首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS.  相似文献   

2.
Dietary restriction (DR) is the most consistent environmental manipulation to extend lifespan. Originally thought to be caused by a reduction in caloric intake, recent evidence suggests that macronutrient intake underpins the effect of DR. The prevailing evolutionary explanations for the DR response are conceptualized under the caloric restriction paradigm, necessitating reconsideration of how or whether these evolutionary explanations fit this macronutrient perspective. In the authors’ opinion, none of the current evolutionary explanations of DR adequately explain the intricacies of observed results; instead a context-dependent combination of these theories is suggested which is likely to reflect reality. In reviewing the field, it is proposed that the ability to track the destination of different macronutrients within the body will be key to establishing the relative roles of the competing theories. Understanding the evolution of the DR response and its ecological relevance is critical to understanding variation in DR responses and their relevance outside laboratory environments.  相似文献   

3.
Modest dietary restriction extends lifespan (LS) in a diverse range of taxa and typically has a larger effect in females than males. Traditionally, this has been attributed to a stronger trade‐off between LS and reproduction in females than in males that is mediated by the intake of calories. Recent studies, however, suggest that it is the intake of specific nutrients that extends LS and mediates this trade‐off. Here, we used the geometric framework (GF) to examine the sex‐specific effects of protein (P) and carbohydrate (C) intake on LS and reproduction in Drosophila melanogaster. We found that LS was maximized at a high intake of C and a low intake of P in both sexes, whereas nutrient intake had divergent effects on reproduction. Male offspring production rate and LS were maximized at the same intake of nutrients, whereas female egg production rate was maximized at a high intake of diets with a P:C ratio of 1:2. This resulted in larger differences in nutrient‐dependent optima for LS and reproduction in females than in males, as well as an optimal intake of nutrients for lifetime reproduction that differed between the sexes. Under dietary choice, the sexes followed similar feeding trajectories regulated around a P:C ratio of 1:4. Consequently, neither sex reached their nutritional optimum for lifetime reproduction, suggesting intralocus sexual conflict over nutrient optimization. Our study shows clear sex differences in the nutritional requirements of reproduction in D. melanogaster and joins the growing list of studies challenging the role of caloric restriction in extending LS.  相似文献   

4.
Dietary restriction (DR) is a robust nongenetic, nonpharmacological intervention that is known to increase active and healthy lifespan in a variety of species. Despite a variety of differences in the protocols and the way DR is carried out in different species, conserved relationships are emerging among multiple species. 2009 saw the field of DR mature with important mechanistic insights from multiple species. A report of lifespan extension in rapamycin‐treated mice suggested that the TOR pathway, a conserved mediator of DR in invertebrates, may also be critical to DR effects in mammals. 2009 also saw exciting discoveries related to DR in various organisms including yeast, worms, flies, mice, monkeys and humans. These studies complement each other and together aim to deliver the promise of postponing aging and age‐related diseases by revealing the underlying mechanisms of the protective effects of DR. Here, we summarize a few of the reports published in 2009 that we believe provide novel directions and an improved understanding of dietary restriction.  相似文献   

5.
Chronic dietary restriction (DR) is considered among the most robust life-extending interventions, but several reports indicate that DR does not always extend and may even shorten lifespan in some genotypes. An unbiased genetic screen of the lifespan response to DR has been lacking. Here, we measured the effect of one commonly used level of DR (40% reduction in food intake) on mean lifespan of virgin males and females in 41 recombinant inbred strains of mice. Mean strain-specific lifespan varied two to threefold under ad libitum (AL) feeding and 6- to 10-fold under DR, in males and females respectively. Notably, DR shortened lifespan in more strains than those in which it lengthened life. Food intake and female fertility varied markedly among strains under AL feeding, but neither predicted DR survival: therefore, strains in which DR shortened lifespan did not have low food intake or poor reproductive potential. Finally, strain-specific lifespans under DR and AL feeding were not correlated, indicating that the genetic determinants of lifespan under these two conditions differ. These results demonstrate that the lifespan response to a single level of DR exhibits wide variation amenable to genetic analysis. They also show that DR can shorten lifespan in inbred mice. Although strains with shortened lifespan under 40% DR may not respond negatively under less stringent DR, the results raise the possibility that life extension by DR may not be universal.  相似文献   

6.
Dietary restriction (DR) extends life span in diverse organisms, including mammals, and common mechanisms may be at work. DR is often known as calorie restriction, because it has been suggested that reduction of calories, rather than of particular nutrients in the diet, mediates extension of life span in rodents. We here demonstrate that extension of life span by DR in Drosophila is not attributable to the reduction in calorie intake. Reduction of either dietary yeast or sugar can reduce mortality and extend life span, but by an amount that is unrelated to the calorie content of the food, and with yeast having a much greater effect per calorie than does sugar. Calorie intake is therefore not the key factor in the reduction of mortality rate by DR in this species.  相似文献   

