首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging impairs the functions of human mesenchymal stem cells (MSCs), thereby severely reducing their beneficial effects on myocardial infarction (MI). MicroRNAs (miRNAs) play crucial roles in regulating the senescence of MSCs; however, the underlying mechanisms remain unclear. Here, we investigated the significance of miR‐155‐5p in regulating MSC senescence and whether inhibition of miR‐155‐5p could rejuvenate aged MSCs (AMSCs) to enhance their therapeutic efficacy for MI. Young MSCs (YMSCs) and AMSCs were isolated from young and aged donors, respectively. The cellular senescence of MSCs was evaluated by senescence‐associated β‐galactosidase (SA‐β‐gal) staining. Compared with YMSCs, AMSCs exhibited increased cellular senescence as evidenced by increased SA‐β‐gal activity and decreased proliferative capacity and paracrine effects. The expression of miR‐155‐5p was much higher in both serum and MSCs from aged donors than young donors. Upregulation of miR‐155‐5p in YMSCs led to increased cellular senescence, whereas downregulation of miR‐155‐5p decreased AMSC senescence. Mechanistically, miR‐155‐5p inhibited mitochondrial fission and increased mitochondrial fusion in MSCs via the AMPK signaling pathway, thereby resulting in cellular senescence by repressing the expression of Cab39. These effects were partially reversed by treatment with AMPK activator or mitofusin2‐specific siRNA (Mfn2‐siRNA). By enhancing angiogenesis and promoting cell survival, transplantation of anti‐miR‐155‐5p‐AMSCs led to improved cardiac function in an aged mouse model of MI compared with transplantation of AMSCs. In summary, our study shows that miR‐155‐5p mediates MSC senescence by regulating the Cab39/AMPK signaling pathway and miR‐155‐5p is a novel target to rejuvenate AMSCs and enhance their cardioprotective effects.  相似文献   

2.
Cell stress may give rise to insuperable growth arrest, which is defined as cellular senescence. Stenotic kidney (STK) ischemia and injury induced by renal artery stenosis (RAS) may be associated with cellular senescence. Mesenchymal stem cells (MSCs) decrease some forms of STK injury, but their ability to reverse senescence in RAS remains unknown. We hypothesized that RAS evokes STK senescence, which would be ameliorated by MSCs. Mice were studied after 4 weeks of RAS, RAS treated with adipose tissue‐derived MSCs 2 weeks earlier, or sham. STK senescence‐associated β‐galactosidase (SA‐β‐Gal) activity was measured. Protein and gene expression was used to assess senescence and the senescence‐associated secretory phenotype (SASP), and staining for renal fibrosis, inflammation, and capillary density. In addition, senescence was assessed as p16+ and p21+ urinary exosomes in patients with renovascular hypertension (RVH) without or 3 months after autologous adipose tissue‐derived MSC delivery, and in healthy volunteers (HV). In RAS mice, STK SA‐β‐Gal activity increased, and senescence and SASP marker expression was markedly elevated. MSCs improved renal function, fibrosis, inflammation, and capillary density, and attenuated SA‐β‐Gal activity, but most senescence and SASP levels remained unchanged. Congruently, in human RVH, p21+ urinary exosomes were elevated compared to HV, and only slightly improved by MSC, whereas p16+ exosomes remained unchanged. Therefore, RAS triggers renal senescence in both mice and human subjects. MSCs decrease renal injury, but only partly mitigate renal senescence. These observations support exploration of targeted senolytic therapy in RAS.  相似文献   

3.
Aging leads to increased cellular senescence and is associated with decreased potency of tissue‐specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32–86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A, SA‐β‐gal, DNA damage γH2AX, telomere length, senescence‐associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK‐ATTAC or wild‐type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67‐, EdU‐positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.  相似文献   

