首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 207 毫秒
1.
p53 controls crucial stress responses that play a major role in preventing malignant transformation. Hence, inactivation of p53 is the single most common genetic defect in human cancer. With the recent discovery of two close structural homologs, p63 en p73, we are getting a broader view of a fascinating gene family that links developmental biology with tumor biology. While unique roles are apparent for each of these genes, intimate biochemical cross-talk among family members suggests a functional network that might influence many different aspects of individual gene action. The most interesting part of this family network derives from the fact that the p63 and p73 genes are based on the ‘two-genes-in-one’ idea, encoding both agonist and antagonist in the same open reading frame. In this review, we attempt to present an overview of the current status of this fast moving field.  相似文献   

2.
By causing cytoplasmic mislocation of p27 and p21, the Akt oncogenic kinase functionally inactivates these nuclear tumor suppressor proteins. Is cytoplasmic localization of p27 and p21 simply equivalent to loss of their function or are new functions acquired in the cytoplasm? Indeed, several lines of evidence suggest that cytoplasmic p27 and p21 may be oncoproteins with antiapoptotic activities.  相似文献   

3.
By causing cytoplasmic mislocation of p27 and p21, the Akt oncogenic kinase functionally inactivates these nuclear tumor suppressor proteins. Is cytoplasmic localization of p27 and p21 simply equivalent to loss of their function or are new functions acquired in the cytoplasm? Indeed, several lines of evidence suggest that cytoplasmic p27 and p21 may be oncoproteins with antiapoptotic activities.  相似文献   

4.
Aerobacter aerogenes and Bacillus subtilis accumulated p, p'-DDT and methoxychlor directly from water. Uptake of both (14)C-labeled organochlorine insecticides was rapid; 80 to 90% of the 24-h residues were reached within 30 min. Total cellular residues varied linearly with concentrations of DDT and methoxychlor in water ranging from 0.5 to 5.0 mug/liter. The residue magnification factors from water were between 1,400- to 4,300-fold, but were independent of insecticide concentrations in water. When the insecticide-exposed microbial cells were washed with pesticide-free water, DDT residues were 45% in A. aerogenes and 30% in B. subtilis, whereas the methoxychlor level decreased nearly 75% in both organisms. Subsequent washing did not further reduce the insecticide residue. Autoclave-killed bacteria also rapidly adsorbed DDT and methoxychlor from water and, in some instances, residues were higher than in the living cells. Molecular polarity and lipid solubility appear to influence the retention of the organochlorine insecticides by bacterial cells.  相似文献   

5.
p53 and its homolog p73 are responsible for guarding the genome and regulating cellular responses to genotoxic damage. However, life is never simple and in fact multiple isoforms of each gene exist which may have opposing functions. ΔNp73 is a truncated isoform of p73 which lacks the N-terminal transactivation domain and is up-regulated in a number of diverse primary tumour types. Although its exact cellular function is unclear, upregulation of ΔNp73 has been linked to various pro-tumour activities. Here we review the current literature surrounding this mysterious protein and reveal its potentially important functions in tumourigenesis and treatment resistance.  相似文献   

6.
Diabetic microangiopathy is often observed in diabetic patients, but there is little evidence regarding the relationship between post-prandial glycemia or insulinemia and the incidence of diabetic microangiopathy. In this study, to elucidate the relationship between post-prandial glycemia (or insulinemia) and diabetic microangiopathy, we performed a cross-sectional study of 232 subjects with type 2 diabetes mellitus who were not being treated with insulin injections. A multiple regression analysis showed that post-prandial hyperglycemia independently correlated with the incidence of diabetic retinopathy and neuropathy. Post-prandial hyperglycemia also correlated, although not independently, with the incidence of diabetic nephropathy. In addition, interestingly, post-prandial hypoinsulinemia independently correlated with the incidence of diabetic retinopathy, although not correlated with diabetic neuropathy or nephropathy. In conclusion, post-prandial hyperglycemia, rather than fasting glycemia or hemoglobin A1c levels, is an important predictor of the incidence of diabetic microangiopathy in Japanese type 2 diabetic patients.  相似文献   

