首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Excised soybean (Glycine max [L.] Merrill) cv Anoka leaf discs tend to remain green even after the corresponding intact leaves have turned yello on fruiting plants. We have found that explants which include a leaf along with a stem segment (below the node) and one or more pods (maintained on distilled H2O) show similar but accelerated leaf yellowing and abscission compared with intact plants. In podded explants excised at pre-podfill, the leaves begin to yellow after 16 days, whereas those excised at late podfill begin to yellow after only 6 days. Although stomatal resistances remain low during the first light period after excision, they subsequently increase to levels above those in leaves of intact plants. Explants taken at mid to late podfill with one or more pods per node behave like intact plants in that pod load does not affect the time lag to leaf yellowing. Explant leaf yellowing and abscission are delayed by removal of the pods or seeds or by incubation in complete mineral nutrient solution or in 4.6 micromolar zeatin. Like chorophyll breakdown, protein loss is accelerated in the explants, but minerals or especially zeatin can retard the loss. Pods on explants show rates and patterns of color change (green to yellow to brown) similar to those of pods on intact plants. These changes start earlier in explants on water than in intact plants, but they can be delayed by adding zeatin. Seed dry weight increased in explants, almost as much as in intact plants. Explants appear to be good analogs of the corresponding parts of the intact plant, and they should prove useful for analyzing pod development and mechanisms of foliar senescence. Moreover, our data suggest that the flux of minerals and cytokinin from the roots could influence foliar senescence in soybeans, but increased stomatal resistance does not seem to cause foliar senescence.  相似文献   

2.
Leaf senescence is a developmentally regulated process that contributes to nutrient redistribution during reproductive growth and finally leads to tissue death. Manipulating leaf senescence through breeding or genetic engineering may help to improve important agronomic traits, such as crop yield and the storage life of harvested organs. Here, we studied natural variations in the regulation of plant senescence among 16 Arabidopsis thaliana accessions. Chlorophyll content and the proportion of yellow leaves were used as indicator parameters to determine leaf and plant senescence respectively. Our study indicated significant genotype effects on the onset and development of senescence. We selected three late- and five early-senescence accessions for further physiological studies. The relationship between leaf and plant senescence was accession-dependent. There was a significant correlation between plant senescence and the total number of leaves, siliques and plant bolting age. We monitored expression of two senescence marker genes, SAG12 and WRKY53 , to evaluate progression of senescence. Our data revealed that chlorophyll content does not fully reflect leaf age, because even fully green leaves had already commenced senescence at the molecular level. Integrating senescence parameters, such as the proportion of senescent leaves, at the whole plant level provided a better indication of the molecular status of the plant than single leaf senescence parameters.  相似文献   

3.
Michael Böttger 《Planta》1970,93(3):205-213
Summary In extracts of Coleus rehneltianus shoots abscisic acid was identified by thin layer chromatography and by spectropolarimetry.Diffusates from the petiole of isolated leaves were tested in an abscission test. According to previous results (Part I) these experiments allow conclusions concerning the hormonal flux from the lamina.The next step was to separate the diffusates by paper chromatography. The relative amounts of IAA and ABA were estimated on the basis of a biological assay. Young leaves yield ten times as much IAA to an agar receptor as green adult leaves and twenty times as much as yellow senescent leaves. On the other hand young leaves do not transmit detectable amounts of ABA to the receptor. Diffusates from adult leaves contain only a small amount of ABA, whereas those of senescent leaves contain a considerable amount.Evidently the induction of leaf abscission is not effected by a strong decrease of the IAA content during the development of a young leaf into an adult leaf. One is lead to assume that the rapid increase of the ABA flux during senescence is responsible for the induction of the abscission process.