4.
The blind mole rat (Spalax) is a wild, long‐lived rodent that has evolved mechanisms to tolerate hypoxia and resist cancer. Previously, we demonstrated high DNA repair capacity and low DNA damage in Spalax fibroblasts following genotoxic stress compared with rats. Since the acquisition of senescence‐associated secretory phenotype (SASP) is a consequence of persistent DNA damage, we investigated whether cellular senescence in Spalax is accompanied by an inflammatory response. Spalax fibroblasts undergo replicative senescence (RS) and etoposide‐induced senescence (EIS), evidenced by an increased activity of senescence‐associated beta‐galactosidase (SA‐β‐Gal), growth arrest, and overexpression of p21, p16, and p53 mRNAs. Yet, unlike mouse and human fibroblasts, RS and EIS Spalax cells showed undetectable or decreased expression of the well‐known SASP factors: interleukin‐6 (IL6), IL8, IL1α, growth‐related oncogene alpha (GROα), SerpinB2, and intercellular adhesion molecule (ICAM‐1). Apparently, due to the efficient DNA repair in Spalax, senescent cells did not accumulate the DNA damage necessary for SASP activation. Conversely, Spalax can maintain DNA integrity during replicative or moderate genotoxic stress and limit pro‐inflammatory secretion. However, exposure to the conditioned medium of breast cancer cells MDA‐MB‐231 resulted in an increase in DNA damage, activation of the nuclear factor κB (NF‐κB) through nuclear translocation, and expression of inflammatory mediators in RS Spalax cells. Evaluation of SASP in aging Spalax brain and intestine confirmed downregulation of inflammatory‐related genes. These findings suggest a natural mechanism for alleviating the inflammatory response during cellular senescence and aging in Spalax, which can prevent age‐related chronic inflammation supporting healthy aging and longevity.  相似文献   

5.
Senescent cells contribute to age‐related pathology and loss of function, and their selective removal improves physiological function and extends longevity. Rapamycin, an inhibitor of mTOR, inhibits cell senescence in vitro and increases longevity in several species. Nrf2 levels have been shown to decrease with aging and silencing Nrf2 gene induces premature senescence. Therefore, we explored whether Nrf2 is involved in the mechanism by which rapamycin delays cell senescence. In wild‐type (WT) mouse fibroblasts, rapamycin increased the levels of Nrf2, and this correlates with the activation of autophagy and a reduction in the induction of cell senescence, as measured by SA‐β‐galactosidase (β‐gal) staining, senescence‐associated secretory phenotype (SASP), and p16 and p21 molecular markers. In Nrf2KO fibroblasts, however, rapamycin still decreased β‐gal staining and the SASP, but rapamycin did not activate the autophagy pathway or decrease p16 and p21 levels. These observations were further confirmed in vivo using Nrf2KO mice, where rapamycin treatment led to a decrease in β‐gal staining and pro‐inflammatory cytokines in serum and fat tissue; however, p16 levels were not significantly decreased in fat tissue. Consistent with literature demonstrating that the Stat3 pathway is linked to the production of SASP, we found that rapamycin decreased activation of the Stat3 pathway in cells or tissue samples from both WT and Nrf2KO mice. Our data thus suggest that cell senescence is a complex process that involves at least two arms, and rapamycin uses Nrf2 to regulate cell cycle arrest, but not the production of SASP.  相似文献   

6.
Summary: Senescence‐associated β‐galactosidase (SA‐β‐gal) activity is widely used as a marker of cellular senescence and as an indicator of organismal aging. Here, we report that SA‐β‐gal activity is present in the visceral endoderm layer of early postimplantation mouse embryos in predictable patterns that vary as the embryo progresses in development. However, determination of the mitotic index and analysis of the expression of Cdkn1a (p21), a marker of senescent cells, do not indicate cellular senescence. Instead, analysis of embryos in culture revealed the presence of SA‐β‐gal activity in apical vacuoles of visceral endoderm cells likely a reflection of acidic β‐galactosidase function in these organelles. SA‐β‐gal serves as a practical marker of the dynamics of the visceral endoderm that can be applied to developmental as well as functional studies of early mammalian embryos. genesis 52:300–308, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Despite intense interest in human mesenchymal stromal cells (MSCs), monitoring of the progressive occurrence of senescence has been hindered by the lack of efficient detection tools. Here, the discovery of a novel MSC senescence‐specific fluorescent probe (CyBC9) identified by a high‐throughput screen is reported. Compared with the prototypical senescence‐associated β‐galactosidase (SA‐β‐gal) staining, the CyBC9 assay is rapid (2 h) and nontoxic and can thus be applied to live cells. It is shown that CyBC9 is able to stain early and late senescent populations both in monolayer‐ and in microcarrier‐based cultures. Finally, to investigate the mechanism of CyBC9, colocalization assays are performed and it is found that CyBC9 is accumulated in the mitochondria of senescent MSCs presumably due to the loss of membrane potential. Taken together, it is expected that CyBC9 will be a useful tool to ameliorate cell therapy through rapid and early screening of senescent phenotypes in clinically relevant MSCs.  相似文献   

