首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. The habitat heterogeneity hypothesis predicts that heterogeneous habitats may provide more niches and diverse ways of exploiting environmental resources, thereby allowing more species to coexist, persist and diversify. 2. We aimed to investigate how an edge-interior gradient related to forest complexity influences species composition, abundance and richness of dung beetles in the western Amazon rainforest. We expected dung beetle abundance and richness to increase along the forest edge-interior gradient, in accordance with the habitat heterogeneity hypothesis. We also expected strong changes in species composition driven by species turnover in the forest interior and nestedness along the forest edges. We sampled dung beetles using baited pitfall traps across an edge-interior gradient. We also assessed the variation in forest features along the edge-interior gradient to identify changes in forest complexity. 3. Both species richness and abundance of dung beetles increased along the forest edge-interior, following the gradient of forest complexity. The Sorensen dissimilarity of dung beetle assemblages was higher among sampling units placed near the forest edge, although neither turnover, nor nestedness was different between the extremes of the forest edge-interior gradient. There was a clear compositional change along the edge-interior gradient mostly driven by species turnover. Individual indicator value analysis revealed that species were strongly associated with the forest interior conditions. 4. The simplification of the Amazon rainforest near clearings causes compositional changes in dung beetle assemblages. These changes are characterised by species-poor and low-abundance assemblages and may impair dung beetle ecological functions and therefore forest recovery.  相似文献   

2.

Aim

We investigated changes in dung beetle β‐diversity components along a subtropical elevational gradient, to test whether turnover or nestedness‐related processes drive the dissimilarity of assemblages at spatial and temporal scales.

Location

An elevational gradient (200–1,600 m a.s.l.) of the Atlantic Forest in southern Brazil.

Methods

We investigated the extent to which β‐diversity varied along the elevational gradient (six elevations) at both spatial (among sites at different elevations) and temporal (different months at the same site) scales. We compared both the turnover and nestedness‐related dissimilarity of species and genera using multiple‐site or multiple‐month measures and tested whether these measurements were different from random expectations.

Results

A mid‐elevation peak in species richness along the elevational gradient was observed, and the lowest richness occurred at the highest elevations. We found two different groups of species, lowland and highland species, with a mixing of groups at intermediate elevations. The turnover component of β‐diversity was significantly higher for both spatial (i.e. elevational) and temporal changes in species composition. However, when the data for genera by site were considered, the elevational turnover value decreased in relative importance. Nestedness‐related processes are more important for temporal dissimilarity patterns at higher elevation sites.

Main conclusions

Spatial and temporal turnover of dung beetle species is the most important component of β‐diversity along the elevational gradient. High‐elevation assemblages are not subsets of assemblages that inhabit lower elevations, but this relationship ceases when β‐diversity is measured at the generic level. Environmental changes across elevations may be the cause of the differential establishment of distinctive species, but these species typically belong to the same higher taxonomic rank. Conservation strategies should consider elevational gradients in case‐specific scenarios as they may contain distinct species assemblages in lowlands vs. highlands.
  相似文献   

3.
4.
Human activities are causing a rapid loss of biodiversity, which impairs ecosystem functions and services. Therefore, understanding which processes shape how biodiversity is distributed along spatial and environmental gradients is a first step to guide conservation and management efforts. We aimed to determine the relative explanatory importance of biogeographic, environmental, landscape and spatial variables on assemblage dissimilarities and functional diversity of dung beetles along the Atlantic Forest–Pampa (i.e. forest–grassland) transition zone located in Southeast South America. We described each site according to their biogeographic position, environmental conditions, landscape features and spatial patterns. The compositional dissimilarity was partitioned into turnover and nestedness components of β‐diversity. Mantel tests and generalised dissimilarity models were used to relate β‐diversity and its components to biogeographic, environmental, landscape and spatial variables. Variation partitioning analysis was used to estimate the pure and shared variation in species composition and functional diversity explained by the four categories of predictors. Biome domain was the main factor causing dung beetle compositional dissimilarity, with a high species replacement between Atlantic Forest and Pampa. Biogeographic, environmental, landscape and spatial distances also affected the patterns of dung beetle dissimilarity and β‐diversity components. The shared effects of the four sets of predictors explained most of the variation in dung beetle composition. A similar response pattern was found for dung beetle functional diversity, which excluded biogeographic effects. Only the pure effects of environmental and spatial predictors were significant for species composition and functional diversity. Our results indicate that dung beetle species composition and functional diversity are jointly driven by environmental, landscape and spatial predictors with higher pure environmental and spatial effects. The forest–grassland transition zone promotes a strong species and trait replacement highly influenced both by environmental filtering and dispersal limitation.  相似文献   