Zweiter Teil einer Dissertation des Fachbereiches Biologie der Universität Hamburg  相似文献   

4.
Red colouration is common in young and old leaves of broadleaf woody species. Assuming that leaf colours are adaptive, we examined, by comparing the colouration in young versus old leaves, the possibility that different selection agents may have operated on spring versus autumn leaf colouration. We observed spring versus autumn colouration in three very different woody floras (Finland, Japan and Israel) in order to allow for a broad ecological and evolutionary spectrum. The null hypothesis was that if the same selective agents operated in spring and autumn, it is expected that when spring leaves are red, they should always be red in autumn, and when spring leaves are green, they should be green or yellow in autumn. We found that green spring leaves are almost exclusively associated with yellow leaf colour at senescence in autumn. Species with red autumn leaves almost always have at least some red colouration in their spring leaves. However, about half of the species with red spring leaves have yellow autumn leaves. Brown autumn leaves were not common in the species we studied. As about half of the species with red spring leaves have yellow autumn leaves but not vice versa, we conclude that there are many cases in which the selecting agents for spring versus autumn leaf colour were not the same.  相似文献   

5.
Leaf Senescence and Abscisic Acid in Leaves of Field-grown Soybean   总被引:1,自引:0,他引:1       下载免费PDF全文
Leaf senescence in field-grown soybean (Merrill) as defined by the period after full expansion, was studied by measuring abscisic acid (ABA), total soluble protein, and chlorophyll in leaves through the later part of the growing season. ABA concentrations increased significantly at the end of the season when leaves had started to turn yellow, well after total soluble protein and chlorophyll had started to decline. The results indicate that events occurring before leaf yellowing are more significant in evaluating leaf senescence since the yellowing condition and rise in ABA are effects of changes in physiological activity beginning when leaves are still green.  相似文献   

6.
卷蛾分索赤眼蜂雌蜂的颜色偏好性   总被引:1,自引:0,他引:1  
为了确定卷蛾分索赤眼蜂Trichogrammatoidea bactrae Nagaraja 雌蜂的颜色偏好性, 在室内通过在培养皿底部黏贴彩纸的方法测定卷蛾分索赤眼蜂雌蜂对红、 黄、 黑、 紫、 绿、 白、 蓝7种颜色的行为趋性反应。结果表明, 卷蛾分索赤眼蜂雌蜂在红、 黄、 紫、 绿和蓝5种颜色上的滞留时间都极显著地高于对照(P<0.01), 在黑和白2种颜色上的滞留时间与对照没有显著差异(P>0.05); 对黄色的首次选择率极显著高于对照(P< 0.01), 对红、 紫、 绿和蓝色的首次选择率均显著高于对照(P<0.05), 对黑色和白色的首次选择率与对照没有显著差异。当雌蜂分别在黄与红、 紫、 绿和蓝两两颜色之间选择时, 雌蜂在黄色彩纸上的滞留时间显著长于其他4种颜色。当雌蜂对红、 紫、 绿、 蓝和黄色5种颜色一起选择时, 在首次选择率、 滞留次数上5种颜色间都没有明显差异(P>0.05); 但在红色和蓝色上的滞留时间显著长于紫色(P<0.05), 在这3种颜色上的滞留时间与在黄色和绿色上的滞留时间均无显著差异(P>0.05)。卷蛾分索赤眼蜂雌蜂在7种颜色卵卡上分别与透明纸(对照)上的米蛾卵的选择寄生时, 在黄色卵卡上的寄生卵量极显著多于对照(P<0.01), 黑色卵卡上的寄生卵量极显著少于对照(P<0.01), 其他5种颜色的卵卡上的寄生卵量与对照没有显著差异(P>0.05)。结果说明, 卷蛾分索赤眼蜂雌蜂对黄色最为偏好, 其次偏好红、 紫、 绿和蓝色, 较不喜好白色和黑色。  相似文献   

7.
结合民族植物学和药理学的研究方法,对西双版纳地区傣族、哈尼族和基诺族等3个少数民族民间利用番石榴(Psidium guajava)、余甘子(Phyllanthus emblica)和水柳(Homonoia riparia)的传统知识进行调查研究及体外抗菌活性实验。结果表明:番石榴和余甘子在村寨中较为常见,当地少数民族将其种植于庭院中,常作为果蔬食用,食用番石榴嫩叶可缓解拉肚子的症状,治疗腹痛、腹泻。水柳生长在水边,傣族会将其叶作为腌酸鱼的配料之一。根据文献记载,番石榴、余甘子和水柳的叶部位作为药使用时,常煎水外洗,治疗皮肤瘙痒。对这3种药用植物叶部位采用80%乙醇浸泡制备的提取物进行体外抗菌实验,结果显示番石榴、余甘子和水柳3种药用植物对金黄色葡萄球菌和大肠埃希菌均有较好的抑菌和杀菌活性,其最小抑菌浓度MIC在98~390 μg·mL 1之间,最小杀菌浓度MBC在98~781 μg·mL 1之间。番石榴和水柳叶对铜绿假单胞菌有一定抑菌和杀菌活性,其MIC和MBC范围均为6 250~12 500 μg·mL 1。由此可见,这3种药用植物的民间利用具有一定的合理性和药用开发价值。  相似文献   