7.
Dietary restriction (DR) extends life span in diverse organisms, including mammals, and common mechanisms may be at work. DR is often known as calorie restriction, because it has been suggested that reduction of calories, rather than of particular nutrients in the diet, mediates extension of life span in rodents. We here demonstrate that extension of life span by DR in Drosophila is not attributable to the reduction in calorie intake. Reduction of either dietary yeast or sugar can reduce mortality and extend life span, but by an amount that is unrelated to the calorie content of the food, and with yeast having a much greater effect per calorie than does sugar. Calorie intake is therefore not the key factor in the reduction of mortality rate by DR in this species.  相似文献   

8.
Calorie restriction (CR) is a promising approach for attenuating the risk of age-related disease. However, the role of diet composition on adherence to CR and the effects of CR on cardiometabolic markers of healthspan remains unknown. We used the Geometric Framework for Nutrition approach to examine the association between macronutrient composition and CR adherence during the 2-year CALERIE trial. Adult participants without obesity were randomized to a 25% CR intervention or an ad libitum intake control. Correlations of cardiometabolic risk factors with macronutrient composition and standard dietary pattern indices [Alternate Mediterranean Diet Index (aMED), Dietary Inflammatory Index (DII), and Healthy Eating Index (HEI)] were also evaluated by Spearman's correlation at each time point. The mean age was 38.1 ± 7.2 years at baseline and the mean BMI was 25.1 ± 1.7. The study population was 70% female. The CR group, but not the control, consumed a higher percentage reported energy intake from protein and carbohydrate and lower fat at 12 months compared to baseline; comparable results were observed at 24 months. Protein in the background of higher carbohydrate intake was associated with greater adherence at 24 months. There was no correlation between macronutrient composition and cardiometabolic risk factors in the CR group. However, statistically significant correlations were observed for the DII and HEI. These findings suggest that individual self-selected macronutrients have an interactive but not independent role in CR adherence. Additional research is required to examine the impact of varying macronutrient compositions on adherence to CR and resultant modification to cardiometabolic risk factors.  相似文献   

9.
Dietary restriction (DR) extends the lifespan of a wide range of species, although the universality of this effect has never been quantitatively examined. Here, we report the first comprehensive comparative meta-analysis of DR across studies and species. Overall, DR significantly increased lifespan, but this effect is modulated by several factors. In general, DR has less effect in extending lifespan in males and also in non-model organisms. Surprisingly, the proportion of protein intake was more important for life extension via DR than the degree of caloric restriction. Furthermore, we show that reduction in both age-dependent and age-independent mortality rates drives life extension by DR among the well-studied laboratory model species (yeast, nematode worms, fruit flies and rodents). Our results suggest that convergent adaptation to laboratory conditions better explains the observed DR-longevity relationship than evolutionary conservation although alternative explanations are possible.  相似文献   

10.
Crawford D  Libina N  Kenyon C 《Aging cell》2007,6(5):715-721
Dietary restriction extends lifespan and inhibits reproduction in many species. In Caenorhabditis elegans, inhibiting reproduction by germline removal extends lifespan. Therefore, we asked whether the effect of dietary restriction on lifespan might proceed via changes in the activity of the germline. We found that dietary restriction could increase the lifespan of animals lacking the entire reproductive system. Thus, dietary restriction can extend lifespan independently of any reproductive input. However, dietary restriction produced little or no increase in the long lifespan of animals that lack germ cells. Thus, germline removal and dietary restriction may potentially activate lifespan-extending pathways that ultimately converge on the same downstream longevity mechanisms. In well-fed animals, the somatic reproductive tissues are generally completely required for germline removal to extend lifespan. We found that this was not the case in animals subjected to dietary restriction. In addition, in these animals, loss of the germline could either further lengthen lifespan or shorten lifespan, depending on the genetic background. Thus, nutrient levels play an important role in determining how the reproductive system influences longevity.  相似文献   

11.
Lifespan extension in Caenorhabditis elegans by complete removal of food   总被引:4,自引:0,他引:4  
A partial reduction in food intake has been found to increase lifespan in many different organisms. We report here a new dietary restriction regimen in the nematode Caenorhabditis elegans, based on the standard agar plate lifespan assay, in which adult worms are maintained in the absence of a bacterial food source. These findings represent the first report in any organism of lifespan extension in response to prolonged starvation. Removal of bacterial food increases lifespan to a greater extent than partial reduction of food through a mechanism that is distinct from insulin/IGF-like signaling and the Sir2-family deacetylase, SIR-2.1. Removal of bacterial food also increases lifespan when initiated in postreproductive adults, suggesting that dietary restriction started during middle age can result in a substantial longevity benefit that is independent of reproduction.  相似文献   