5.
小兴安岭阔叶红松林地表甲虫Beta多样性   总被引:3,自引:1,他引:2  
Beta多样性用来衡量集群内物种组成的变异性,可以被分解为空间物种转换和物种集群镶嵌两个组分,是揭示群落构建机制的重要基础。目前开展了较多的地上生态系统beta多样性研究,然而地下生态系统beta多样性进展缓慢。以小兴安岭凉水和丰林自然保护区为研究地区,于2015年8、10月采用陷阱法对阔叶红松林进行调查,揭示地表甲虫(步甲科、隐翅虫科、葬甲科)的beta多样性。结果表明:(1)凉水共发现39种、856只地表甲虫,丰林共发现43种、1182只地表甲虫。8月凉水明显具有较高的全部甲虫(三个科的总和)物种多样性和丰富度,10月正好相反。(2)凉水和丰林之间地表甲虫beta多样性的差异仅发现于8月的步甲科和葬甲科之间。(3)凉水和丰林地表甲虫的beta多样性主要由空间物种转换组成,物种集群镶嵌对beta多样性的贡献很小,说明地表甲虫物种组成变异主要由本地物种之间较高的转换引起。研究表明小兴安岭阔叶红松林地表甲虫的beta多样性主要由空间物种转换组成,在揭示群落构建机制过程中,其内部物种交换和环境调控不容忽视。  相似文献   

6.
7.
Traditional agro-pastoral practices are in decline over much of the Alps, resulting in the complete elimination of livestock grazing in some areas. Natural reforestation following pastoral abandonment may represent a significant threat to alpine biodiversity, especially that associated with open habitats. This study presents the first assessment of the potential effects of natural reforestation on dung beetles by exploring the relationships between the beetle community (abundance, diversity, species turnover and assemblage structure) and the vegetation stages of ecological succession following pastoral abandonment. A hierarchical sampling design was used in the montane belt of the Sessera Valley (north-western Italian Alps). Dung beetles were sampled across 16 sampling sites set in four habitat types corresponding to four different successional stages (pasture, shrub, pioneer forest and beech forest) at two altitudinal levels. The two habitats at the extremes of the ecological succession, i.e. pasture and beech forest, had the greatest effect on the structure of local dung beetle assemblages. Overall, dung beetle abundance was greater in beech forest, whereas species richness, Shannon diversity and taxonomic diversity were significantly higher in pasture, hence suggesting this latter habitat can be considered as a key conservation habitat. Forests and pastures shared a lower number of species than the other pairs of habitats (i.e. species turnover between these two habitats was the highest). The two intermediate seral stages, i.e. shrub and pioneer forest, showed low dung beetle abundance and diversity values. Local dung beetle assemblages were also dependent on season and altitude; early-arriving species were typical of pastures of high elevation, whereas late-arriving species were typical of beech forests. It is likely that grazing in the Alps will continue to decrease in the future leading to replacement of open habitats by forest. This study suggests therefore that, at least in the montane belt, reforestation may have potentially profound and negative effects on dung beetle diversity. Maintaining traditional pastoral activities appears to be the most promising approach to preserve open habitats and adjacent beech forests, resulting in the conservation of species of both habitats.  相似文献   

