首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Xylem within trees varies in its hydraulic efficiency and safety. Trees at the alpine timberline were expected to exhibit a hydraulic architecture protecting the leader shoot from winter embolism. Hydraulic and related anatomical parameters were compared as well as seasonal courses of winter embolism in leader shoots and twigs of Norway spruce trees growing at 2000 m. Leader shoots had a 1.4-fold higher specific hydraulic conductivity (ks) as well as a 4.9-fold higher leaf specific conductivity (kl) than side twigs. Vulnerability to drought-induced embolism was lower in leader shoots with a 50% loss of conductivity occurring at a water potential (Psi 50) 0.7 MPa lower than in twigs. Higher ks and kl were related to 1.2-fold wider tracheid diameters in leader shoots. Lower vulnerability corresponded to smaller pit dimensions but not to wood density. High ks and kl reflect the hydraulic dominance of the leader shoot, which is important for its water supply during summer. Low vulnerability protects the leader shoot from embolism during the winter season. In field measurements at the timberline during the winter of 2001/2002, conductivity losses of up to 56% were observed only in twigs while leader shoots showed little or no embolism. Results demonstrate that leader shoot xylem is both hydraulically efficient and safe.  相似文献   

2.
Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, leaf- and sapwood-specific hydraulic conductivity and gas exchange characteristics of leaves. We found evidence that a trade-off between xylem transport capacity and safety from freeze-thaw-induced embolism affects photosynthetic activity in overwintering evergreens. The mean hydraulically weighted xylem vessel diameter and sapwood-specific conductivity correlated with susceptibility to freeze-thaw-induced embolism. There was also a strong correlation of hydraulic supply and demand across species; interspecific differences in stomatal conductance and CO(2) assimilation rates were correlated linearly with sapwood- and leaf-specific hydraulic conductivity. Xylem vessel anatomy mediated an apparent trade-off between resistance to freeze-thaw-induced embolism and hydraulic and photosynthetic capacity during the winter. These results point to a new role for xylem functional traits in determining the degree to which species can maintain photosynthetic carbon gain despite freezing events and cold winter temperatures.  相似文献   

3.
Xylem embolism, the reduction of water flow by air-filled vessels, was measured in a stand of 5- to 8-year-old sugar maple (Acer saccharum Marsh.) saplings growing in a nursery bed in northwestern Vermont. Embolism was quantified as percentage loss in hydraulic conductivity of trunk and branch segments relative to maximum values obtained by removing air from vessels by repeated high pressure (173 kPa) perfusions. Ten segments per tree were cut from 6 trees for each of 11 measurement periods spaced at roughly monthly intervals from May 1986 to June 1987. During the 1986 growing season, embolism increased significantly from 11 to 31% in the larger branches and trunk (segment diameter #8805;0.5 cm), but remained at about 10% in twigs (segment diameter <0.5 cm). This was unexpected because the greatest water stess and thus potential for embolism occurs in twigs. During the winter, embolism increased throughout the trees and the trend with diameter was reversed; by February, small twigs were 84% embolized vs. 69% for larger branches and trunk. Dye perfusions showed that winter embolism in trunks was localized on the south side; this may have resulted from water loss by sublimation or evaporation in the absence of water uptake. Beginning in late March, embolism decreased throughout the trees to approximately 20% in June. This decrease was associated with positive xylem pressure of at least 16 kPa which may have originated in the roots, because weather conditions at the time were unfavorable for the generation of stem pressures characteristic of Acer species in early spring.  相似文献   

