm), while the other three are purely green (emission at 520 nm) and putatively serve to maintain the stability and solubility of the multidomain protein. When expressed individually, two of the green Ember domains form dimers and the third one exists as a monomer. The low propensity for oligomerization of these domains would simplify their adoption as in vivo labels. Our results reveal a previously unrecognized direction in which natural FPs have diversified, suggesting new avenues to look for FPs with novel and potentially useful features.  相似文献   

8.
A number of recently cloned chromoproteins homologous to the green fluorescent protein show a substantial bathochromic shift in absorption spectra. Compared with red fluorescent protein from Discosoma sp. (DsRed), mutants of these so-called far-red proteins exhibit a clear red shift in emission spectra as well. Here we report that a far-red chromoprotein from Goniopora tenuidens (gtCP) contains a chromophore of the same chemical structure as DsRed. Denaturation kinetics of both DsRed and gtCP under acidic conditions indicates that the red form of the chromophore (absorption maximum at 436 nm) converts to the GFP-like form (384 nm) by a one-stage reaction. Upon neutralization, the 436-nm form of gtCP, but not the 384-nm form, renaturates instantly, implying that the former includes a chromophore in its intact state. gtCP represents a single-chain protein and, upon harsh denaturing conditions, shows three major bands in SDS/PAGE, two of which apparently result from hydrolysis of an acylimine C=N bond. Instead of having absorption maxima at 384 nm and 450 nm, which are characteristic for a GFP-like chromophore, fragmented gtCP shows a different spectrum, which presumably corresponds to a 2-keto derivative of imidazolidinone. Mass spectra of the chromophore-containing peptide from gtCP reveal an additional loss of 2 Da relative to the GFP-like chromophore. Tandem mass spectrometry of the chromopeptide shows that an additional bond is dehydrogenated in gtCP at the same position as in DsRed. Altogether, these data suggest that gtCP belongs to the same subfamily as DsRed (in the classification of GFP-like proteins based on the chromophore structure type).  相似文献   

9.
Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a six-stranded β-barrel core, and this canonical cupin or “jelly roll” β-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six β-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin β-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active-site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative fingerprint motif for ADOs, or DUF1637 family members, is proposed. In ADOs, the conserved glutamate residue in cupin motif 1 is replaced by either glycine or valine. Both ADOs and CDOs appear to represent unique clades within the cupin superfamily.  相似文献   

10.
ABSTRACT: BACKGROUND: The detection of conserved residue clusters on a protein structure is one of the effective strategies for the prediction of functional protein regions. Various methods, such as Evolutionary Trace, have been developed based on this strategy. In such approaches, the conserved residues are identified through comparisons of homologous amino acid sequences. Therefore, the selection of homologous sequences is a critical step. It is empirically known that a certain degree of sequence divergence in the set of homologous sequences is required for the identification of conserved residues. However, the development of a method to select homologous sequences appropriate for the identification of conserved residues has not been sufficiently addressed. An objective and general method to select appropriate homologous sequences is desired for the efficient prediction of functional regions. RESULTS: We have developed a novel index to select the sequences appropriate for the identification of conserved residues, and implemented the index within our method to predict the functional regions of a protein. The implementation of the index improved the performance of the functional region prediction. The index represents the degree of conserved residue clustering on the tertiary structure of the protein. For this purpose, the structure and sequence information were integrated within the index by the application of spatial statistics. Spatial statistics is a field of statistics in which not only the attributes but also the geometrical coordinates of the data are considered simultaneously. Higher degrees of clustering generate larger index scores. We adopted the set of homologous sequences with the highest indexscore, under the assumption that the best prediction accuracy is obtained when the degree of clustering is the maximum. The set of sequences selected by the index led to higher functional region prediction performance than the sets of sequences selected by other sequence-based methods. CONCLUSIONS: Appropriate homologous sequences are selected automatically and objectively by the index. Such sequence selection improved the performance of functional region prediction. As far as we know, this is the first approach in which spatial statistics have been applied t o protein analyses. Such integration of structure and sequence information would be useful for other bioinformatics problems.  相似文献   

11.
Homologs of the green fluorescent protein (GFP), including the recently described GFP-like domains of certain extracellular matrix proteins in Bilaterian organisms, are remarkably similar at the protein structure level, yet they often perform totally unrelated functions, thereby warranting recognition as a superfamily. Here we describe diverse GFP-like proteins from previously undersampled and completely new sources, including hydromedusae and planktonic Copepoda. In hydromedusae, yellow and nonfluorescent purple proteins were found in addition to greens. Notably, the new yellow protein seems to follow exactly the same structural solution to achieving the yellow color of fluorescence as YFP, an engineered yellow-emitting mutant variant of GFP. The addition of these new sequences made it possible to resolve deep-level phylogenetic relationships within the superfamily. Fluorescence (most likely green) must have already existed in the common ancestor of Cnidaria and Bilateria, and therefore GFP-like proteins may be responsible for fluorescence and/or coloration in virtually any animal. At least 15 color diversification events can be inferred following the maximum parsimony principle in Cnidaria. Origination of red fluorescence and nonfluorescent purple-blue colors on several independent occasions provides a remarkable example of convergent evolution of complex features at the molecular level.  相似文献   