8.
Phenyl‐2‐pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near‐senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose‐ and time‐dependent manner and resulted in senescence‐associated β‐galactosidase (SA‐β‐gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence‐associated proteins, such as phosphorylated ERK1/2, caveolin‐1, p53, p16ink4a, and p21waf1, were elevated in PPKO‐treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N‐acetylcysteine, 2,2,6,6‐tetramethylpiperidinyloxy, and L‐buthionine‐(S,R)‐sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L‐NG‐nitroarginine methyl ester and L‐NG‐monomethylarginine, PPKO‐induced transient NO production and SA‐β‐gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence‐associated proteins .  相似文献   

9.
10.
Pharmacologically active compounds with preferential cytotoxic activity for senescent cells, known as senolytics, can ameliorate or even revert pathological manifestations of senescence in numerous preclinical mouse disease models, including cancer models. However, translation of senolytic therapies to human disease is hampered by their suboptimal specificity for senescent cells and important toxicities that narrow their therapeutic windows. We have previously shown that the high levels of senescence‐associated lysosomal β‐galactosidase (SA‐β‐gal) found within senescent cells can be exploited to specifically release tracers and cytotoxic cargoes from galactose‐encapsulated nanoparticles within these cells. Here, we show that galacto‐conjugation of the BCL‐2 family inhibitor Navitoclax results in a potent senolytic prodrug (Nav‐Gal), that can be preferentially activated by SA‐β‐gal activity in a wide range of cell types. Nav‐Gal selectively induces senescent cell apoptosis and has a higher senolytic index than Navitoclax (through reduced activation in nonsenescent cells). Nav‐Gal enhances the cytotoxicity of standard senescence‐inducing chemotherapy (cisplatin) in human A549 lung cancer cells. Concomitant treatment with cisplatin and Nav‐Gal in vivo results in the eradication of senescent lung cancer cells and significantly reduces tumour growth. Importantly, galacto‐conjugation reduces Navitoclax‐induced platelet apoptosis in human and murine blood samples treated ex vivo, and thrombocytopenia at therapeutically effective concentrations in murine lung cancer models. Taken together, we provide a potentially versatile strategy for generating effective senolytic prodrugs with reduced toxicities.  相似文献   

11.
Similar to other adult tissue stem/progenitor cells, bone marrow mesenchymal stem/stromal cells (BM MSCs) exhibit heterogeneity at the phenotypic level and in terms of proliferation and differentiation potential. In this study such a heterogeneity was reflected by the CD200 protein. We thus characterized CD200pos cells sorted from whole BM MSC cultures and we investigated the molecular mechanisms regulating CD200 expression. After sorting, measurement of lineage markers showed that the osteoblastic genes RUNX2 and DLX5 were up‐regulated in CD200pos cells compared to CD200neg fraction. At the functional level, CD200pos cells were prone to mineralize the extra‐cellular matrix in vitro after sole addition of phosphates. In addition, osteogenic cues generated by bone morphogenetic protein 4 (BMP4) or BMP7 strongly induced CD200 expression. These data suggest that CD200 expression is related to commitment/differentiation towards the osteoblastic lineage. Immunohistochemistry of trephine bone marrow biopsies further corroborates the osteoblastic fate of CD200pos cells. However, when dexamethasone was used to direct osteogenic differentiation in vitro, CD200 was consistently down‐regulated. As dexamethasone has anti‐inflammatory properties, we assessed the effects of different immunological stimuli on CD200 expression. The pro‐inflammatory cytokines interleukin‐1β and tumour necrosis factor‐α increased CD200 membrane expression but down‐regulated osteoblastic gene expression suggesting an additional regulatory pathway of CD200 expression. Surprisingly, whatever the context, i.e. pro‐inflammatory or pro‐osteogenic, CD200 expression was down‐regulated when nuclear‐factor (NF)‐κB was inhibited by chemical or adenoviral agents. In conclusion, CD200 expression by cultured BM MSCs can be induced by both osteogenic and pro‐inflammatory cytokines through the same pathway: NF‐κB.  相似文献   