4.
 以同处于干旱区的塔里木河下游(铁干里克)和黑河下游(乌兰图格)断面为研究区, 比较了荒漠河岸林主要建群种胡杨(Populus euphratica)、柽柳(Tamarix spp.)、疏叶骆驼刺(Alhagi sparsifolia)和花花柴(Karelinia caspia)在长期遭受不同干旱胁迫下的根、枝条木质部导水力和栓塞化程度的变化特征, 并分析了木质部导水对干旱胁迫的响应及适应策略。结果表明: 1) 黑河下游荒漠河岸林植物的导水能力显著高于塔里木河下游, 其中柽柳、胡杨、疏叶骆驼刺和花花柴根木质部的初始比导率(Ks0)分别高11.97、6.74、7.10和3.73倍, 枝条的Ks0分别高9.48、3.65、2.07和1.88倍, 地下水埋深导致的干旱胁迫程度不同是诱发荒漠植物导水能力差异的根本原因; 2)柽柳耐干旱能力最强, 适应范围较宽, 而花花柴、疏叶骆驼刺的耐旱性相对较弱, 适生范围较窄, 这可能与植物的根系分布有关; 3)干旱胁迫较轻时, 枝条木质部是荒漠河岸林植物水分传输的主要阻力部位, 干旱胁迫严重时, 根木质部是限制植株水流的最大阻碍部位; 4)荒漠河岸林植物主要通过调节枝条木质部的水流阻力来适应干旱胁迫, 且其适应策略与干旱胁迫程度有关, 干旱胁迫轻时, 植物通过限制枝条木质部水流来协调整株植物的均匀生长; 干旱胁迫严重时, 植物通过牺牲劣势枝条、增强优势枝条水流来提高植株整体生存的机会。  相似文献   

5.
Functional relationships between wood density and measures of xylem hydraulic safety and efficiency are ambiguous, especially in wet tropical forests. In this meta-analysis, we move beyond wood density per se and identify relationships between xylem allocated to fibers, parenchyma, and vessels and measures of hydraulic safety and efficiency. We analyzed published data of xylem traits, hydraulic properties and measures of drought resistance from neotropical tree species retrieved from 346 sources. We found that xylem volume allocation to fiber walls increases embolism resistance, but at the expense of specific conductivity and sapwood capacitance. Xylem volume investment in fiber lumen increases capacitance, while investment in axial parenchyma is associated with higher specific conductivity. Dominant tree taxa from wet forests prioritize xylem allocation to axial parenchyma at the expense of fiber walls, resulting in a low embolism resistance for a given wood density and a high vulnerability to drought-induced mortality. We conclude that strong trade-offs between xylem allocation to fiber walls, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Moreover, the benefits of xylem allocation to axial parenchyma in wet tropical trees might not outweigh the consequential low embolism resistance under more frequent and severe droughts in a changing climate.  相似文献   

6.
 在两种水分供给(干旱胁迫和适宜水分,土壤含水量分别为田间持水量的30%~40%和70%~80%)下,研究了耐旱树种元宝枫(Acer truncatum)和 中生树种女贞(Ligustrum lucidum )木质部栓塞(以导水率(Percentage loss of hydraulic conductivity, PLC)损失程度衡量)对P素添加的 响应。结果发现,两个树种PLC的日变化均呈现出先上升后降低的规律,表明木质部栓塞的形成与恢复是植物体的一种平常事件;除适宜水分条 件的女贞外,P素可以显著提高元宝枫和遭受干旱胁迫时女贞的PLC;两种水分条件下,干旱胁迫时元宝枫木质部栓塞明显高于适宜水分供给时 。女贞的PLC在两种水分状况下无显著差异;树种间,干旱胁迫促进了元宝枫木质部的栓塞形成,明显高于同等水分条件下的女贞。该研究结果 证实了“木质部限流耐旱假设”。  相似文献   