12.
Diet is an important determinant of fitness‐related traits including growth, reproduction, and survival. Recent work has suggested that variation in protein:lipid ratio and particularly the amount of protein in the diet is a key nutritional parameter. However, the traits that mediate the link between dietary macronutrient ratio and fitness‐related traits are less well understood. An obvious candidate is body composition, given its well‐known link to health. Here, we investigate the relationship between dietary and body macronutrient composition using a first‐generation laboratory population of a freshwater fish, the three‐spine stickleback (Gasterosteus aculeatus). Carbohydrate is relatively unimportant in the diet of predatory fish, facilitating the exploration of how dietary protein‐to‐lipid ratio affects their relative deposition in the body. We find a significant effect of lipid intake, rather than protein, on body protein:lipid ratio. Importantly, this was not a result of absorbing macronutrients in relation to their relative abundance in the diet, as the carcass protein:lipid ratios differed from those of the diets, with ratios usually lower in the body than in the diet. This indicates that individuals can moderate their utilization, or uptake, of ingested macronutrients to reach a target balance within the body. We found no effect of diet on swimming endurance, activity, or testes size. However, there was an effect of weight on testes size, with larger males having larger testes. Our results provide evidence for the adjustment of body protein:lipid ratio away from that of the diet. As dietary lipid intake was the key determinant of body composition, we suggest this occurs via metabolism of excess protein, which conflicts with the predictions of the protein leverage hypothesis. These results could imply that the conversion and excretion of protein is one of the causes of the survival costs associated with high‐protein diets.  相似文献   

13.
14.
Although it is widely known that dietary restriction (DR) not only extends the longevity of a wide range of species but also reduces their reproductive output, the interrelationship of DR, longevity extension and reproduction is not well understood in any organism. Here we address the question: ‘Under what nutritional conditions do the longevity‐enhancing effects resulting from food restriction either counteract, complement or reinforce the mortality costs of reproduction? To answer this question we designed a fine‐grained DR study involving 4800 individuals of the tephritid fruit fly, Anastrepha ludens, in which we measured sex‐specific survival and daily reproduction in females in each of 20 different treatments (sugar : yeast ratios) plus 4 starvation controls. The database generated from this 3‐year study consisted of approximately 100 000 life‐days for each sex and 750 000 eggs distributed over the reproductive lives of 2400 females. The fertility and longevity‐extending responses were used to create contour maps (X‐Y grid) that show the demographic responses (Z‐axis) across dietary gradients that range from complete starvation to both ad libitum sugar‐only and ad libitum standard diet (3 : 1 sugar : yeast). The topographic perspectives reveal demographic equivalencies along nutritional gradients, differences in the graded responses of males and females, egg production costs that are sensitive to the interaction of food amounts and constituents, and orthogonal contours (equivalencies in longevity or reproduction) representing demographic thresholds related to both caloric content and sugar : yeast ratios. In general, the finding that lifespan and reproductive maxima occur at much different nutritional coordinates poses a major challenge for the use of food restriction (or a mimetic) in humans to improve health and extend longevity in humans.  相似文献   

15.
Animals experience spatial and temporal variation in food and nutrient supply, which may cause deviations from optimal nutrient intakes in both absolute amounts (meeting nutrient requirements) and proportions (nutrient balancing). Recent research has used the geometric framework for nutrition to obtain an improved understanding of how animals respond to these nutritional constraints, among them free-ranging primates including spider monkeys and gorillas. We used this framework to examine macronutrient intakes and nutrient balancing in sifakas (Propithecus diadema) at Tsinjoarivo, Madagascar, in order to quantify how these vary across seasons and across habitats with varying degrees of anthropogenic disturbance. Groups in intact habitat experience lean season decreases in frugivory, amounts of food ingested, and nutrient intakes, yet preserve remarkably constant proportions of dietary macronutrients, with the proportional contribution of protein to the diet being highly consistent. Sifakas in disturbed habitat resemble intact forest groups in the relative contribution of dietary macronutrients, but experience less seasonality: all groups’ diets converge in the lean season, but disturbed forest groups largely fail to experience abundant season improvements in food intake or nutritional outcomes. These results suggest that: (1) lemurs experience seasonality by maintaining nutrient balance at the expense of calories ingested, which contrasts with earlier studies of spider monkeys and gorillas, (2) abundant season foods should be the target of habitat management, even though mortality might be concentrated in the lean season, and (3) primates’ within-group competitive landscapes, which contribute to variation in social organization, may vary in complex ways across habitats and seasons.  相似文献   