12.
13.
Idiopathic pulmonary fibrosis (IPF) is an aging‐associated disease with poor prognosis. Currently, there are no effective drugs for preventing the disease process. The mechanisms underlying the role of alveolar epithelial cell (AEC) senescence in the pathogenesis of IPF remain poorly understood. We aimed to explore whether PTEN/NF‐κB activated AEC senescence thus resulting in lung fibrosis. First, we investigated the association between the activation of PTEN/NF‐κB and cellular senescence in lung tissues from IPF patients. As a result, decreased PTEN, activated NF‐κB and increased senescent markers (P21WAF1, P16ink4a, and SA‐β‐gal) were found in AECs in fibrotic lung tissues detected by immunohistochemistry (IHC) and immunofluorescence (IF). In vitro experiments showed increased expression levels of senescent markers and augmented senescence‐associated secretory phenotype (SASP) in AECs treated with bleomycin (Blm); however, PTEN was reduced significantly following IκB, IKK, and NF‐κB activation after stimulation with Blm in AECs. AEC senescence was accelerated by PTEN knockdown, whereas senescence was reversed via NF‐κB knockdown and the pharmacological inhibition (BMS‐345541) of the NF‐κB pathway. Interestingly, we observed increased collagen deposition in fibroblasts cultured with the supernatants collected from senescent AECs. Conversely, the deposition of collagen in fibroblasts was reduced with exposure to the supernatants collected from NF‐κB knockdown AECs. These findings indicated that senescent AECs controlled by the PTEN/NF‐κB pathway facilitated collagen accumulation in fibroblasts, resulting in lung fibrosis. In conclusion, our study supports the notion that as an initial step in IPF, the senescence process in AECs may be a potential therapeutic target, and the PTEN/NF‐κB pathway may be a promising candidate for intervention.  相似文献   

14.
15.
Interleukin‐1 alpha (IL‐1α) is a powerful cytokine that modulates immunity, and requires canonical cleavage by calpain for full activity. Mature IL‐1α is produced after inflammasome activation and during cell senescence, but the protease cleaving IL‐1α in these contexts is unknown. We show IL‐1α is activated by caspase‐5 or caspase‐11 cleavage at a conserved site. Caspase‐5 drives cleaved IL‐1α release after human macrophage inflammasome activation, while IL‐1α secretion from murine macrophages only requires caspase‐11, with IL‐1β release needing caspase‐11 and caspase‐1. Importantly, senescent human cells require caspase‐5 for the IL‐1α‐dependent senescence‐associated secretory phenotype (SASP) in vitro, while senescent mouse hepatocytes need caspase‐11 for the SASP‐driven immune surveillance of senescent cells in vivo. Together, we identify IL‐1α as a novel substrate of noncanonical inflammatory caspases and finally provide a mechanism for how IL‐1α is activated during senescence. Thus, targeting caspase‐5 may reduce inflammation and limit the deleterious effects of accumulated senescent cells during disease and Aging.  相似文献   

