首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rong W  Wang J  Liu X  Jiang L  Wei F  Hu X  Han X  Liu Z 《Neurochemical research》2012,37(8):1615-1623
The aim of this study was to determine the therapeutic efficacy of starting naringin treatment 1 day after spinal cord injury (SCI) in rat and to investigate the underlying mechanism. SCI was induced using the modified weight-drop method in Sprague-Dawley rats. The SCI animals were randomly divided into three groups: vehicle-treated group; 20 mg/kg naringin-treated group; 40 mg/kg naringin-treated group, and additionally with sham group (laminectomy only). Locomotors functional recovery was assessed during the 6 weeks post operation period by performing open-field locomotors tests and inclined-plane tests. At the end of the study, the segments of spinal cord encompassing the injury site were removed for histopathological analysis. Immunohistochemistry was performed to observe the expression of the brain-derived neurotrophic factor (BDNF). The expression of vascular endothelial growth factor (VEGF), B-cell CLL/lymphoma-2 (Bcl-2), BCL-2-associated X protein (Bax) and caspase-3 were detected by Western blot analysis. The apoptotic neural cells were assessed using the TUNEL method. The results showed that the naringin-treated animals had significantly better locomotor function recovery, less myelin loss, and higher expression of BDNF and VEGF. In addition, naringin treatment significantly increased in Bcl-2:Bax ratio, reduced the enzyme activity of caspase-3 and decreased the number of apoptotic cells after SCI. These findings suggest that naringin treatment starting 1 day after SCI can significantly improve locomotor recovery, and this neuroprotective effect may be related to the upregulation of BDNF and VEGF and the inhibition of neural apoptosis. Therefore, naringin may be useful as a promising therapeutic agent for SCI.  相似文献   

2.
Spinal cord injury (SCI) often causes severe functional impairment with poor recovery. The treatment, however, is far from satisfaction, and the mechanisms remain unclear. By using proteomics and western blot, we found spinal cord transection (SCT) resulted in a significant down-regulation of α-synuclein (SNCA) in the motor cortex of SCT rats at 3 days post-operation. In order to detect the role of SNCA, we used SNCA-ORF/shRNA lentivirus to upregulate or knockdown SNCA expression. In vivo, SNCA-shRNA lentivirus injection into the cerebral cortex motor area not only inhibited SNCA expression, but also significantly enhanced neurons’ survival, and attenuated neuronal apoptosis, as well as promoted motor and sensory function recovery in hind limbs. While, overexpression SNCA exhibited the opposite effects. In vitro, cortical neurons transfected with SNCA-shRNA lentivirus gave rise to an optimal neuronal survival and neurite outgrowth, while it was accompanied by reverse efficiency in SNCA-ORF group. In molecular level, SNCA silence induced the upregulation of Bcl-2 and the downregulation of Bax, and the expression of NGF, BDNF and NT3 was substantially upregulated in cortical neurons. Together, endogenous SNCA play a crucial role in motor and sensory function regulation, in which, the underlying mechanism may be linked to the regulation of apoptosis associated with apoptotic gene (Bax, Bcl2) and neurotrophic factors expression (NGF, BDNF and NT3). These finds provide novel insights to understand the role of SNCA in cerebral cortex after SCT, and it may be as a novel treatment target for SCI repair in future clinic trials.  相似文献   

3.
This study aimed to investigate the correlation between ginkgolide B (GB) and the JAK/STAT signaling pathway and to explore its regulating effect on secondary cell apoptosis following spinal cord injury (SCI), to elucidate the protective mechanism GB against acute SCI. Sprague–Dawley rats were randomly divided into a sham-operated group, an SCI group, an SCI + GB group, an SCI + methylprednisolone (MP) group, and an SCI + specific JAK inhibitor AG490 group. A rat model of acute SCI was established using the modified Allen’s method. At 4 h, 12 h, 1 day, 3 days, 7 days and 14 days after injury, injured T10 spinal cord specimens were harvested. GB significantly increased inclined plane test scores and Basso, Beattie, and Bresnahan scale scores in SCI rats from postoperative day 3 to day 14. The effect was equal to that of the positive control drug, MP. Western blot analysis showed that JAK2 was significantly phosphorylated from 4 h after SCI, peaked at 12 h and gradually decreased thereafter, accompanied by phosphorylation of STAT3 with a similar time course. GB was shown to significantly inhibit the phosphorylation of JAK2 and STAT3 in rats with SCI. It significantly increased the ratio of B cell CLL/lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) protein expression at 24 h, led to an obvious down-regulation of caspase-3 gene and protein expression at 3 days, and significantly decreased the cell apoptosis index at each time point after SCI. This effect was similar to that obtained with the JAK-specific inhibitor, AG490. Our experimental findings indicated that GB can protect rats against acute SCI, and that its underlying mechanism may be related to the inhibition of JAK/STAT signaling pathway activation, improvement of the Bcl-2/Bax ratio, decreased caspase-3 gene and protein expression and further inhibition of secondary cell apoptosis following SCI.  相似文献   