8.
《Journal of Asia》2022,25(4):101993
We examined the diversity of ground-dwelling (epigaeic) beetles at different elevations of the northern and southern slopes of Mt. Jirisan National Park, South Korea. We selected eight study sites from both slopes and collected the beetles 10 times from May 2018 to August 2019 using pitfall traps. We collected a total of 67 species and 12,304 individuals and found higher species richness and abundance among the beetles from the northern slope (54 species and 6,969 individuals) than the southern slope (46 species and 5,335 individuals). We observed that the proportion of species based on the biogeographic affinity (Palearctic or Oriental) did not depend on the elevation and slope. The species richness increased with elevation and the abundance showed hump-shaped with a peak at 800 m. While the overall beta diversity was similar at the mountain and slope levels, the underlying processes such as spatial turnover and nestedness differed at the mountain and slope levels, respectively. We found that the ground beetle assemblages depended on elevation and soil characteristics such as soil organic matter and pH but were unaffected by the vegetation type.  相似文献   

9.
溪流鱼类多样性沿着河流纵向梯度的空间分布规律已得到大量报道, 但这些研究大多聚焦基于物种组成的分类α多样性, 而有关分类β多样性和功能多样性的纵向梯度分布规律及其对人类干扰的响应研究较少。本文以青弋江上游3条人为干扰程度不同的河源溪流为研究区域, 比较研究了人为干扰对溪流鱼类功能α和β多样性及其纵向梯度分布格局的影响。结果显示, 人类干扰改变了河源溪流鱼类功能多样性的纵向梯度格局——由线性变化变为二项式分布。此外, 我们发现, 人为干扰导致土著种被本地入侵种取代, 且较强的土地利用和水污染排放可能增大环境的不连续性, 而群落周转和嵌套变化往往取决于环境的变化。尽管功能β多样性由嵌套成分主导, 但周转成分占比相对于人为干扰较小的溪流而言明显增加。人为干扰显著改变了受干扰溪流鱼类的物种组成和功能多样性, 且功能多样性的纵向梯度格局在不同的多样性指标上存在差异。本研究强调, 在评估人为干扰下多样性的变化时, 需要从多方面考虑, 包括空间尺度和多样性指标等。  相似文献   

10.
The Mediterranean region as a whole has the highest dung beetle species richness within Europe. Natural coastal habitats in this region are among those which have suffered severe human disturbance. We studied dung beetle diversity and distinctiveness within one of the most important coastal protected areas in the west Euro‐Mediterranean region (the regional Park of Camargue, southern France) and made comparisons of dung beetle assemblages with other nearby Mediterranean localities, as well as with other coastal protected area (Doñana National Park, Spain). Our finding showed that: (1) The species richness of coastal habitats in the Camargue is low and only grasslands showed a similar level of species richness and abundance to inland habitats of other Mediterranean localities. The unique habitats of the coastal area (beaches, dunes and marshes) are largely colonized by species widely distributed in the hinterland. (2) In spite of their low general distinctiveness, dune and marsh edges are characterized by the occurrence of two rare, vulnerable, specialized and large roller dung beetle species of the genus Scarabaeus. As with other Mediterranean localities, current findings suggest a recent decline of Scarabaeus populations and the general loss of coastal dung beetle communities in Camargue. (3) The comparison of dung beetle assemblages between the Camargue and Doñana shows that, in spite of the low local dung beetle species richness in the Camargue, the regional dung beetle diversity is similar between both protected areas. Unique historical and geographical factors can explain the convergence in regional diversity as well as the striking divergence in the composition of dung beetle assemblages between both territories.  相似文献   

