首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   6篇
  国内免费   1篇
  2019年   1篇
  2016年   1篇
  2015年   6篇
  2014年   1篇
  2013年   4篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
MicroRNA-181a binds to the 3′ untranslated region of messenger RNA (mRNA) for renin, a rate-limiting enzyme of the renin-angiotensin system. Our objective was to determine whether this molecular interaction translates into a clinically meaningful effect on blood pressure and whether circulating miR-181a is a measurable proxy of blood pressure. In 200 human kidneys from the TRANScriptome of renaL humAn TissuE (TRANSLATE) study, renal miR-181a was the sole negative predictor of renin mRNA and a strong correlate of circulating miR-181a. Elevated miR-181a levels correlated positively with systolic and diastolic blood pressure in TRANSLATE, and this association was independent of circulating renin. The association between serum miR-181a and systolic blood pressure was replicated in 199 subjects from the Genetic Regulation of Arterial Pressure of Humans In the Community (GRAPHIC) study. Renal immunohistochemistry and in situ hybridization showed that colocalization of miR-181a and renin was most prominent in collecting ducts where renin is not released into the systemic circulation. Analysis of 69 human kidneys characterized by RNA sequencing revealed that miR-181a was associated with downregulation of four mitochondrial pathways and upregulation of 41 signaling cascades of adaptive immunity and inflammation. We conclude that renal miR-181a has pleiotropic effects on pathways relevant to blood pressure regulation and that circulating levels of miR-181a are both a measurable proxy of renal miR-181a expression and a novel biochemical correlate of blood pressure.  相似文献   
2.
The purpose of this study was to investigate the effect of court size on physiological responses and physical performance of young elite basketball players. Twelve male basketball players (18.6 ± 0.5 years; 88.8 ± 14.5 kg; 192.6 ± 6.5 cm) from an under-19 team performed two small-sided games (matches) with different court areas (28x15 m and 28x9 m; 28x15 and 28x9 protocols). The number of players (3x3) was kept the same in each protocol. The players performed a repeated-sprint ability (RSA) test before and after each match. Blood lactate concentration was collected before (pre) and after (post) the matches, and the session rating of perceived exertion (session-RPE) was determined 30 minutes after the match. Best and mean time in the RSA test were not different between the 28x15 and the 28x9 match protocols (p > 0.05). A significant difference was observed for lactate concentration from pre- to post-match (p < 0.05) in both protocols (28x15 and 28x9); however, there was no significant interaction between protocols. A similar session-RPE mean score (28x15: 7.2 ± 1.4 and 28x9: 6.6 ± 1.4) was detected for both protocols (p > 0.05, ES=0.41). In summary, the results of the current study suggest that the different court areas induced similar responses. Although there was no significant difference in effort perception, players tended to perceive a greater effort in the larger court size.  相似文献   
3.
4.
The need for effective collaboration tools is growing as multidisciplinary proteome-wide projects and distributed research teams become more common. The resulting data is often quite disparate, stored in separate locations, and not contextually related. Collaborative Molecular Modeling Environment (C-ME) is an interactive community-based collaboration system that allows researchers to organize information, visualize data on a two-dimensional (2-D) or three-dimensional (3-D) basis, and share and manage that information with collaborators in real time. C-ME stores the information in industry-standard databases that are immediately accessible by appropriate permission within the computer network directory service or anonymously across the internet through the C-ME application or through a web browser. The system addresses two important aspects of collaboration: context and information management. C-ME allows a researcher to use a 3-D atomic structure model or a 2-D image as a contextual basis on which to attach and share annotations to specific atoms or molecules or to specific regions of a 2-D image. These annotations provide additional information about the atomic structure or image data that can then be evaluated, amended or added to by other project members.  相似文献   
5.
Genomics projects have resulted in a flood of sequence data. Functional annotation currently relies almost exclusively on inter-species sequence comparison and is restricted in cases of limited data from related species and widely divergent sequences with no known homologs. Here, we demonstrate that codon composition, a fusion of codon usage bias and amino acid composition signals, can accurately discriminate, in the absence of sequence homology information, cytoplasmic ribosomal protein genes from all other genes of known function in Saccharomyces cerevisiae, Escherichia coli and Mycobacterium tuberculosis using an implementation of support vector machines, SVM(light). Analysis of these codon composition signals is instructive in determining features that confer individuality to ribosomal protein genes. Each of the sets of positively charged, negatively charged and small hydrophobic residues, as well as codon bias, contribute to their distinctive codon composition profile. The representation of all these signals is sensitively detected, combined and augmented by the SVMs to perform an accurate classification. Of special mention is an obvious outlier, yeast gene RPL22B, highly homologous to RPL22A but employing very different codon usage, perhaps indicating a non-ribosomal function. Finally, we propose that codon composition be used in combination with other attributes in gene/protein classification by supervised machine learning algorithms.  相似文献   
6.