4.
Spinal cord injury (SCI), a severe health problem in worldwide, was commonly associated with functional disability and reduced quality of life. As the expression of brain-derived neurotrophic factor (BDNF) was substantial event in injured spinal cord, we hypothesized whether BDNF-overexpression could be in favor of the recovery of both sensory function and hindlimb function after SCI. By using BDNF-overexpression transgene mice [CMV-BDNF 26 (CB26) mice] we assessed the role of BDNF on the recovery of neurological behavior in spinal cord transection (SCT) model. BMS score and tail-flick test was performed to evaluate locomotor function and sensory function, respectively. Immunohistochemistry was employed to detect the location and the expression of BDNF, NeuN, 5-HT, GAP-43, GFAP as well as CGRP, and the level of p-AKT and AKT were examined through western blot analysis. BDNF overexpressing resulted in significant locomotor functional recovery from 21 to 28 days after SCT, compared with wild type (WT)+SCT group. Meanwhile, the NeuN, 5-HT and GAP-43 positive cells were markedly increased in ventral horn in BDNF overexpression animals, compared with WT mice with SCT. Moreover, the crucial molecular signal, p-AKT/AKT has been largely up-regulated, which is consistent with the improvement of locomotor function. However, in this study, thermal hyperpathia encountered in sham (CB26) group and WT+SCT mice and further aggravated in CB26 mice after SCT. Also, following SCT, the significant augment of positive-GFAP astrocytes and CGRP fibers were found in WT+SCT mice, and further increase was seen in BDNF over-expression transgene mice. BDNF-overexpression may not only facilitate the recovery of locomotor function via AKT pathway, but also contributed simultaneously to thermal hyperalgesia after SCT.  相似文献   

5.
Nitric oxide (NO) mediates pharmacological effects of opiates including dependence and abstinence. Modulation of NO synthesis during the induction phase of morphine dependence affects manifestations of morphine withdrawal syndrome, though little is known about mechanisms underlying this phenomenon. Neurotrophic and growth factors are involved in neuronal adaptation during opiate dependence. NO-dependent modulation of morphine dependence may be mediated by changes in expression and activity of neurotrophic and/or growth factors in the brain. Here, we studied the effects of NO synthesis inhibition during the induction phase of morphine dependence on the expression of brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and insulin-like growth factor 1 (IGF1) as well as their receptors in rat brain regions after spontaneous morphine withdrawal in dependent animals. Morphine dependence in rats was induced within 6 days by 12 injections of morphine in increasing doses (10–100 mg/kg), and NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) (10 mg/kg) was given 1 h before each morphine injection. The expression of the BDNF, GDNF, NGF, IGF1, and their receptors in the frontal cortex, striatum, hippocampus, and midbrain was assessed 40 h after morphine withdrawal. L-NAME treatment during morphine intoxication resulted in an aggravation of the spontaneous morphine withdrawal severity. Morphine withdrawal was accompanied by upregulation of BDNF, IGF1, and their receptors TrkB and IGF1R, respectively, on the mRNA level in the frontal cortex, and only BDNF in hippocampus and midbrain. L-NAME administration during morphine intoxication decreased abstinence-induced upregulation of these mRNAs in the frontal cortex, hippocampus and midbrain. L-NAME prevented from abstinence-induced elevation of mature but not pro-form of BDNF polypeptide in the frontal cortex. While morphine abstinence did not affect TrkB protein levels as well as its phosphorylation status, inhibition of NO synthesis decreased levels of phosphorylated TrkB after withdrawal. Thus, NO signaling during induction of dependence may be involved in the mechanisms of BDNF expression and processing at abstinence, thereby affecting signaling through TrkB in the frontal cortex.  相似文献   