8.
To determine the role of ethylene during tomato (Lycopersicon esculentum Mill. cv. Alisa Craig) leaf senescence, transgenic ACC oxidase antisense plants were analysed. Northern analysis of wild-type plants indicated that ACC oxidase mRNA accumulation normally begins in pre-senescent green leaves but was severely reduced in the antisense plants. Although the levels of ethylene evolved by wild-type and transgenic leaves increased during the progression of senescence, levels were extremely low in transgenic leaves. Leaf senescence, as assessed by colour change from green to yellow, was clearly delayed by 10–14 days in the antisense plants when compared with wild-type plants. Northern analysis of the photosynthesis-associated genes, cab and rbcS, indicated that levels of the corresponding mRNAs were higher in transgenic leaves which were not yet senescing compared with senescing wild-type leaves of exactly the same age. Northern analysis using probes for tomato fruit ripening-related genes expressed during leaf senescence indicated that once senescence was initiated the expression pattern of these mRNAs was similar in transgenic and wild-type leaves. In the antisense plants chlorophyll levels, photosynthetic capacity and chlorophyll fluorescence were higher when compared with senescing wild-type plants of the same age. Photosynthetic capacity and the quantum efficiency of photosystem II were maintained for longer in the transformed plants at values close to those observed in wild-type leaves prior to the visible onset of senescence. These results indicate that inhibiting ACC oxidase expression and ethylene synthesis results in delayed leaf senescence, rather than inducing a stay-green phenotype. Once senescence begins, it progresses normally. Onset of senescence is not, therefore, related to a critical level of ethylene. The correlation between higher levels prior to senescence and early onset, however, suggests that ethylene experienced by the plant may be a significant contributing factor in the timing of senescence.  相似文献   

9.
To determine the degree to which herbivory contributes to phenotypic variation in autumn phenology for deciduous trees, red maple (Acer rubrum) branches were subjected to low and high levels of simulated herbivory and surveyed at the end of the season to assess abscission and degree of autumn coloration. Overall, branches with simulated herbivory abscised ~7 % more leaves at each autumn survey date than did control branches within trees. While branches subjected to high levels of damage showed advanced phenology, abscission rates did not differ from those of undamaged branches within trees because heavy damage induced earlier leaf loss on adjacent branch nodes in this treatment. Damaged branches had greater proportions of leaf area colored than undamaged branches within trees, having twice the amount of leaf area colored at the onset of autumn and having ~16 % greater leaf area colored in late October when nearly all leaves were colored. When senescence was scored as the percent of all leaves abscised and/or colored, branches in both treatments reached peak senescence earlier than did control branches within trees: dates of 50 % senescence occurred 2.5 days earlier for low herbivory branches and 9.7 days earlier for branches with high levels of simulated damage. These advanced rates are of the same time length as reported delays in autumn senescence and advances in spring onset due to climate warming. Thus, results suggest that should insect damage increase as a consequence of climate change, it may offset a lengthening of leaf life spans in some tree species.  相似文献   

10.
In field trials of Phaseolus vulgaris large differences wereobserved between varieties in the rate at which the leaves abscised.Similar differences were found in the rate of decline of thechlorophyll content of excised leaf discs. A grafting experimentshowed that the differences in leaf abscission depended on thegenotype of the scion and on that of the rootstock. Scion andstock effects of each genotype were similar, and additive. Rootstock/scioncombinations which conferred enhanced leaf retention producedgreater yields of seed and of seed nitrogen. When shoots ofdelayed-senescence genotypes of P. vulgaris were held in waterthey produced more adventitious roots than did shoots of rapid-senescencegenotypes. This relationship between senescence pattern andadventitious rooting was also observed among varieties of Glycinemax, and between isogenic lines of G. max differing in the leafabscission alleles Ab/ab. These results are discussed in relationto current theories of leaf senescence, abscission, and theproduction of yield.  相似文献   