12.
Meng EC  Polacco BJ  Babbitt PC 《Proteins》2004,55(4):962-976
We show that three-dimensional signatures consisting of only a few functionally important residues can be diagnostic of membership in superfamilies of enzymes. Using the enolase superfamily as a model system, we demonstrate that such a signature, or template, can identify superfamily members in structural databases with high sensitivity and specificity. This is remarkable because superfamilies can be highly diverse, with members catalyzing many different overall reactions; the unifying principle can be a conserved partial reaction or chemical capability. Our definition of a superfamily thus hinges on the disposition of residues involved in a conserved function, rather than on fold similarity alone. A clear advantage of basing structure searches on such active site templates rather than on fold similarity is the specificity with which superfamilies with distinct functional characteristics can be identified within a large set of proteins with the same fold, such as the (beta/alpha)8 barrels. Preliminary results are presented for an additional group of enzymes with a different fold, the haloacid dehalogenase superfamily, suggesting that this approach may be generally useful for assigning reading frames of unknown function to specific superfamilies and thereby allowing inference of some of their functional properties.  相似文献   

13.
For many years it has been accepted that the sequence of a protein can specify its three-dimensional structure. However, there has been limited progress in explaining how the sequence dictates its fold and no attempt to do this computationally without the use of specific structural data has ever succeeded for any protein larger than 100 residues. We describe a method that can predict complex folds up to almost 200 residues using only basic principles that do not include any elements of sequence homology. The method does not simulate the folding chain but generates many thousands of models based on an idealized representation of structure. Each rough model is scored and the best are refined. On a set of five proteins, the correct fold score well and when tested on a set of larger proteins, the correct fold was ranked highest for some proteins more than 150 residues, with others being close topological variants. All other methods that approach this level of success rely on the use of templates or fragments of known structures. Our method is unique in using a database of ideal models based on general packing rules that, in spirit, is closer to an ab initio approach.  相似文献   

14.
The CATH database of protein structures contains approximately 18000 domains organized according to their (C)lass, (A)rchitecture, (T)opology and (H)omologous superfamily. Relationships between evolutionary related structures (homologues) within the database have been used to test the sensitivity of various sequence search methods in order to identify relatives in Genbank and other sequence databases. Subsequent application of the most sensitive and efficient algorithms, gapped blast and the profile based method, Position Specific Iterated Basic Local Alignment Tool (PSI-BLAST), could be used to assign structural data to between 22 and 36 % of microbial genomes in order to improve functional annotation and enhance understanding of biological mechanism. However, on a cautionary note, an analysis of functional conservation within fold groups and homologous superfamilies in the CATH database, revealed that whilst function was conserved in nearly 55% of enzyme families, function had diverged considerably, in some highly populated families. In these families, functional properties should be inherited far more cautiously and the probable effects of substitutions in key functional residues carefully assessed.  相似文献   

15.
Here we present the study of the chromophore structure of the purple chromoprotein from Condylactis gigantea. Tandem mass spectrometry and 1H and 13C NMR of the chromopeptide reveal that the protein contains a chromophore with a chemical structure identical to that of the red fluorescent protein from Discosoma sp. A single A63G substitution demonstrates that the nature of the first amino acid of the XYG chromophore-forming sequence is dispensable for the chromoprotein red shift development. It has been recently proposed that post-translational reactions at the acylimine, a chemical group that accounts for the red fluorescence, might be an additional source of spectral diversity of proteins homologous to the Aequorea victoria green fluorescent protein (GFP). We have examined the reactivity of the chromophore acylimine group within the C. gigantea purple chromoprotein. Like other proteins with the acylimine-modified chromophore, the purple chromoprotein suffers a hypsochromic spectral shift to the GFP-like absorbance (386 nm) upon mild denaturation. NMR analysis of the chromopeptide suggests this hypsochromic spectral shift is due to H2O addition across the C=N bond of the acylimine. However, unlike the red fluorescent protein from Discosoma sp., denatured under harsh conditions, the wild-type chromoprotein exhibits only slight fragmentation, which is induced by complete hydrolysis of the acylimine. A model suggesting the influence of the amino acid X side chain on protein fragmentation is presented.  相似文献   

16.

Background  

Members of the green fluorescent protein (GFP) family share sequence similarity and the 11-stranded β-barrel fold. Fluorescence or bright coloration, observed in many members of this family, is enabled by the intrinsic properties of the polypeptide chain itself, without the requirement for cofactors. Amino acid sequence of fluorescent proteins can be altered by genetic engineering to produce variants with different spectral properties, suitable for direct visualization of molecular and cellular processes. Naturally occurring GFP-like proteins include fluorescent proteins from cnidarians of the Hydrozoa and Anthozoa classes, and from copepods of the Pontellidae family, as well as non-fluorescent proteins from Anthozoa. Recently, an mRNA encoding a fluorescent GFP-like protein AmphiGFP, related to GFP from Pontellidae, has been isolated from the lancelet Branchiostoma floridae, a cephalochordate (Deheyn et al., Biol Bull, 2007 213:95).  相似文献   