6.
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood–brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P?<?0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P?<?0.001) without changing BBB permeability (P?>?0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P?<?0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.  相似文献   

7.
Rhus verniciflua Stokes (RVS) has traditionally been used as a food supplement and a traditional herbal medicine for centuries in Korea. This study attempted to evaluate the effects of RVS on the expression of Brain derived neurotrophic factor (BDNF) and Glial cell line-derived neurotrophic factor (GDNF) in SH-SY5Y cells and the rat brain. The results indicated that RVS is a potent inducer of Neurotrophic factor (NTF) production both in vitro and in vivo. Treatment with 10 μg/ml and 10 mg/kg RVS for 4 h of SH-SY5Y cells and rats yielded significant increases in BDNF and GDNF protein levels. We also detected BDNF and GDNF immunoreactive neurons in the rat brain. Both BDNF and GDNF-immunohistochemical staining was markedly enhanced in the animals treated with RVS. These results suggest that RVS serves as an ideal adjuvant in regard to regulating NTF expression, and can contribute to neuroprotection in neurodegenerative diseases.  相似文献   

8.
Delivery of exogenous glial cell line-derived neurotrophic factor (GDNF) increases locomotor activity in rodent models of aging and Parkinson’s disease in conjunction with increased dopamine (DA) tissue content in substantia nigra (SN). Striatal GDNF infusion also increases expression of GDNF’s cognate receptor, GFRα1, and tyrosine hydroxylase (TH) ser31 phosphorylation in the SN of aged rats long after elevated GDNF is no longer detectable. In aging, expression of soluble GFRα1 in the SN decreases in association with decreased TH expression, TH ser31 phosphorylation, DA tissue content, and locomotor activity. Thus, we hypothesized that, in aged rats, replenishing soluble GFRα1 in SN could reverse these deficits and increase locomotor activity. We determined that the quantity of soluble GFRα1 in young adult rat SN is ~3.6 ng. To replenish age-related loss, which is ~30 %, we infused 1 ng soluble GFRα1 bilaterally into SN of aged male rats and observed increased locomotor activity compared to vehicle-infused rats up to 4 days following infusion, with maximal effects on day 3. Five days after infusion, however, neither locomotor activity nor nigrostriatal neurochemical measures were significantly different between groups. In a separate cohort of male rats, nigral, but not striatal, DA, TH, and TH ser31 phosphorylation were increased 3 days following unilateral infusion of 1 ng soluble GFRα1into SN. Therefore, in aged male rats, the transient increase in locomotor activity induced by replenishing age-related loss of soluble GFRα1is temporally matched with increased nigral dopaminergic function. Thus, expression of soluble GFRα1 in SN may be a key component in locomotor activity regulation through its influence over TH regulation and DA biosynthesis.  相似文献   

9.
刘蕾  胡建  董凤  徐晔  夏炎  吴铮 《现代生物医学进展》2019,19(11):2041-2045
目的:探讨骨髓基质干细胞(bone marrow stormal cells, BMSCs)静脉移植对慢性酒精中毒大鼠脑保护作用的相关机制。方法:体外分离、培养、扩增SD大鼠BMSCs。成年雄性SD大鼠随机分为慢性酒精中毒组、BMSCs回输组、磷酸缓冲盐溶液(phosphate buffer saline,PBS)回输组和对照组,每组7只。前三组用酒精灌胃8周建立慢性酒精中毒动物模型,对照组不造模(给予蔗糖灌胃),BMSCs回输组和PBS回输组于造模7周时一次性经尾静脉回输BMSCs或PBS。免疫印迹法检测海马Bcl-2、Bax、NGF、BDNF以及信号转导分子p-Akt的表达;反转录PCR检测海马神经生长因子(nerve growth factor, NGF)和脑源性神经营养因子(brain derived neurotrophic factor, BDNF)。结果:BMSCs回输组海马抗凋亡蛋白Bcl-2表达高于其余三组(P0.05);促凋亡蛋白Bax表达低于慢性酒精中毒组(P0.01),与对照组无统计学差异(P=0.989)。BMSCs回输组鼠海马内NGF和BDNF m RNA和蛋白表达、p-Akt蛋白表达均高于其余三组(P0.05)。结论:静脉移植BMSCs能够明显改善慢性酒精中毒大鼠海马的细胞凋亡;其可能与自或旁分泌BDNF和NGF营养因子有关,且可能部分是通过激活PI3K/Akt通路实现。  相似文献   