7.
Three different methods for measuring xylem embolism due towater cavitation were compared—the acoustic method, thehydraulic method and the anatomical method. Young plants ofCeratonia siliqua L. were water stressed for 9, 16 and 23 d. Xylem cavitation was detected by counting ultrasound (100–300kHz) acoustic emissions (AE) from 1-year-old twigs (acousticmethod). Xylem embolism was detected by measuring the loss ofhydraulic conductivity of twigs of the same age (hydraulic method).The blockage of single xylem conduits was detected by perfusingSafranin into the xylem of 1-year-old twigs of stressed plantsand measuring the number and the diameters of non-conductingxylem conduits, under the microscope (anatomical method). It was noted that: (a) the number of AE and the loss of conductivityincreased with the water stress applied; (b) a linear relationseemed to exist between the number of AE and the loss of conductivity,suggesting that the AE counted could be only (or mainly) producedin the xylem conduits; (c) the vulnerability of the xylem conduitsto embolism was a direct function of their diameter; and (d)the measured loss of conductivity was of the same order of magnitudeas the theoretical one. The three methods gave fairly similar results. Nonetheless,they are not alternative to one another in that: (a) the acousticmethod allows continuous recordings to be made but does notprovide information about the actual damage suffered by plants;(b) the hydraulic method is very informative but destructive;and (c) the anatomical method is very useful both in phytogcographicaland in genetic improvement studies. Ceratonia siliqua L., Carob tree, water stress, xylem embolism, acoustic method, hydraulic method, anatomical method  相似文献   

8.
GULLO  M.A.LO. 《Annals of botany》1991,67(5):417-424
Three different methods for measuring xylem embolism due towater cavitation were compared—the acoustic method, thehydraulic method and the anatomical method. Young plants ofCeratonia siliqua L. were water stressed for 9, 16 and 23 d. Xylem cavitation was detected by counting ultrasound (100–300kHz) acoustic emissions (AE) from 1-year-old twigs (acousticmethod). Xylem embolism was detected by measuring the loss ofhydraulic conductivity of twigs of the same age (hydraulic method).The blockage of single xylem conduits was detected by perfusingSafranin into the xylem of 1-year-old twigs of stressed plantsand measuring the number and the diameters of non-conductingxylem conduits, under the microscope (anatomical method). It was noted that: (a) the number of AE and the loss of conductivityincreased with the water stress applied; (b) a linear relationseemed to exist between the number of AE and the loss of conductivity,suggesting that the AE counted could be only (or mainly) producedin the xylem conduits; (c) the vulnerability of the xylem conduitsto embolism was a direct function of their diameter; and (d)the measured loss of conductivity was of the same order of magnitudeas the theoretical one. The three methods gave fairly similar results. Nonetheless,they are not alternative to one another in that: (a) the acousticmethod allows continuous recordings to be made but does notprovide information about the actual damage suffered by plants;(b) the hydraulic method is very informative but destructive;and (c) the anatomical method is very useful both in phytogeographicaland in genetic improvement studies. Ceratonia siliqua L, Carob tree, water stress, xylem embolism, acoustic method, hydraulic method, anatomical method  相似文献   

9.
Vulnerability to water-stress-induced embolism and variation in the degree of native embolism were measured in lateral roots of four co-occurring neotropical savanna tree species. Root embolism varied diurnally and seasonally. Late in the dry season, loss of root xylem conductivity reached 80% in the afternoon when root water potential (psi root) was about -2.6 MPa, and recovered to 25-40% loss of conductivity in the morning when psi root was about -1.0 MPa. Daily variation in psi root decreased, and root xylem vulnerability and capacitance increased with rooting depth. However, all species experienced seasonal minimum psi root close to complete hydraulic failure independent of their rooting depth or resistance to embolism. Predawn psi root was lower than psi soil when psi soil was relatively high (> -0.7 MPa) but became less negative than psi soil, later in the dry season, consistent with a transition from a disequilibrium between plant and soil psi induced by nocturnal transpiration to one induced by hydraulic redistribution of water from deeper soil layers. Shallow longitudinal root incisions external to the xylem prevented reversal of embolism overnight, suggesting that root mechanical integrity was necessary for recovery, consistent with the hypothesis that if embolism is a function of tension, refilling may be a function of internal pressure imbalances. All species shared a common relationship in which maximum daily stomatal conductance declined linearly with increasing afternoon loss of root conductivity over the course of the dry season. Daily embolism and refilling in roots is a common occurrence and thus may be an inherent component of a hydraulic signaling mechanism enabling stomata to maintain the integrity of the hydraulic pipeline in long-lived structures such as stems.  相似文献   