Increasing evidence implicates the interaction of the EphB4 receptor with its preferred ligand, ephrinB2, in pathological forms of angiogenesis and in tumorigenesis. To identify the molecular determinants of the unique specificity of EphB4 for ephrinB2, we determined the crystal structure of the ligand binding domain of EphB4 in complex with the extracellular domain of ephrinB2. This structural analysis suggested that one amino acid, Leu-95, plays a particularly important role in defining the structural features that confer the ligand selectivity of EphB4. Indeed, all other Eph receptors, which promiscuously bind many ephrins, have a conserved arginine at the position corresponding to Leu-95 of EphB4. We have also found that amino acid changes in the EphB4 ligand binding cavity, designed based on comparison with the crystal structure of the more promiscuous EphB2 receptor, yield EphB4 variants with altered binding affinity for ephrinB2 and an antagonistic peptide. Isothermal titration calorimetry experiments with an EphB4 Leu-95 to arginine mutant confirmed the importance of this amino acid in conferring high affinity binding to both ephrinB2 and the antagonistic peptide ligand. Isothermal titration calorimetry measurements also revealed an interesting thermodynamic discrepancy between ephrinB2 binding, which is an entropically driven process, and peptide binding, which is an enthalpically driven process. These results provide critical information on the EphB4*ephrinB2 protein interfaces and their mode of interaction, which will facilitate development of small molecule compounds inhibiting the EphB4*ephrinB2 interaction as novel cancer therapeutics.  相似文献   
7.
8.
Purpureotin, a novel di-dimeric C-type lectin-like protein (CLP) from Trimeresurus purpureomaculatus, was purified and sequenced. While its native molecular mass was determined to be 63kDa, purpureotin showed a single band of 30kDa on nonreducing SDS-PAGE and two polypeptide chains (16.0 and 14.5kDa) under reducing condition. These results were subsequently confirmed by mass spectrometric analyses. Based on these results, we postulate that purpureotin is a dimer of the alpha,beta-heterodimer which is held together by noncovalent interactions. Molecular modeling studies indicate that a dimer of alpha,beta-heterodimers can be formed where the alpha chains are held together by electrostatic charges and beta chains via hydrophobic interactions. Functionally, purpureotin induced platelet aggregation without any cofactor in a dose-dependent manner. However, the platelet aggregation effect was blocked by echicetin. Therefore, purpureotin is assumed to be a GPIb-binding protein which binds to the same or a closely related GPIb site on platelets as echicetin.  相似文献   
9.
Elevated CO2 enhances photosynthesis and growth of plants, but the enhancement is strongly influenced by the availability of nitrogen. In this article, we summarise our studies on plant responses to elevated CO2. The photosynthetic capacity of leaves depends not only on leaf nitrogen content but also on nitrogen partitioning within a leaf. In Polygonum cuspidatum, nitrogen partitioning among the photosynthetic components was not influenced by elevated CO2 but changed between seasons. Since the alteration in nitrogen partitioning resulted in different CO2-dependence of photosynthetic rates, enhancement of photosynthesis by elevated CO2 was greater in autumn than in summer. Leaf mass per unit area (LMA) increases in plants grown at elevated CO2. This increase was considered to have resulted from the accumulation of carbohydrates not used for plant growth. With a sensitive analysis of a growth model, however, we suggested that the increase in LMA is advantageous for growth at elevated CO2 by compensating for the reduction in leaf nitrogen concentration per unit mass. Enhancement of reproductive yield by elevated CO2 is often smaller than that expected from vegetative growth. In Xanthium canadense, elevated CO2 did not increase seed production, though the vegetative growth increased by 53%. As nitrogen concentration of seeds remained constant at different CO2 levels, we suggest that the availability of nitrogen limited seed production at elevated CO2 levels. We found that leaf area development of plant canopy was strongly constrained by the availability of nitrogen rather than by CO2. In a rice field cultivated at free-air CO2 enrichment, the leaf area index (LAI) increased with an increase in nitrogen availability but did not change with CO2 elevation. We determined optimal LAI to maximise canopy photosynthesis and demonstrated that enhancement of canopy photosynthesis by elevated CO2 was larger at high than at low nitrogen availability. We also studied competitive asymmetry among individuals in an even-aged, monospecific stand at elevated CO2. Light acquisition (acquired light per unit aboveground mass) and utilisation (photosynthesis per unit acquired light) were calculated for each individual in the stand. Elevated CO2 enhanced photosynthesis and growth of tall dominants, which reduced the light availability for shorter subordinates and consequently increased size inequality in the stand.  相似文献   
10.
The Eph receptor tyrosine kinases and their ligands, the ephrins, regulate numerous biological processes in developing and adult tissues and have been implicated in cancer progression and in pathological forms of angiogenesis. We report the crystal structure of the EphB4 receptor in complex with a highly specific antagonistic peptide at a resolution of 1.65 angstroms. The peptide is situated in a hydrophobic cleft of EphB4 corresponding to the cleft in EphB2 occupied by the ephrin-B2 G-H loop, consistent with its antagonistic properties. Structural analysis identifies several residues within the EphB4 binding cleft that likely determine the ligand specificity of this receptor, while isothermal titration calorimetry experiments with truncated forms of the peptide define the amino acid residues of the peptide that are critical for receptor binding. These studies reveal structural features that will aid drug discovery initiatives to develop EphB4 antagonists for therapeutic applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号