11.
  1. An important service in many ecosystems is the turnover and degradation of dung deposited by cattle. Dung beetles are the primary group of insects responsible for dung turnover, and factors affecting their abundance and distribution thus impact dung degradation. Lands lost to grazing due to dung buildup and pasture contamination total millions of acres per year in US pastures.
  2. We evaluated the structural differences in dung beetle assemblages in natural grasslands versus a managed agroecosystem in subtropical southeastern Florida (USA). We measured the direct effect of dung longevity when dung beetle fauna normally inhabiting dung pats were excluded.
  3. Our results indicate dung beetle abundance, functional diversity, and species richness have a substantial impact on the rate of dung turnover in subtropical pastoral lands with ~70% of dung removed from the soil surface after three months. Functional diversity and evenness did not have a significant positive effect on dung removal in managed, versus natural grasslands demonstrating a strong relationship between dung beetle assemblage composition and delivery of a key ecological process, dung degradation.
  4. We suggest the importance of trees, which provide a thermal refuge for beetles, should be dispersed within matrixes of open pasture areas and within proximity to adjacent closed‐canopy hammocks to facilitate the exchange of dung beetles between habitats and therefore maintain the provisioning of dung degradation services by dung beetle assemblages.
  相似文献   

12.
Abstract In studies of biodiversity, considerations of scale—the spatial or temporal domain to which data provide inference—are important because of the non-arithmetic manner in which species richness increases with area (and total abundance) and because fine-scale mechanisms (for example, recruitment, growth, and mortality of species) can interact with broad scale patterns (for example, habitat patch configuration) to influence dynamics in space and time. The key to understanding these dynamics is to consider patterns of environmental heterogeneity, including patterns produced by natural and anthropogenic disturbance. We studied how spatial variation in three aspects of biodiversity of terrestrial gastropods (species richness, species diversity, and nestedness) on the 16-ha Luquillo Forest Dynamics Plot (LFDP) in a tropical forest of Puerto Rico was affected by disturbance caused by Hurricanes Hugo and Georges, as well as by patterns of historic land use. Hurricane-induced changes in spatial organization of species richness differed from those for species diversity. The gamma components of species richness changed after the hurricanes and were significantly different between Hurricanes Hugo and Georges. Alpha and two beta components of species richness, one related to turnover among sites within areas of similar land use and one related to variation among areas of different land use, varied randomly over time after both hurricanes. In contrast, gamma components of species diversity decreased in indistinguishable manners after both hurricanes, whereas the rates of change in the alpha component of species diversity differed between hurricanes. Beta components of diversity related to turnover among sites declined after both hurricanes in a consistent fashion. Those related to turnover among areas with different historic land uses varied stochastically. The immediate effect of hurricanes was to reduce nestedness of gastropod assemblages. Thereafter, nestedness increased during post-hurricane secondary succession, and did so in the same way, regardless of patterns of historic land use. The rates of change in degree of nestedness during secondary succession were different after each hurricane as a result of differences in the severity and extent of the hurricane-induced damage. Our analyses quantified temporal changes in the spatial organization of biodiversity of gastropod assemblages during forest recovery from hurricane-induced damage in areas that had experienced different patterns of historic human land use, and documented the dependence of biodiversity on spatial scale. We hypothesize that cross-scale interactions, likely those between the local demographics of species at the fine scale and the landscape configuration of patches at the broad scale, play a dominant role in affecting critical transfer processes, such as dispersal, and its interrelationship with aspects of biodiversity. Cross-scale interactions have significant implications for the conservation of biodiversity, as the greatest threats to biodiversity arise from habitat modification and fragmentation associated with disturbance arising from human activities.  相似文献   