10.
六种木本植物木质部栓塞化生理生态效应的研究   总被引:17,自引:3,他引:14  
对6个树种1年生枝木质部栓塞及水势进行了14个月的连续观测。测定结果表明,木质部栓塞化直接引起木质部导水率下降,从而对树木生长发育节律造成影响。对导水率的影响可通过脆弱曲线看出,6种落叶阔叶树的2类脆弱曲线模型建立:y=aeb/x和y=x^2/(a+bx^2)。通过模型求解,探讨和确定了参数a、b的生理生态学意义,并据此比较不同树种木质部栓塞脆弱性的大小,结果为沙棘>刺槐≥白榆>加杨>榛木>元宝枫  相似文献   

11.
Xylem recovery from embolism was studied in Laurus nobilis L. stems that were induced to cavitate by combining negative xylem pressure potentials (PX = ?1.1 MPa) with positive air pressures (PC) applied using a pressure collar. Xylem refilling was measured by recording the percentage loss of hydraulic conductance (PLC) with respect to the maximum 2 min, 20 min and 15 h after pressure release. Sodium orthovanadate (an inhibitor of many ATP‐ases) strongly inhibited xylem refilling while fusicoccin (a stimulator of the plasma membrane H+‐ATPase) promoted complete embolism reversal. So, the refilling process was interpreted to result from energy‐dependent mechanisms. Stem girdling induced progressively larger inhibition to refilling the nearer to the embolized stem segment phloem was removed. The starch content of wood parenchyma was estimated as percentages of ray and vasicentric cells with high starch content with respect to the total, before and after stem embolism was induced. A closely linear positive relationship was found to exist between recovery from PLC and starch hydrolysis. This, was especially evident in vasicentric cells. A mechanism for xylem refilling based upon starch to sugar conversion and transport into embolized conduits, assisted by phloem pressure‐driven radial mass flow is proposed.  相似文献   

12.
三个耐旱树种木质部栓塞化的脆弱性及其恢复能力   总被引:14,自引:2,他引:12  
植物在长期适应赖以生存的自然环境中 ,形成了一套最适宜自身生长发育的生理生态行为 ,采取各种方式来抵御或忍耐水分胁迫的影响。如通过具有深广而茂密的根系格局来保持水分吸收 ,通过气孔调节、角质层障碍作用和小的叶蒸发表面来减少水分散失 ,通过渗透调节和增加组织弹性来保持膨压 ,通过增强原生质耐脱水能力来免受伤害或少受伤害等等。植物遭受干旱危害时 ,首先出现表型反应的多是植物的叶片 ,因此 ,研究植物的耐旱机理多从叶入手 ,对根系类型、分布及根茎比在植物耐旱性方面也有不少报道[1,2 ],而对木质部在干旱适应性反应方面的研究…  相似文献   

13.
Xylem networks are vulnerable to the formation and spread of gas embolisms that reduce water transport. Embolisms spread through interconduit pits, but the three-dimensional (3D) complexity and scale of xylem networks means that the functional implications of intervessel connections are not well understood. Here, xylem networks of grapevine (Vitis vinifera L.) were reconstructed from 3D high-resolution X-ray micro-computed tomography (microCT) images. Xylem network performance was then modeled to simulate loss of hydraulic conductivity under increasingly negative xylem sap pressure simulating drought stress conditions. We also considered the sensitivity of xylem network performance to changes in key network parameters. We found that the mean pit area per intervessel connection was constant across 10 networks from three, 1.5-m stem segments, but short (0.5 cm) segments fail to capture complete network connectivity. Simulations showed that network organization imparted additional resistance to embolism spread beyond the air-seeding threshold of pit membranes. Xylem network vulnerability to embolism spread was most sensitive to variation in the number and location of vessels that were initially embolized and pit membrane vulnerability. Our results show that xylem network organization can increase stem resistance to embolism spread by 40% (0.66 MPa) and challenge the notion that a single embolism can spread rapidly throughout an entire xylem network.