10.
11.
12.
13.
Adult rat retinal ganglion cells (RGC) undergo degeneration after optic nerve transection. Studies have shown that exogenously applied neurotrophic factors such as brain‐derived neurotrophic factor (BDNF) can attenuate axotomy‐induced as well as developmental RGC death. Here, we examined whether glial cell line–derived neurotrophic factor (GDNF), a known neurotrophic factor for dopaminergic neurons and motor neurons, could provide neurotrophic support to RGC in adult rats. We determined whether RGC could retrogradely transport GDNF from their target tissue. After injection into the superior colliculus of adult rats, 125I‐GDNF was retrogradely transported to contralateral eyes but not to ipsilateral eyes. The transport of 125I‐GDNF could be blocked by coinjection of excess unlabeled GDNF, indicating that it was receptor mediated. We tested whether intravitreally applied GDNF could prevent axotomy‐induced RGC degeneration. The RGC were prelabeled with Fluorogold (FG) and axotomized by intraorbital optic nerve transection. GDNF, BDNF (positive control), cytochrome c (negative control), or a GDNF/BDNF combination was injected intravitreally on days 0 and 7. On day 14, FG‐labeled RGC were counted from whole‐mount retinas. We found that, similar to BDNF, GDNF could significantly attenuate the degeneration of RGC in a dose‐dependent fashion. Furthermore, the combination treatment of GDNF and BDNF showed better protection than either factor used individually. Our data indicate that GDNF is a neurotrophic factor for the adult rat RGC. GDNF, like BDNF, may be useful for the treatment of human RGC degenerative diseases. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 382–390, 1999  相似文献   

14.
Assisted-treadmill training, may be helpful in promoting muscle mass preservation after incomplete spinal cord injury (SCI). However, biological mechanism involved in this process is still not fully understood. This study investigated the effects of locomotor treadmill training on muscle trophism mediated by protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K) in paraplegic rats. Adult female Wistar rats underwent an incomplete thoracic SCI induced by compression using an aneurysm clip. After 7 days, injured animals started a 3-week locomotor treadmill training with body weight-support and manual step help. Soleus trophism was measured by muscle weight and transverse myofiber cross-sectional area (CSA). An enzyme-linked immunosorbent assay (ELISA) and western blot analysis were used to detect brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB), Akt, mTOR and p70S6K in paretic soleus. Trained animals did not show locomotor improved, but present an increase in muscle weight and myofiber CSA. Furthermore, the levels of Akt, p70S6K phosphorylation, mTOR and TrkB receptor were increased by training in soleus. In contrast, muscle BDNF levels were significantly reduced after training. The results suggest locomotor treadmill training partially reverts/prevents soleus muscle hypotrophy in rats with SCI. Furthermore, this study provided the first evidence that morphological muscle changes were caused by Akt/mTOR/p70S6K signaling pathway and TrkB up-regulation, which may increase the sensitivity of muscle, reducing autocrine signaling pathway demand of BDNF for cell growth.  相似文献   