7.
Growing evidence suggests involvement of the tumor necrosis factor (TNF)-α system in the pathophysiology of psychiatric disorders. Research into post-traumatic stress disorder (PTSD) has investigated serum levels of TNF-α, but not to date its soluble receptors sTNF-R p55 and sTNF-R p75. We examined serum levels of TNF-α, sTNF-R p55 and sTNF-R p75 in 135 male German soldiers 70 of whom had been deployed abroad and 65 in Germany only. Post-traumatic stress symptoms were measured using the Post-traumatic Stress Diagnostic Scale (PDS) and the Trier Inventory for the Assessment of Chronic Stress (TICS). Correlational analysis controlling for multiple testing, showed no significant Spearman rank correlations between PDS or TICS scores and serum levels of TNF-α, sTNF-R p55 or sTNF-R p75, either in the full sample or in the group of soldiers who had been deployed abroad. ANCOVAs showed no significant differences between soldiers with or without a PDS-derived diagnosis of PTSD, or between soldiers with or without deployment abroad, after controlling for age, smoking and body mass index (BMI). These results suggest that the TNF-α system, as reflected by TNF-α, sTNF-R p55 and sTNF-R p75 serum levels, does not play a major role in the pathophysiology and development of PTSD symptoms as measured by the PDS and the TICS. However, several methodological and contextual issues have to be considered.  相似文献   

8.
9.
The p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily, is required as a co-receptor for the Nogo receptor (NgR) to mediate the activity of myelin-associated inhibitors such as Nogo, MAG, and OMgp. p45/NRH2/PLAIDD is a p75 homologue and contains a death domain (DD). Here we report that p45 markedly interferes with the function of p75 as a co-receptor for NgR. P45 forms heterodimers with p75 and thereby blocks RhoA activation and inhibition of neurite outgrowth induced by myelin-associated inhibitors. p45 binds p75 through both its transmembrane (TM) domain and DD. To understand the underlying mechanisms, we have determined the three-dimensional NMR solution structure of the intracellular domain of p45 and characterized its interaction with p75. We have identified the residues involved in such interaction by NMR and co-immunoprecipitation. The DD of p45 binds the DD of p75 by electrostatic interactions. In addition, previous reports suggested that Cys257 in the p75 TM domain is required for signaling. We found that the interaction of the cysteine 58 of p45 with the cysteine 257 of p75 within the TM domain is necessary for p45–p75 heterodimerization. These results suggest a mechanism involving both the TM domain and the DD of p45 to regulate p75-mediated signaling.  相似文献   

10.
Peroxisome proliferator-activated receptor gamma (PPARγ) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effect of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPARγ protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPARγ ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPARγ ligands may have applications for the treatment of ovarian cancer.  相似文献   

11.
12.
Previous studies have described the role of p53 isoforms, including p53β and Δ133p53α, in the modulation of the activity of full-length p53, which regulates cell fate. In the context of influenza virus infection, an interplay between influenza viruses and p53 has been described, with p53 being involved in the antiviral response. However, the role of physiological p53 isoforms has never been explored in this context. Here, we demonstrate that p53 isoforms play a role in influenza A virus infection by using silencing and transient expression strategies in human lung epithelial cells. In addition, with the help of a panel of different influenza viruses from different subtypes, we also show that infection differentially regulates the expressions of p53β and Δ133p53α. Altogether, our results highlight the role of p53 isoforms in the viral cycle of influenza A viruses, with p53β and Δ133p53α acting as regulators of viral production in a p53-dependent manner.  相似文献   