A complete digital reconstruction of a grapevine xylem network reveals that network connectivity imparts greater resistance to drought-induced embolism spread than pit membrane properties suggest.  相似文献   

14.
Xylem hydraulic characteristics govern plant water transport, affecting both drought resistance and photosynthetic gas exchange. Therefore, they play critical roles in determining the adaptation of different species to environments with various water regimes. Here, we tested the hypothesis that variation in xylem traits associated with a trade-off between hydraulic efficiency and safety against drought-induced embolism contributes to niche differentiation of tree species along a sharp water availability gradient on the slope of a unique river valley located in a semi-humid area. We found that tree species showed clear niche differentiation with decreasing water availability from the bottom towards the top of the valley. Tree species occupying different positions, in terms of vertical distribution distance from the bottom of the valley, showed a strong trade-off between xylem water transport efficiency and safety, as evidenced by variations in xylem structural traits at both the tissue and pit levels. This optimized their xylem hydraulics in their respective water regimes. Thus, the trade-off between hydraulic efficiency and safety contributes to clear niche differentiation and, thereby, to the coexistence of tree species in the valley with heterogeneous water availability.  相似文献   

15.
 The mechanism of freeze stress-induced embolism in Fagus sylvatica L. branches was analyzed under controlled conditions. Excised branches were exposed to successive freeze-thaw cycles in temperature controlled chambers. Thermocouples were placed on the bark to detect sap freezing exotherms. The degree of xylem embolism was estimated after each cycle by the loss of hydraulic conductivity. After one freeze-thaw cycle the degree of embolism was found to decrease with xylem specific hydraulic conductivity, small apical shoots being more susceptible to embolism. Exotherms revealed that distal shoots were freezing first and exuded sap as a result of water expansion. The lower water content in apical shoots upon freezing probably induced higher sap tensions which promoted air bubble expansion and vessel cavitation preferentially near the apices. When the decrease in water content was experimentally prevented, embolism developed to a lesser extent. The higher vulnerability of shoot apices may protect the rest of the branch from winter damage. Received: 29 May 1998 / Accepted: 15 August 1998  相似文献   

16.
Xylem vessel structure changes as trees grow and mature. Age‐ and development‐related changes in xylem structure are likely related to changes in hydraulic function. We examined whether hydraulic function, including hydraulic conductivity and vulnerability to water‐stress‐induced xylem embolism, changed over the course of cambial development in the stems of 17 tree species. We compared current‐year growth of young (1–4 years), intermediate (2–7 years), and older (3–10 years) stems occurring in series along branches. Diffuse and ring porous species were examined, but nearly all species produced only diffuse porous xylem in the distal branches that were examined irrespective of their mature xylem porosity type. Vessel diameter and length increased with cambial age. Xylem became both more conductive and more cavitation resistant with cambial age. Ring porous species had longer and wider vessels and xylem that had higher conductivity and was more vulnerable to cavitation; however, these differences between porosity types were not present in young stem samples. Understanding plant hydraulic function and architecture requires the sampling of multiple‐aged tissues because plants may vary considerably in their xylem structural and functional traits throughout the plant body, even over relatively short distances and closely aged tissues.  相似文献   

17.
《植物生态学报》2016,40(8):834
To maintain long-distance water transport in woody plants is critical for their survival, growth and development. Water under tension is in a metastable state and prone to cavitation and embolism, which leads to loss of hydraulic conductance, reduced productivity, and eventually plant death. In face to water stress-induced cavitation, plants either reduce frequency of embolism occurrence through cavitation resistance with specialized anatomical struc- ture, or/and form a metabolically active embolism repair mechanism. For the xylem embolism and repair, however, there are controversies regarding the occurring frequency, conditions and underlying mechanisms. In this review paper, we first examined the process, temporal dynamics and frequency of xylem embolism and repair. Then, we summarized hypotheses for the mechanisms of the novel refilling in xylem embolism repair, including the osmotic hypothesis, the reverse osmotic hypothesis, the phloem-driven refilling hypothesis, and the phloem unloading hypothesis. We further compared differences in xylem embolism and repair between conifers and angiosperms tree species, and examined the trade-offs between cavitation resistance and xylem recovery performance. Finally, we proposed four priorities in future research in this field: (1) to improve measuring technology of xylem embolism; (2) to test hypotheses for the mechanisms of the novel refilling in xylem embolism repair and the signal triggering xylem refilling; (3) to explore species-specific trait differences related to xylem embolism and repair and their underlying trade-off relationships; and (4) to enhance studies on the relationship between the involvement of carbon metabolism and aquaporins expression in xylem embolism and repair.  相似文献   