15.
目的:探讨高压氧预处理(Hyperbaric oxygen preconditioning, HBO-PC)对大鼠脑缺血再灌注损伤的保护作用及对其海马脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)、胶质细胞源性神经营养因子(glialcellline-derivedneurotrophicfactor,GDNF)基因表达的影响。方法:将32只SD雄性大鼠随机分为对照组(Sham组)、高压氧对照组(HBO组)、模型组(MCAO组)、高压氧预处理+模型组(HBO+MCAO组),对HBO组和HBO+MCAO组连续给予高压氧预处理5天,随后对MCAO组和HBO+MCAO组进行右侧颈内动脉栓线术,建立大脑中动脉闭塞(middle cerebral artery occlusion, MCAO)模型,其他两组行假手术,于术后第7天对各组大鼠进行Morris水迷宫行为学检测和神经功能评分,检测结束后处死大鼠,进行神经功能缺损评分及氯化三苯基四氮唑(2,3,5-triphenyltetrazolium chloride, TTC)染色;通过蛋白免疫印迹法(Western Blot)检测大鼠海马组织BDNF和GDNF的基因表达情况。结果:(1)神经功能评分提示:Sham组和HBO组均未出现神经功能障碍,MCAO组大鼠出现明显的神经功能障碍,MCAO+HBO组神经功能评分明显高于MCAO组(P0.05)。(2)TTC检测提示:Sham组和HBO组脑组织损伤一侧均未出现梗死灶,MCAO组出现较大的梗死面积比(25.45±8.75)%,MCAO+HBO组的梗死面积比(18.84±10.55)显著小于MCAO组,差异具有统计学意义(P 0.05)。(3)Western Blot检测显示:MCAO组BDNF与GDNF基因表达水平显著低于Sham组和HBO组,差异具有统计学意义(P 0.05),而MCAO+HBO组可以逆转这一效应,差异具有统计学意义(P 0.05)。结论:高压氧预处理可以通过调节BDNF、GDNF基因表达,改善MCAO模型大鼠神经功能和认知水平,发挥神经保护作用。  相似文献   

16.
Neurodegeneration is an early event in the diabetic retina which may lead to diabetic retinopathy. One of the potential pathways in damaging retinal neurons is the activation of renin angiotensin system including angiotensin II type 1 receptor (AT1R) in the diabetic retina. The purpose of this study was to determine the effect of telmisartan, an AT1R blocker on retinal level of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and tyrosine hydroxylase (TH), glutathione (GSH) and caspase activity in the diabetic rats. The dysregulated levels of these factors are known to cause neurodegeneration in diabetic retina. Three weeks streptozotocin induced diabetic rats were orally treated or untreated with telmisartan (10 mg/kg/day). After 4 weeks of treatments, the levels of BDNF and GSH were found to be increased systemically in the sera as well as in the retina of diabetic rats compared to untreated rats as measured by enzyme-linked immunosorbent assay and biochemical techniques (p < 0.05). The caspase-3 activity in the telmisartan treated diabetic retina was decreased compared to untreated diabetic rats (p < 0.05). Western blotting experiments showed the expression levels of BDNF, CNTF and TH were increased compared to untreated diabetic rats (p < 0.05). Thus, our findings show a beneficial effect of AT1R blocker telmisartan in efficiently increasing neurotrophic support, endogenous antioxidant GSH content, and decreasing signs of apoptosis in diabetic retina.  相似文献   

17.
Treatment with mature brain-derived neurotrophic factor (mBDNF) promotes functional recovery after ischemia in animal trials but the possible role of its precursor protein proBDNF and its receptors or the factors responsible for the conversion of proBDNF to mBDNF in ischemic stroke are not known. The main aim of this study was to characterize the time-dependent expression of genes and/or proteins related to BDNF processing and signaling after ischemia as well as the sensorimotor behavioral dysfunction in a photothrombotic ischemic model in rats. Characterization of different genes and proteins related to BDNF processing and signaling was performed using qPCR, immunoblotting and enzyme-linked immunosorbent assays. We showed in this study that some sensory and motor functional deficiencies appeared in the ischemic group at day 1 and persisted until day 14. Most changes in gene expression of BDNF and its processing enzymes occurred within the first 24 h in the ipsilateral cortex, but not in the contralateral cortex. At the protein level, proBDNF expression was increased at 6 h, mBDNF expression was increased between 15 h and 1 day while p75 receptor protein expression was increased between 6 h and 3 days in the ipsilateral cortex, but not in the contralateral cortex. Therefore, cerebral ischemia in rats led to the up-regulation of genes and/or proteins of BDNF, proBDNF and their processing enzymes and receptors in a time-dependent manner. We propose that the balance between BDNF and proBDNF and their associated proteins may play an important role in the pathogenesis and recovery from ischemia.  相似文献   