13.
确定溪流鱼类多样性的时空分布格局可为鱼类多样性保护与管理提供科学基础。尽管溪流鱼类分类群多样性的纵向梯度格局已有大量报道, 但以鱼类生物学特征为基础的功能多样性研究较少。本文基于2009-2010年4个季度对青弋江1-5级溪流共15个样点的调查数据, 利用形态特征数据和食性构建了鱼类复合功能群, 研究了不同级别溪流间鱼类分类群和功能群组成及多样性的异同, 着重探讨了鱼类分类群和功能群的α和β多样性沿溪流纵向梯度的变化规律。采集到的56种鱼类可分为4个营养功能群和5个运动功能群, 共计14个“营养-运动”复合功能群。双因素交互相似性分析结果显示, 鱼类分类群和功能群组成都随河流级别显著变化, 但季节动态不显著; 双因素方差分析后发现, 鱼类分类群和功能群α、β多样性都随河流级别显著变化, 但受季节影响不显著。经回归分析, 分类群和功能群α多样性与河流级别大小呈显著的线性正相关, 但最大分类群α多样性出现于4级河流, 最大功能群α多样性在4级和5级河流间一致; 分类群和功能群β多样性与河流级别大小呈显著的二项式关系, 呈U型分布。分类群β多样性的空间变化主要取决于物种周转, 而功能群β多样性主要由嵌套所驱动。本研究表明, 沿着“上游-下游”的纵向梯度, 河流鱼类的α和β多样性的空间变化规律不同, 分类群和功能群α多样性的空间格局基本一致, 但分类群(主要是物种周转)和功能群β多样性(主要是功能嵌套)的空间变化过程的驱动机制不同。  相似文献   

14.
The disturbance of natural environments affects, among others, the diversity of dung beetle assemblages, which could have serious consequences for the ecological processes regulated by these insects. The objective of this study was to evaluate and compare species diversity and functional groups of dung beetle assemblages both in the native forest and in three livestock systems that differed in their structure and composition of vegetation: a livestock system with native trees, a livestock system with exotic trees (Pinus taeda), and traditional open pastures, in the semideciduous Atlantic forest of Argentina, in an area previously covered by continuous forest and currently with a heterogeneous landscape of native forest and different land uses. Pitfall traps baited with cow dung were used in the natural forests and the livestock systems studied. A total of 2461 beetles belonging to 38 species were captured. Treed livestock systems showed the highest species richness (0D) and diversity (1D and 2D). Twelve functional groups were identified. The native forest showed the highest functional group richness, while open pastures had the lowest. In general, livestock systems showed a low proportional abundance of telecoprid, diurnal and large beetles. Microclimate (average temperature and humidity) and soil conditions (soil composition: sandy or clayey) were closely associated with the species and functional group composition. Results confirm that cattle ranching with tree retention preserves dung beetle diversity, and suggest that cattle systems without canopy cover have higher impact (negative effects) than silvopastoral systems on both species and functional groups.  相似文献   

15.
陈又清  李巧  王思铭 《昆虫学报》2009,52(12):1319-1327
为揭示紫胶林-农田复合生态系统地表甲虫多样性, 于2006-2007年在云南省绿春县牛孔乡采用陷阱法调查了天然紫胶林、人工紫胶林和旱地的地表甲虫群落。共采集标本1 678头, 分别隶属于24科120种, 其中步甲科(Carabidae)和金龟科(Scarabaeidae)种类最丰富, 均占全部种类的12.50%。拟步甲科(Tenebrionidae)个体数量最丰富, 占个体总数的64.48%; 金龟科次之, 占个体总数的17.58%。大多数科的物种数和个体数在不同土地利用生境中的分布没有显著差异, 而步甲科、隐翅甲科(Staphylinidae)、叩甲科(Elateridae)、拟步甲科、瓢虫科(Coccinellidae)和小蠧科(Scolytidae)在不同土地利用生境中的分布有显著差异。天然紫胶林地表甲虫个体数量最少, 物种较丰富, 优势度最低, 多样性最高; 人工紫胶林个体数和物种数均丰富, 优势度和多样性居中; 旱地个体数量最多, 物种最贫乏, 优势度最高, 多样性最低。种级水平的聚类分析体现出人工紫胶林与旱地之间在种类组成上距离较近; 而科级水平的聚类反映出人工紫胶林和天然紫胶林更接近。结果提示, 紫胶林-农田复合生态系统具有区域内土地利用方式多样化的特点; 天然紫胶林在维持地表甲虫多样性水平上具有重要作用, 而人工紫胶林虽具有积极作用, 但仍需进一步恢复。  相似文献   