11.
Isolation,characterization, and mapping of the stay green mutant in rice   总被引:25,自引:0,他引:25  
Leaf color turns yellow during senescence due to the degradation of chlorophylls and photosynthetic proteins. A stay green mutant was isolated from the glutinous japonica rice Hwacheong-wx through N-methyl-N-nitrosourea mutagenesis. Leaves of the mutant remained green, while turning yellow in those of the wild-type rice during senescence. The stay green phenotype was controlled by a single recessive nuclear gene, tentatively symbolized as sgr(t). All the phenotypic characteristics of the mutant were the same as those of the wild-type lines except for the stay green trait. The leaf chlorophyll concentration of the mutant was similar to that of the wild-type before heading, but decreased steeply in the wild-type during grain filling, while very slowly in the mutant. However, no difference in photosynthetic activity was observed between the stay green mutant and the yellowing wild-type leaves, indicating that senescence is proceeding normally in the mutant leaves and that the mutation affects the rate of chlorophyll degradation during the leaf senescence. Using phenotypic and molecular markers, we mapped the sgr(t) locus to the long arm of chromosome 9 between RFLP markers RG662 and C985 at 1.8- and 2.1-cM intervals, respectively. Received: 29 April 2001 / Accepted: 17 July 2001  相似文献   

12.
Plant viruses use sieve elements in phloem as the route of long-distance movement and systemic infection in plants. Plants, in turn, deploy RNA silencing, R-gene mediated defence and other mechanisms to prevent phloem transport of viruses. Cell-to-cell movement of viruses from an initially infected leaf to stem and other parts of the plant could be another possibility for systemic invasion, but it is considered to be too slow. This idea is supported by observations made on viruses that are deficient in phloem loading. The leaf abscission zone forming at the base of the petiole may constitute a barrier that prevents viral cell-to-cell movement. The abscission zone and protective layer are difficult to localize in the petiole until the leaf reaches an advanced stage of senescence. Viruses tagged with the green fluorescent protein are helpful for localization and study of the developing abscission zone.  相似文献   

13.
We explored two mutually nonexclusive hypotheses on autumnal leaf colouration. The co-evolutionary hypothesis states that autumnal leaf colouration functions as a handicap signal to herbivorous insects, whereas the photoprotection hypothesis posits that plant pigments primarily protect the plant against cold-induced photoinhibition and enhance nutrient transfer. To contrast both hypotheses, we compared yellow and red leaf colouration in three groups of mountain ash (Sorbus aucuparia L.). Two montane groups of different age were characterised by low aphid numbers and low temperature, and a lowland group by high aphid numbers and high temperature. There were no consistent altitudinal differences in leaf colouration. Compared to young trees, adult trees developed fewer red but more yellow leaves at high altitude. In the lowland population, the development of red leaf colour was related to decreasing daytime temperature, whereas the appearance of yellow leaf colouration corresponded to the decreasing photoperiod. This is consistent with the photoprotection hypothesis. Individual differences in red and yellow leaf colouration were inversely correlated to the number of fruits, which might be interpreted as a trade-off between reproductive and protective commitment. Temperature effects explained variation in aphid numbers over time and leaf colouration explained aphid distribution on a given day. As predicted by the co-evolutionary hypothesis, strongly coloured individuals harboured fewer aphids than green or dull-coloured ones. Since decreasing temperature reduced the number of migrating aphids but induced red leaf colouration, these processes are not mutually fine-tuned, which likely restricts the potential for co-evolution between mountain ash and aphids.  相似文献   