13.
14.
Emerging data on cancer suggesting that target-based therapy is promising strategy in cancer treatment. PI3K-AKT pathway is extensively studied in many cancers; several inhibitors target this pathway in different levels. Recent finding on this pathway uncovered the therapeutic applications of PI3K-specific inhibitors; PI3K, AKT, and mTORC broad spectrum inhibitors. Noticeably, class I PI3K isoforms, p110γ and p110δ catalytic subunits have rational therapeutic application than other isoforms. Therefore, three classes of inhibitors: isoform-specific, dual-specific and broad spectrum were selected for molecular docking and dynamics. First, p110δ structure was modelled; active site was analyzed. Then, molecular docking of each class of inhibitors were studied; the docked complexes were further used in 1.2?ns molecular dynamics simulation to report the potency of each class of inhibitor. Remarkably, both the studies retained the similar kind of protein ligand interactions. GDC-0941, XL-147 (broad spectrum); TG100-115 (dual-specific); and AS-252424, PIK-294 (isoform-specific) were found to be potential inhibitors of p110γ and p110δ, respectively. In addition to that pharmacokinetic properties are within recommended ranges. Finally, molecular phylogeny revealed that p110γ and p110δ are evolutionarily divergent; they probably need separate strategies for drug development.  相似文献   

15.
The intricate regulation of cell survival and cell death is critical for the existence of both normal and transformed cells. Two factors central to these processes are p53 and NFκB, with both factors having ascribed roles in both promoting and repressing cell death. Not surprisingly, a number of studies have previously reported interplay between p53 and NFκB. The mechanistic basis behind these observations, however, is currently incomplete. We report here further insights into this interplay using a system where blockade of NFκB inhibits cell death from p53, but at the same time sensitizes cells to death by TNFα. We found in agreement with a recent report showing that NFκB is required for the efficient activation of the BH3-only protein Noxa by the p53 family member p73, that p53’s ability to induce Noxa is also impeded by inhibition of NFκB. In contrast to the regulation by p73, however, blockade of NFκB downstream of p53 decreases Noxa protein levels without effects on Noxa mRNA. Our further analysis of the effects of NFκB inhibition on p53 target gene expression revealed that while most target genes analysed where unaffected by blockade of NFκB, the p53-mediated induction of the pro-apoptotic gene p53AIP1 was significantly dependent on NFκB. These studies therefore add further insight into the complex relationship of p53 and NFκB and since both Noxa and p53AIP1 have been shown to be important components of p53-mediated cell death responses, these findings may also indicate critical points where NFκB plays a pro-apoptotic role downstream of p53.  相似文献   

16.
p27: tumor suppressor and oncogene ...?   总被引:2,自引:0,他引:2  
Kossatz U  Malek NP 《Cell research》2007,17(10):832-833
The p27^Kipl protein was initially identified due to its ability to bind and inhibit cyclin/cdk2 complexes leading to an arrest in the G1-phase of the cell cycle. In line with the cyclin kinase inhibitory function of p27, knockout mice show a 30% increase in body size and a higher cyclin kinase activity in thymocytes leading to an accelerated passage through the cell cycle. The generation of p27 knockout mice helped to formally establish p27 function as a tumor suppressor protein.[第一段]  相似文献   

17.
BackgroundMortality rate of invasive Candida infections is raising mainly amongst immunocompromised patients. These infections are hard-to-treat mainly due to the increasing incidence of resistance. The overexpression of ATP-binding cassette and major facilitator superfamily transporters is the main responsible for the failure of antifungal therapies. In a Saccharomyces cerevisiae model, β-lapachone inhibited Pdr5p, a transporter homologous to those found in Candida albicans.AimsTo determine whether β-lapachone reverses the resistance phenotype mediated by efflux transporters in C. albicans clinical isolates.MethodsThe antifungal activity of β-lapachone combined with fluconazole was measured by agarose chemosensitization and microdilution assays. CaCdr2p and CaMdr1p activities were evaluated through fluorescent dyes accumulation. ATPase activity was assessed using transporter-enriched plasma membranes.Resultsβ-lapachone reverted antifungal resistance of S. cerevisiae and C. albicans strains overexpressing CaCdr2p and CaMdr1p transporters by inhibiting these proteins activities. CaCdr2p ATPase activity was not impaired by the compound.Conclusionsβ-lapachone is a promising drug candidate to be used as an adjuvant in the treatment of candidiasis caused by fluconazole-resistant C. albicans strains.  相似文献   