17.
Protein-protein interactions play an essential role in the functioning of cell. The importance of charged residues and their diverse role in protein-protein interactions have been well studied using experimental and computational methods. Often, charged residues located in protein interaction interfaces are conserved across the families of homologous proteins and protein complexes. However, on a large scale, it has been recently shown that charged residues are significantly less conserved than other residue types in protein interaction interfaces. The goal of this work is to understand the role of charged residues in the protein interaction interfaces through their conservation patterns. Here, we propose a simple approach where the structural conservation of the charged residue pairs is analyzed among the pairs of homologous binary complexes. Specifically, we determine a large set of homologous interactions using an interaction interface similarity measure and catalog the basic types of conservation patterns among the charged residue pairs. We find an unexpected conservation pattern, which we call the correlated reappearance, occurring among the pairs of homologous interfaces more frequently than the fully conserved pairs of charged residues. Furthermore, the analysis of the conservation patterns across different superkingdoms as well as structural classes of proteins has revealed that the correlated reappearance of charged residues is by far the most prevalent conservation pattern, often occurring more frequently than the unconserved charged residues. We discuss a possible role that the new conservation pattern may play in the long-range electrostatic steering effect.  相似文献   

18.
The alpha/beta barrel fold is adopted by most enzymes performing a variety of catalytic reactions, but with very low sequence similarity. In order to understand the stabilizing interactions important in maintaining the alpha/beta barrel fold, we have identified residue clusters in a dataset of 36 alpha/beta barrel proteins that have less than 10% sequence identity within themselves. A graph theoretical algorithm is used to identify backbone clusters. This approach uses the global information of the nonbonded interaction in the alpha/beta barrel fold for the clustering procedure. The nonbonded interactions are represented mathematically in the form of an adjacency matrix. On diagonalizing the adjacency matrix, clusters and cluster centers are obtained from the highest eigenvalue and its corresponding vector components. Residue clusters are identified in the strand regions forming the beta barrel and are topologically conserved in all 36 proteins studied. The residues forming the cluster in each of the alpha/beta protein are also conserved among the sequences belonging to the same family. The cluster centers are found to occur in the middle of the strands or in the C-terminal of the strands. In most cases, the residues forming the clusters are part of the active site or are located close to the active site. The folding nucleus of the alpha/beta fold is predicted based on hydrophobicity index evaluation of residues and identification of cluster centers. The predicted nucleation sites are found to occur mostly in the middle of the strands. Proteins 2001;43:103-112.  相似文献   

19.
Knowledge of three dimensional structure is essential to understand the function of a protein. Although the overall fold is made from the whole details of its sequence, a small group of residues, often called as structural motifs, play a crucial role in determining the protein fold and its stability. Identification of such structural motifs requires sufficient number of sequence and structural homologs to define conservation and evolutionary information. Unfortunately, there are many structures in the protein structure databases have no homologous structures or sequences. In this work, we report an SVM method, SMpred, to identify structural motifs from single protein structure without using sequence and structural homologs. SMpred method was trained and tested using 132 proteins domains containing 581 motifs. SMpred method achieved 78.79% accuracy with 79.06% sensitivity and 78.53% specificity. The performance of SMpred was evaluated with MegaMotifBase using 188 proteins containing 1161 motifs. Out of 1161 motifs, SMpred correctly identified 1503 structural motifs reported in MegaMotifBase. Further, we showed that SMpred is useful approach for the length deviant superfamilies and single member superfamilies. This result suggests the usefulness of our approach for facilitating the identification of structural motifs in protein structure in the absence of sequence and structural homologs. The dataset and executable for the SMpred algorithm is available at http://www3.ntu.edu.sg/home/EPNSugan/index_files/SMpred.htm.  相似文献   

20.
Iyer LM  Koonin EV  Aravind L 《Proteins》2001,43(2):134-144
With a protein structure comparison, an iterative database search with sequence profiles, and a multiple-alignment analysis, we show that two domains with the helix-grip fold, the star-related lipid-transfer (START) domain of the MLN64 protein and the birch allergen, are homologous. They define a large, previously underappreciated superfamily that we call the START superfamily. In addition to the classical START domains that are primarily involved in eukaryotic signaling mediated by lipid binding and the birch antigen family that consists of plant proteins implicated in stress/pathogen response, the START superfamily includes bacterial polyketide cyclases/aromatases (e.g., TcmN and WhiE VI) and two families of previously uncharacterized proteins. The identification of this domain provides a structural prediction of an important class of enzymes involved in polyketide antibiotic synthesis and allows the prediction of their active site. It is predicted that all START domains contain a similar ligand-binding pocket. Modifications of this pocket determine the ligand-binding specificity and may also be the basis for at least two distinct enzymatic activities, those of a cyclase/aromatase and an RNase. Thus, the START domain superfamily is a rare case of the adaptation of a protein fold with a conserved ligand-binding mode for both a broad variety of catalytic activities and noncatalytic regulatory functions. Proteins 2001;43:134-144.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号