14.
不同种源黄连木秋季色素含量与叶色参数的关系   总被引:2,自引:0,他引:2  
该研究以陕西汉中、河南林州、河北涉县和北京中国科学院植物研究所4个种源黄连木(Pistacia chinensis Bunge)的苗木为对象,用分光光度计和色差仪对其叶绿素、类胡萝卜素、花色素苷含量及叶色参数(L*、a*、b*)进行了测定分析,探讨不同种源苗木秋季叶色变化规律及差异,揭示黄连木叶色呈现与叶片色素含量之间的内在关联,为筛选适合城市绿化的优良黄连木种源提供依据。结果表明:(1)在秋季叶片转色期,随着时间的推移,4个种源黄连木叶片的叶绿素、类胡萝卜素和花色素苷含量的比例呈现不同的变化趋势,其中:河北种源的花色素苷含量较高,叶片呈现红色;陕西种源叶绿素含量较高,叶片呈现绿色的时间较长;河南、北京种源处于两者之间。(2)各个种源黄连木的叶色参数a*值(红/绿)均与花色素苷含量呈正相关关系,与叶绿素含量呈负相关关系,且相关系数均达到显著水平(P0.05),各个种源叶色参数L*值(光泽明亮度)也与叶绿素含量间表现出显著或极显著的正相关性。研究发现,河北种源黄连木秋季的叶色最红,陕西种源黄连木叶片呈现绿色的时间最长;色差仪的应用实现了叶色和各色素含量间量化的关系。  相似文献   

15.
Leaf senescence and abscission have been studied in the semi-parasitic plant mistletoe (Viscum album). Leaf senescence and abscission occur in the summer, when the metabolic activity of the host has reached its maximum. In contrast with their hosts, mistletoes selectively degrade only one major leaf protein during leaf senescence, the sulfur-rich viscotoxin, whereas most of the remaining leaf proteins are lost during abscission. The changes in viscotoxin content are paralleled by changes in the concentration of the corresponding mRNA. Shortly before the onset of leaf senescence, the mRNA for viscotoxin has disappeared from the leaves. The anticyclic timing of leaf senescence and the degradation of only one major leaf protein seems to reflect an adaptation of the parasite to its habitat.  相似文献   

16.
The development of castor bean ( Ricinus communis L. var. sanguineus) leaves from bud break to abscission was studied to determine whether senescence of phloem precedes or follows chlorophyll degradation in the course of natural ageing of leaves. The castor bean leaf blade took 20 days for full expansion and its average life span was 60 days. From the day of full expansion on it suffered a substantial loss in N, a small loss in C, K and P and a gain in Ca, Mg and S. The content of soluble sugars increased with time, paralleled by a decrease of photosynthetic activity. Starch accumulated shortly before chlorophyll breakdown. The amino acid level in the leaves decreased steadily together with nitrate reductase and glutamine synthetase activity. Reactive oxygen species increased and oxidation-protecting compounds decreased during the life span of the leaves. Shortly after full leaf expansion an increasing number of sieve plates showed strong callose depositions when visualized by aniline blue method. At day 40 only half of the sieve tubes appeared functional. Chlorophyll breakdown followed these processes with a time lag of approximately 10 days. The sieve tube sap of ageing leaves had the same sucrose concentrations as young leaves, whereas amino acid concentrations decreased. High levels of reduced ascorbic acid and glutathione together with increasing levels of glutaredoxin indicated oxidative strain during senescence. We speculate that the gradual increase of reactive oxygen species during ageing together with the import of calcium ions lead to the stimulation of callose synthesis in plasmodesmata and sieve plates with the consequence of inhibition of phloem transport leading to carbohydrate back-up in the leaf blade. The latter may finally induce chlorophyll breakdown and, at the end, leaf abscission at the petiole base. Thus phloem blockage would precede and may be causal for chlorophyll degradation in leaf senescence.  相似文献   

17.

Objectives

To identify parameters that can be used for the analysis of natural variation in leaf senescence of wheat; and to understand the association between the onset and progression of leaf senescence with N uptake and root traits.

Methods

Chlorophyll content and the proportion of yellow leaves were used as senescence indicators and their relation with other morphological and physiological traits were measured in contrasting early senescing (ES) and late senescing (LS) wheat lines.

Results

There were significant genotype effects on the onset and progress of senescence. The ES lines in which leaf senescence commenced early had significantly lower root biomass and N uptake than LS lines. The strong negative association between the extent of leaf senescence with root biomass and N uptake indicated that the poor root growth induced N limitation caused the early senescence of ES lines.