16.
The nutrient balancing hypothesis proposes that, when sufficient food is available, the primary goal of animal diet selection is to obtain a nutritionally balanced diet. This hypothesis can be tested using the Geometric Framework for nutrition (GF). The GF enables researchers to study patterns of nutrient intake (e.g. macronutrients; protein, carbohydrates, fat), interactions between the different nutrients, and how an animal resolves the potential conflict between over-eating one or more nutrients and under-eating others during periods of dietary imbalance. Using the moose (Alces alces L.), a model species in the development of herbivore foraging theory, we conducted a feeding experiment guided by the GF, combining continuous observations of six captive moose with analysis of the macronutritional composition of foods. We identified the moose’s self-selected macronutrient target by allowing them to compose a diet by mixing two nutritionally complementary pellet types plus limited access to Salix browse. Such periods of free choice were intermixed with periods when they were restricted to one of the two pellet types plus Salix browse. Our observations of food intake by moose given free choice lend support to the nutrient balancing hypothesis, as the moose combined the foods in specific proportions that provided a particular ratio and amount of macronutrients. When restricted to either of two diets comprising a single pellet type, the moose i) maintained a relatively stable intake of non-protein energy while allowing protein intakes to vary with food composition, and ii) increased their intake of the food item that most closely resembled the self-selected macronutrient intake from the free choice periods, namely Salix browse. We place our results in the context of the nutritional strategy of the moose, ruminant physiology and the categorization of food quality.  相似文献   

17.
A reduction in dietary calories has been shown to prolong life span in a wide variety of taxa, but there has been much debate about confounding factors such as nutritional composition of the diet, or reallocation of nutrients from reduced reproduction. To disentangle the contribution of these different mechanisms to extension of life span, we study the effect of caloric restriction on longevity and fecundity in two species of sugar-feeding parasitoid wasps. They have a simple diet that consists of carbohydrates only, and they do not resorb eggs, which rules out the proposed alternative explanations for beneficial effects of caloric restriction. Two caloric restriction treatments were applied: first, dietary dilution to investigate the effect of carbohydrate concentration in the diet; and second, intermittent feeding to examine the effect of feeding frequency on longevity and fecundity. Only the dietary dilution treatment showed an effect of caloric restriction with the highest longevity recorded at 80% sucrose (w/v). No effect of dietary regime was found on fecundity. We also measured the weight increase of the parasitoids after feeding to obtain an estimate of consumption. A constant quantity of the sugar solution was consumed in all dietary dilution treatments, hence caloric intake was proportional to sucrose concentrations. Although the present study does not disqualify the relevance of nutrient composition in other species, our data unequivocally demonstrate that caloric restriction alone is sufficient to extend life span and invalidate alternative explanations.  相似文献   

18.
19.
While dietary restriction usually increases lifespan, an intermittent feeding regime, where periods of deprivation alternate with times when food is available, has been found to reduce lifespan in some studies but prolong it in others. We suggest that these disparities arise because in some situations lifespan is reduced by the costs of catch-up growth (following the deprivation) and reproductive investment, a factor that has rarely been measured in studies of lifespan. Using three-spined sticklebacks, we show for the first time that while animals subjected to an intermittent feeding regime can grow as large as continuously fed controls that receive the same total amount of food, and can maintain reproductive investment, they have a shorter lifespan. Furthermore, we show that this reduction in lifespan is linked to rapid skeletal growth rate and is due to an increase in the instantaneous risk of mortality rather than in the rate of senescence. By contrast, dietary restriction caused a reduction in reproductive investment in females but no corresponding increase in longevity. This suggests that in short-lived species where reproduction is size dependent, selection pressures may lead to an increase in intrinsic mortality risk when resources are diverted from somatic maintenance to both growth and reproductive investment.  相似文献   

20.
Interpreting interactions between treatments that slow aging   总被引:1,自引:1,他引:0  
A major challenge in current research into aging using model organisms is to establish whether different treatments resulting in slowed aging involve common or distinct mechanisms. Such treatments include gene mutation, dietary restriction (DR), and manipulation of reproduction, gonadal signals and temperature. The principal method used to determine whether these treatments act through common mechanisms is to compare the magnitude of the effect on aging of each treatment separately with that when two are applied simultaneously. In this discussion we identify five types of methodological shortcomings that have marred such studies. These are (1) submaximal lifespan-extension by individual treatments, e.g. as a result of the use of hypomorphic rather than null alleles; (2) effects of a single treatment on survival through more than one mechanism, e.g. pleiotropic effects of lifespan mutants; (3) the difficulty of interpreting the magnitude of increases in lifespan in double treatments, and failure to measure and model age-specific mortality rates; (4) the non-specific effects of life extension suppressors; and (5) the possible occurrence of artefactual mutant interactions. When considered in the light of these problems, the conclusions of a number of recent lifespan interaction studies appear questionable. We suggest six rules for avoiding the pitfalls that can beset interaction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号