16.
This study investigated whether multiple bioactivity of terrein such as anti‐inflammatory and anti‐oxidant inhibits age‐related inflammation by promoting an antioxidant response in aged human diploid fibroblast (HDF) cells. HDF cells were cultured serially for in vitro replicative senescence. To create the ageing cell phenotype, intermediate stage (PD31) HDF cells were brought to stress‐induced premature senescence (SIPS) using hydrogen peroxide (H2O2). Terrein increased cell viability even with H2O2 stress and reduced inflammatory molecules such as intracellular adhesion molecule‐1 (ICAM‐1), cyclooxygenase‐2 (COX‐2), interleukin‐1beta (IL‐1β) and tumour necrosis factor‐alpha (TNF‐α). Terrein reduced also phospho‐extracellular kinase receptor1/2 (p‐EKR1/2) signalling in aged HDF cells. SIPS cells were attenuated for age‐related biological markers including reactive oxygen species (ROS), senescence associated beta‐galactosidase (SA β‐gal.) and the aforementioned inflammatory molecules. Terrein induced the induction of anti‐oxidant molecules, copper/zinc‐superoxide defence (Cu/ZnSOD), manganese superoxide dismutase (MnSOD) and heme oxygenase‐1 (HO‐1) in SIPS cells. Terrein also alleviated reactive oxygen species formation through the Nrf2/HO‐1/p‐ERK1/2 pathway in aged cells. The results indicate that terrein has an alleviative function of age‐related inflammation characterized as an anti‐oxidant. Terrein might be a useful nutraceutical compound for anti‐ageing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Endothelial cell senescence is a hallmark of vascular aging that predisposes to vascular disease. We aimed to explore the capacity of the renin–angiotensin system (RAS) heptapeptide angiotensin (Ang)‐(1‐7) to counteract human endothelial cell senescence and to identify intracellular pathways mediating its potential protective action. In human umbilical vein endothelial cell (HUVEC) cultures, Ang II promoted cell senescence, as revealed by the enhancement in senescence‐associated galactosidase (SA‐β‐gal+) positive staining, total and telomeric DNA damage, adhesion molecule expression, and human mononuclear adhesion to HUVEC monolayers. By activating the G protein‐coupled receptor Mas, Ang‐(1‐7) inhibited the pro‐senescence action of Ang II, but also of a non‐RAS stressor such as the cytokine IL‐1β. Moreover, Ang‐(1‐7) enhanced endothelial klotho levels, while klotho silencing resulted in the loss of the anti‐senescence action of the heptapeptide. Indeed, both Ang‐(1‐7) and recombinant klotho activated the cytoprotective Nrf2/heme oxygenase‐1 (HO‐1) pathway. The HO‐1 inhibitor tin protoporphyrin IX prevented the anti‐senescence action evoked by Ang‐(1‐7) or recombinant klotho. Overall, the present study identifies Ang‐(1‐7) as an anti‐senescence peptide displaying its protective action beyond the RAS by consecutively activating klotho and Nrf2/HO‐1. Ang‐(1‐7) mimetic drugs may thus prove useful to prevent endothelial cell senescence and its related vascular complications.  相似文献   

19.
It is well established that inflammation in the body promotes organism aging, and recent studies have attributed a similar effect to senescent cells. Considering that certain pro‐inflammatory cytokines can induce cellular senescence, systematically evaluating the effects of pro‐inflammatory cytokines in cellular senescence is an important and urgent scientific problem, especially given the ongoing surge in aging human populations. Treating IMR90 cells and HUVECs with pro‐inflammatory cytokines identified six factors able to efficiently induce cellular senescence. Of these senescence‐inducing cytokines, the activity of five (namely IL‐1β, IL‐13, MCP‐2, MIP‐3α, and SDF‐1α) was significantly inhibited by treatment with cetuximab (an antibody targeting epidermal growth factor receptor [EGFR]), gefitinib (a small molecule inhibitor of EGFR), and EGFR knockdown. In addition, treatment with one of the senescence‐inducing cytokines, SDF‐1α, significantly increased the phosphorylation levels of EGFR, as well as Erk1/2. These results suggested that pro‐inflammatory cytokines induce cellular senescence by activating EGFR signaling. Next, we found that EGF treatment could also induce cellular senescence of IMR90 cells and HUVECs. Mechanically, EGF induced cellular senescence via excessive activation of Ras and the Ras‐BRaf‐Erk1/2 signaling axis. Moreover, EGFR activation induced IMR90 cells to secrete certain senescence‐associated secretory phenotype factors (IL‐8 and MMP‐3). In summary, we report that certain pro‐inflammatory cytokines induce cellular senescence through activation of the EGFR‐Ras signaling pathway. Our study thus offers new insight into a long‐ignored mechanism by which EGFR could regulate cellular senescence and suggests that growth signals themselves may catalyze aging under certain conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号