18.
We evaluated the effects of dipyrido [3,2-a:2′,3′-c] phenazine (dppz) Au(III) complex ([Au(dppz)Cl2]Cl) on apoptosis during chemically induced hepatocellular carcinoma. 48 male Spraque-Dawley rats were divided into six groups; group I (control), group II [Dimethyl sulfoxide (DMSO)], group III ([Au(dppz)Cl2]Cl), group IV [diethylnitrosamine + Phenobabital (DEN + PB)], group V (DEN + PB + [Au(dppz)Cl2]Cl (2nd week)), and group VI (DEN + PB + [Au(dppz)Cl2]Cl (7th week). The rats in groups IV through VI were administrated with DEN in a single dose of intraperitoneal 175 mg/kg. After 2 weeks of DEN administration, these groups of rats were given daily PB in a dose of 500 ppm. In group V, after two weeks of DEN administration, [Au(dppz)Cl2]Cl complex (2 mg/kg) was given once a week by intraperitoneal injection. In the group VI, the rats were given a dose of 2 mg/kg [Au(dppz)Cl2]Cl complex once a week, 7 weeks after DEN administration. At the end of the study, blood and tissue samples were collected from the rats to determine levels of serum AST, ALT, and LDH, and caspase 3, p53, Bax, Bcl-2 and DNA fragmentation in liver. AST, ALT, LDH, and Bcl-2 levels were higher in group IV, compared to group I, but caspase 3 and p53 levels were lower. In group V, caspase 3, p53, Bax, and DNA fragmentation levels were higher than those of group IV. Caspase 3 and p53 levels increased in group VI compared with group IV. In conclusion, [Au(dppz)Cl2]Cl complex induced apoptosis by elevating levels of caspase 3, p53, Bax, and DNA fragmentation.  相似文献   

19.
Sun Y  Shi J  Fu SL  Lu PH  Xu XM 《生理学报》2003,55(3):349-354
将胚胎神经干细胞(neural stem cells,NSCs)移植至成年大鼠损伤的脊髓,观察移植后NSCs的存活、迁移以及损伤后的功能恢复。实验结果显示:动物NSCs移植4周后,斜板实验平均角度和运动评分结果比对照组均有明显增高(P<0.05),而脊髓损伤(spinal cord injury,SCI)处的空洞面积显著减小(P<0.05);在NSCs中加入胶质细胞源性的神经营养因子(glial cell line-derived neurotrophic factor,GDNF)后,上述改变更加显著。移植后的NSCs不仅能存活,而且向损伤的头端和尾端迁移达3mm之远。这些结果表明,移植的NSCs不仅可以存活、迁移,还可减小SCI空洞面积,促进动物神经功能的恢复;此外,我们的结果还表明GDNF对SCI功能恢复有促进作用。  相似文献   

20.
Triazophos, O,O-diethyl-1-H-1,2,4-triazol-3-yl phosphorothioate, (TZ) is an organophosphate pesticide widely used as an insecticide in agriculture fields, however, its adverse effects on cognitive function remain unknown till date. The present study was designed to identify the effect of TZ on cognitive function in order to gain an insight into the molecular mechanism(s) probably involved in TZ induced toxicity. Wistar male albino rats were orally administered with TZ at 8.2 mg/kg bw daily for 30 days. Cognitive function was assessed by evaluating step down latency (SDL) in passive avoidance apparatus, transfer latency (TL) on elevated plus maze and escape latency (EL) using morris water maze. The biochemical changes, in terms of malondialdehyde (MDA), reduced glutathione (GSH) and brain derived neurotrophic factor (BDNF) levels were evaluated in hippocampi regions. Relative mRNA expression and protein expression of BDNF were also evaluated. The results demonstrated that rats treated with TZ showed significantly (p < 0.01) reduced SDL and prolonged TL and EL as compared to control group rats. Moreover, significantly low (p < 0.01) mRNA expression and protein levels (p < 0.001) of BDNF, increased MDA and reduced GSH levels were observed in TZ treated rats. The study concludes that chronic exposure to TZ significantly impairs the learning and memory which may be attributed to the significantly reduced mRNA and protein expression of BDNF in hippocampus. Moreover, BDNF is negatively correlated to MDA levels and positively correlated to GSH levels. Hence, it can be suggested that interplay between BDNF and oxidative stress plays an important role in mediating the toxic effects of TZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号