16.
1. While it is clear that land‐use change significantly impacts the taxonomic dimension of soil biodiversity, how the functional dimension responds to land‐use change is less well understood. 2. This study examined how the transformation of primary forests into rubber tree monocultures impacts individual termite species and how this change is reflected in termite taxonomic and functional α‐diversity (within site) and β‐diversity (among sites). 3. Overall, individual species responded strongly to land‐use change, whereby only 11 of the 27 species found were able to tolerate both habitats. These differences caused a 27% reduction in termite taxonomic richness and reduced taxonomic β‐diversity in rubber plantations compared with primary forests. The study also revealed that the forest conversion led to a shift in some termite species with smaller body size, shorter legs and smaller mandibular traits. Primary forests exhibited higher functional richness and functional β‐diversity of termite species, indicating that functional traits of termite species in rubber plantations are more evenly distributed. 4. The present study suggests that forest conversion does not merely decrease taxonomic diversity of termites, but also exerts functional trait filtering within some termite species. The results affirm the need for biodiversity assessments that combine taxonomic and functional indicators when monitoring the impact of land‐use change.  相似文献   

17.
Aim To assess the potential impacts of future climate change on spatio‐temporal patterns of freshwater fish beta diversity. Location Adour–Garonne River Basin (France). Methods We first applied an ensemble modelling approach to project annually the future distribution of 18 fish species for the 2010–2100 period on 50 sites. We then explored the spatial and temporal patterns of beta diversity by distinguishing between its two additive components, namely species turnover and nestedness. Results Taxonomic homogenization of fish assemblages was projected to increase linearly over the 21st century, especially in the downstream parts of the river gradient. This homogenization process was almost entirely caused by a decrease in spatial species turnover. When considering the temporal dimension of beta diversity, our results reveal an overall pattern of decreasing beta diversity along the upstream–downstream river gradient. In contrast, when considering the turnover and nestedness components of temporal beta diversity we found significant U‐shaped and hump‐shaped relationships, respectively. Main conclusions Future climate change is projected to modify the taxonomic composition of freshwater fish assemblages by increasing their overall similarity over the Adour–Garonne River Basin. Our findings suggest that the distinction between the nestedness and turnover components of beta diversity is not only crucial for understanding the processes shaping spatial beta‐diversity patterns but also for identifying localities where the rates of species replacement are projected to be greatest. Specifically we recommend that future conservation studies should not only consider the spatial component of beta diversity but also its dynamic caused by climate warming.  相似文献   

18.
Aim Plant and arthropod diversity are often related, but data on the role of mature tree diversity on canopy insect communities are fragmentary. We compare species richness of canopy beetles across a tree diversity gradient ranging from mono‐dominant beech to mixed stands within a deciduous forest, and analyse community composition changes across space and time. Location Germany’s largest exclusively deciduous forest, the Hainich National Park (Thuringia). Methods We used flight interception traps to assess the beetle fauna of various tree species, and applied additive partitioning to examine spatiotemporal patterns of diversity. Results Species richness of beetle communities increased across the tree diversity gradient from 99 to 181 species per forest stand. Intra‐ and interspecific spatial turnover among trees contributed more than temporal turnover among months to the total γ‐beetle diversity of the sampled stands. However, due to parallel increases in the number of habitat generalists and the number of species in each feeding guild (herbivores, predators and fungivores), no proportional changes in community composition could be observed. If only beech trees were analysed across the gradient, patterns were similar but temporal (monthly) species turnover was higher compared to spatial turnover among trees and not related to tree diversity. Main conclusions The changes in species richness and community composition across the gradient can be explained by habitat heterogeneity, which increased with the mix of tree species. We conclude that understanding temporal and spatial species turnover is the key to understanding biodiversity patterns. Mono‐dominant beech stands are insufficient to conserve fully the regional species richness of the remaining semi‐natural deciduous forest habitats in Central Europe, and analysing beech alone would have resulted in the misleading conclusion that temporal (monthly) turnover contributes more to beetle diversity than spatial turnover among different tree species or tree individuals.  相似文献   