18.
The occurrence of root pressure, the vulnerability of xylemvessels to drought-induced cavitation, and the seasonal changesin hydraulic conductivity due to embolism were studied in theculms of Rhipidocladum racemiflorum (Steud.) McClure, a tropicalvine-like bamboo from central Panama. Positive hydrostatic potentialsup to 120 kPa occurred only during the wet season when the transpirationrate of the plant was low, i.e. at night or during rain events.Although the xylem vessels were large and efficient for conductingwater, they were highly resistant to cavitation. Xylem waterpotentials lower than –4.5 MPa were required to induce50% loss of hydraulic conductivity in culms. The minimum waterpotential reached –3.75 MPa at the end of the 1993 dryseason, so loss of hydraulic conductivity due to embolism remained<10%. The species is adapted to drier habitats both by wayof a low vulnerability to xylem cavitation and by root pressuresin the wet season that could refill vessels that became embolizedduring a severe dry season. Key words: Rhipidocladum racemiflorum, root pressure, cavitation, embolism, water relations  相似文献   

19.
Recovery of hydraulic conductivity after the induction of embolisms was studied in woody stems of laurel (Laurus nobilis). Previous experiments confirming the recovery of hydraulic conductivity when xylem pressure potential was less than −1 MPa were repeated, and new experiments were done to investigate the changes in solute composition in xylem vessels during refilling. Xylem sap collected by perfusion of excised stem segments showed elevated levels of several ions during refilling. Stem segments were frozen in liquid N2 to view refilling vessels using cryoscanning electron microscopy. Vessels could be found in all three states of presumed refilling: (a) mostly water with a little air, (b) mostly air with a little water, or (c) water droplets extruding from vessel pits adjacent to living cells. Radiographic probe microanalysis of refilling vessels revealed nondetectable levels of dissolved solutes. Results are discussed in terms of proposed mechanisms of refilling in vessels while surrounding vessels were at a xylem pressure potential of less than −1 MPa. We have concluded that none of the existing paradigms explains the results.  相似文献   

20.
施水和钾素添加对元宝枫和女贞木质部栓塞的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过干旱胁迫处理(土壤含水量为田间持水量的30%~40%)和正常水分供给(土壤含水量为田间持水量的70%~80%)两种盆栽控制试验, 研究了耐旱树种元宝枫(Acer truncatum)和中生树种女贞(Ligustrum lucidum)枝条木质部栓塞(以导水率损失百分数(Percentage loss of hydraulic conductivity, PLC)衡量)和水势(Water potential, WP)对钾(K)素添加的响应。结果表明: 两个树种PLC的日变化均呈现先升后降的规律, 而WP呈现相反的变化趋势; 添加K素显著提高了两个树种的PLC, 除了干旱胁迫下的元宝枫, 其他树种和处理的PLC随K素含量的增加而增加; K素显著降低了干旱胁迫下元宝枫和女贞的WP,但对正常水分供给下两个树种的WP无显著影响; 元宝枫的平均PLC高于女贞, 平均WP低于女贞。以上结果表明, K素可能通过降低枝条的WP, 促进树种木质部栓塞的形成, 达到限制水分进一步丧失的目的。K素在调节气孔运动、渗透作用等方面的作用, 可能是树种木质部栓塞形成的诱 因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号