Conclusions

The leaf senescence development in ES lines was precocious and constitutive as the trait expressed even under optimal growth conditions suggesting they could be useful in understanding the genetic regulation of senescence under different abiotic stress situations. Accelerated leaf senescence in wheat could be a mechanism to compensate for limitations in the root system that tend to restrict nutrient uptake.  相似文献   

18.
用AAS方法测定了弥勒县相同生态条件下种植的27份有色稻和34份普通稻糙米4种矿质元素含量,并对有色米和普通米Fe、Zn、Cu和Mn含量进行了比较研究。结果表明,有色稻米4种矿质元素含量明显高于无色稻米,其差异均达显著水平,其含量高低依次为Zn>Fe>Cu>Mn;对黑、褐、红、黄、绿5种不同种皮颜色的稻米4种矿质元素含量进行比较研究,发现稻米Fe含量(mg/kg)依次为黑>绿>褐>红>黄,Zn含量(mg/kg)依次为绿>红>黑>褐>黄,Cu含量(mg/kg)依次为黑>褐>红>黄>绿,Mn含量(mg/kg)依次为褐>黑>红>黄>绿;并且Fe和Mn含量在不同颜色稻米间差异均达显著水平,与有色米种皮颜色密切相关,而Zn和Cu差异不显著,与有色米种皮颜色关系不大。黑米和褐米富Fe、Zn、Cu和Mn,绿米富Fe和Zn,红米富Zn和Cu,黄米4种矿质元素含量较低,Fe、Cu和Mn均低于普通稻米。  相似文献   

19.
金叶连翘不同冠层的成熟叶片呈现为不同颜色。以朝鲜连翘深绿色叶为对照,观察金叶连翘冠层上、中、下位叶色,测定其叶片大小和叶绿素a、叶绿素b、总叶绿素及类胡萝卜素含量,同时观察分析叶片横切面解剖结构,旨在阐明叶片色素含量和解剖结构对叶色的影响。研究表明:上层黄色、中层黄绿色、下层浅绿色,黄、黄绿、浅绿色叶总叶绿素含量分别是对照组的0.51%、4.44%和66.47%,均极显著低于对照(P <0.01),但黄绿叶的叶绿素a/b比值显著升高(P <0.05),黄、黄绿叶的总叶绿素/类胡萝卜素比值极显著降低(P <0.01)。黄、黄绿叶的叶绿体发育停滞于单片层时期,类囊体分化程度低,浅绿叶类囊基粒片层肿胀;黄叶细胞器降解,栅栏组织细胞形状难以辨别,黄绿叶上表皮细胞凸起。金叶连翘属于总叶绿素及叶绿素b合成减少型突变体,表现为叶绿素严重缺失,类胡萝卜素相对含量升高;其叶绿体发育停滞,类囊体结构异常,是金叶连翘叶片呈现不同颜色的主要因素,与其叶片解剖显微结构无关。  相似文献   

20.
Red (retro)-carotenoids accumulate in chloroplasts of Buxus sempervirens leaves during the process of winter leaf acclimation. As a result of their irregular presence, different leaf colour phenotypes can be found simultaneously in the same location. Five different colour phenotypes (green, brown, red, orange, and yellow), with a distinct pattern of pigment distribution and concentration, have been characterized. Leaf reddening due to the presence of anthocyanins or carotenoids, is a process frequently observed in plant species under photoinhibitory situations. Two main hypotheses have been proposed to explain the function of such colour change: antioxidative protection exerted by red-coloured molecules, and green light filtering. The potential photoprotective role of red (retro-) carotenoids as light filters was tested in Buxus sempervirens leaves. In shade leaves of this species the upper (adaxial) mesophyll of the lamina was replaced by the equivalent upper part of a different colour phenotype. These hybrid leaves were exposed to a photoinhibitory treatment in order to compare the photoprotective effect exerted by adaxial parts of phenotypes with a different proportion of red (retro)-carotenoids in the lower mesophyll of a shade leaf. The results indicated that the presence of red (retro)-carotenoids in the upper mesophyll did not increase photoprotection of the lower mesophyll when compared with chlorophyll, and the best protection was achieved by an upper green layer. This was due to the fact that the extent of photoinhibition was proportional to the amount of red light transmitted by the upper mesophyll and/or to the chlorophyll pool located above. These results do not exclude a protective function of carotenoids in the upper leaf layer, but imply that, at least under the conditions of this experiment, the accumulation of red pigments in the outer leaf layers does not increase photoprotection in the lower mesophyll.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号