19.
Aim Using dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in a tropical land‐bridge island system, we test for the small island effect (SIE) in the species–area relationship and evaluate its effects on species richness and community composition. We also examine the determinants of species richness across island size and investigate the traits of dung beetle species in relation to their local extinction vulnerability following forest fragmentation. Location Lake Kenyir, a hydroelectric reservoir in north‐eastern Peninsular Malaysia. Methods We sampled dung beetles using human dung baited pitfall traps on 24 land‐bridge islands and three mainland sites. We used regression tree analyses to test for the SIE, as well as species traits related to local rarity, as an indication of extinction vulnerability. We employed generalized linear models (GLMs) to examine determinants for species richness at different scales and compared the results with those from conventional linear and breakpoint regressions. Community analyses included non‐metric multidimensional scaling, partial Mantel tests, nestedness analysis and abundance spectra. Results Regression tree analysis revealed an area threshold at 35.8 ha indicating an SIE. Tree basal area was the most important predictor of species richness on small islands (<35.8 ha). Results from GLMs supported these findings, with isolation and edge index also being important for small islands. The SIE also manifested in patterns of dung beetle community composition where communities on small islands (<35.8 ha) departed from those on the mainland and larger islands, and were highly variable with no significant nestedness, probably as a result of unexpected species occurrences on several small islands. The communities exhibited a low degree of spatial autocorrelation, suggesting that dispersal limitation plays a part in structuring dung beetle assemblages. Species with lower baseline density and an inability to forage on the forest edge were found to be rarer among sites and hence more prone to local extinction. Main conclusions We highlight the stochastic nature of dung beetle community composition on small islands and argue that this results in reduced ecosystem functionality. A better understanding of the minimum fragment size required for retaining functional ecological communities will be important for effective conservation management and the maintenance of tropical forest ecosystem stability.  相似文献   

20.
Colophospermum mopane woodland covers large areas of dry lowland savanna in southeastern Africa. Dominant land usage is conservation (45%) with the remainder mostly modified by farming. Dung beetle responses to environment (dung type, habitat, weather) and land usage (conservation, farming, mining) were examined at Phalaborwa (23.9431°S 31.1411°E) in the Phalaborwa‐Timbavati Mopaneveld, South Africa. Partitioning of gamma species richness and diversity showed lower alpha values in mine areas than in farm and conserved areas. However, between‐land usage differences in species richness, alpha diversity, abundance and biomass, showed lower significance than those between dung type and different weather. At two sampling scales, three multivariate techniques variously separated assemblages according to land usage, dung type and weather. Analysis of 21 mean samples separated clusters according to dung type (Canonical Correspondence Analysis, CCA) or mine assemblages, conserved plus farm assemblages on pig plus elephant, or cattle dung (NMDS, Factor Analysis) with shared variance of >80% and unique variance of 16–18% per cluster. In analysis of 188 samples (CCA), each overlapping dung type cluster was offset in ordinal space with congruent patterns of separation according to land usage and weather (drier days distant from moister days; conserved plus farm areas distant from early succession mine areas, which were distant from disturbed and later succession mine areas). Mining, dung types, and moist conditions were the strongest contributors to between‐assemblage differences. Compared with conserved areas, dung beetle diversity is appreciably altered by mining but only slightly altered by intensive game farming or livestock ranching with subsistence agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号