18.
Zebrafish △113p53, an N-terminal truncated p53 isoform, is a p53-target gene that antagonises p53-mediated apoptotic activity.Interestingly, △113p53 does not act on p53 in a dominant-negative manner, but rather interferes with the p53 function by differentially modulating p53-target gene expression to protect cells from apoptosis. Previous studies showed that over-expressed △113p53 and p53proteins formed a complex. However, it is not known whether endogenous p53 and △113p53 proteins also interact with each other, and if this interaction is required for △113p53 to inhibit the apoptotic activity of full-length p53. In this study, we used two available zebrafish p53 antibodies to address these questions. One, Zfp53-N, only recognises full-length p53, whereas the other, Zfp53-A7C10, detects both full-length p53 and △113p53. Using Zfp53-N for immunoprecipitation and Zfp53-A7C10 for detection, we demonstrated that endogenous △113p53 and full-length p53 induced by a DNA-damaging drug formed a complex in vivo. Furthermore, of the six △113p53 mutants we generated with different point mutations in the oligomerisation domain, two failed to interact with p53 and lost the ability to modulate p53-target gene expression and inhibit p53-induced cell apoptosis. However, those △113p53 mutants that could interact with p53 retained the ability to antagonise the apoptotic activity of p53. Therefore, our data demonstrated that proteineprotein interaction between △113p53and p53 is essential for the anti-apoptotic function of △113p53. In addition, the two △113p53 mutants that failed to interact with p53 are also useful for the study of the mechanisms of other functions of △113p53.  相似文献   

19.
Zebrafish △113p53, an N-terminal truncated p53 isoform, is a p53-target gene that antagonises p53-mediated apoptotic activity. Interestingly, △113p53 does not act on p53 in a dominant-negative manner, but rather interferes with the p53 function by differentially modulating p53-target gene expression to protect cells from apoptosis. Previous studies showed that over-expressed △113p53 and p53 proteins formed a complex. However, it is not known whether endogenous p53 and △113p53 proteins also interact with each other, and if this interaction is required for △113p53 to inhibit the apoptotic activity of full-length p53. In this study, we used two available zebrafish p53 antibodies to address these questions. One, Zfp53-N, only recognises full-length p53, whereas the other, Zfp53-A7C10, detects both full-length p53 and △113p53. Using Zfp53-N for immunoprecipitation and Zfp53-A7C 10 for detection, we demonstrated that endogenous △113p53 and full-length p53 induced by a DNA-damaging drug formed a complex in vivo. Furthermore, of the six △113p53 mutants we generated with different point mutations in the oligomerisation domain, two failed to interact with p53 and lost the ability to modulate p53-target gene expression and inhibit p53-induced cell apoptosis. However, those △113p53 mutants that could interact with p53 retained the ability to antagonise the apoptotic activity of p53. Therefore, our data demonstrated that protein--protein interaction between △113p53 and p53 is essential for the anti-apoptotic function of △113p53. In addition, the two △113p53 mutants that failed to interact with p53 are also useful for the study of the mechanisms of other functions of △113p53.  相似文献   

20.
Prp20p is the homolog of mammalian RCC1 (regulator of chromosome condensation 1) in Saccharomyces cerevisiae, which acts as the guanine nucleotide exchange factor (GEF) for Gsp1p (yeast Ran). Prp20p plays multiple roles in mRNA metabolism, nucleocytoplasmic transport and mitosis regulation. Prp20p also functions as a linker between chromatin and nuclear pore complex (NPC) which regulates the NPC-mediated boundary activity (BA). Prp20p contains an N-terminal nuclear localization signal (NLS) and a typical RCC1-like domain (RLD). Here we present the 1.9? crystal structure of the RCC1-like domain of Prp20p, which exhibits a classical seven-bladed β-propeller. We also proved that the additional β-wedge in Prp20p is essential for the interaction between Prp20p and Gsp1p. Based on this structure, we built a complex model of Prp20p and Gsp1p which was optimized by molecular dynamics (MD) simulations. Our model reveals that Prp20p and RCC1 share similar Ran GTPase binding mode. In addition, we also studied the histone-binding property of Prp20p in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号