首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoplankton succession and sinking rates were studied from January to December 2003 at a coastal station in the Gulf of Trieste (northern Adriatic Sea), 200 m offshore, in a relatively undisturbed area. A conical sediment trap, moored at 15 m depth (water depth 17 m), was used. The hypothesis if the presence of benthic and epiphytic diatoms can lead to an overestimation of the vertical fluxes was tested. To evaluate primary and secondary sedimentation contributions, planktonic, benthic and epiphytic diatoms were distinguished. Benthic species abundance varied throughout the year and it was related to resuspension that strongly influenced sinking rates. All over the year, diatoms were the prevailing class in the trap material accounting for 75.32% of the settled cells, while flagellates represented 24.11%. Dinophyceae and resting cells constituted minor components, accounting for 0.43% and 0.14%, respectively. The gross sedimentation rates ranged from 0.006 × 108 cell m−2 d−1 in the second week of May to 6.30 × 108 cell m−2 d−1 in the third week of January with a mean annual value of 1.09 ± 1.43 × 108 cell m−2 d−1. To the primary sedimentation rate Pseudo-nitzschia seriata of the group “Nitzschia seriata complex” contributed for 49.77% followed by Chaetoceros spp. (23.88%). The major contributor to the secondary sedimentation rate was the diatom Paralia sulcata, accounting for 24.76%. Epiphytic diatoms contributed for 11.19% and 12.27% on annual average gross abundance and biomass, respectively, reaching even 72.04% of gross abundance and 56.06% of gross biomass in the second week of August. The correlation between temperature and the logarithm of the epiphytic biomass was statistically significant, with r = 0.66 and P < 0.001. Both in the cluster analysis and in the PCA four main groups were formed, where benthic and epiphytic species were separately gathered. Planktonic, benthic and epiphytic forms accounted for 50.78%, 36.95% and 12.27%, respectively, calculated on the annual average biomass. Therefore, vertical fluxes can be overestimated of 50% or more if benthic and epiphytic species are not rejected.  相似文献   

2.
The growth rate of abalone post larvae of Haliotis rufescens fed ad libitum with a benthic monoalgal diatom culture maintained as monocultures on a semi-commercial scale, was evaluated and correlated with the biochemical composition of the diatoms. The cell size (7.0 × 4.0 μm to 21.0 × 7.5 μm), protein percentage (7.42% to 13.66%), and ash content (49.03% to 59.61%) were different among diatom strains; lipid percentage, nitrogen free extract, and energy content (Kcal g−1) were similar among diatom strains. The values of essential and non-essential amino and fatty acids composition differed among diatom strains. Differences in the abalone shell length and orthogonal analyses revealed postlarval growth was dependent on the quality of the food source. Postlarvae abalone displaying the longest shell lengths were fed Nitzschia thermalis var. minor and Amphiprora paludosa var. hyalina (1,712.0 ± 61 μm and 1,709 ± 67 μm, respectively), followed by Navicula incerta (1,413.3 ± 43 μm). The fatty acid content of benthic diatoms and abalone growth rate were not correlated.  相似文献   

3.
In saline lakes, areal cover and both species and structural diversity of macrophytes often decline as salinity increases. To assess effects of the loss of certain macrophyte growth forms, we characterized benthic and epiphytic invertebrates in three growth forms (thin-stemmed emergents, erect aquatics, and low macroalgae) in oligosaline lakes (0.8–4.2 mS cm−1) of the Wyoming High Plains, USA. We also measured the biomass and taxonomic composition of epiphytic and benthic invertebrates in two erect aquatics with very similar structure that are found in both oligosaline (Potamogeton pectinatus) and mesosaline (9.3–23.5 mS cm−1) (Ruppia maritima) lakes. Although total biomass of epiphytic invertebrates varied among oligosaline lakes, the relative distribution of biomass among growth forms was similar. For epiphytic invertebrates, biomass per unit area of lake was lowest in emergents and equivalent in erect aquatics and low macroalgae; biomass per unit volume of macrophyte habitat was greatest in low macroalgae. For benthic invertebrates, biomass was less beneath low macroalgae than other growth forms. Taxonomic composition did not differ appreciably between growth forms for either benthic or epiphytic invertebrates, except that epiphytic gastropods were more abundant in erect aquatics. Total biomass of epiphytic and benthic invertebrates for the same growth form (erect aquatic) did not differ between oligosaline (Potamogeton pectinatus) and mesosaline (Ruppia maritima) lakes, but taxonomic composition did change. In the oligosaline to mesosaline range, direct toxic effects of salinity appeared important for some major taxa such as gastropods and amphipods. However, indirect effects of salinity, such as loss of macrophyte cover and typically higher nutrient levels at greater salinities, probably have larger impacts on total invertebrate biomass lake-wide.  相似文献   

4.
Diatoms have been long collected from the Southern Ocean but almost no data exist for epiphytic communities, despite their high ecological significance as an important food source in Antarctic coastal food chains. Here, we present a first growth form analysis of diatoms associated with rhodophyte hosts from Terra Nova Bay, Ross Sea, Antarctica. We performed this study to gather baseline information on the species composition of epiphytic diatom communities, determine the influence of some environmental variables on the diatom distribution patterns, and assess the caveats that must be taken into account in terms of sampling design. Macroalgal material was collected during the Italian Antarctic expeditions between 1990 and 2004. Epiphytic diatoms were studied by means of scanning electron microscopy. In terms of growth forms, there were no significant differences between the diatom communities on the different macroalgal host species. Motile (mainly small-celled Navicula perminuta and other Navicula spp.) and adnate (Cocconeis spp.) diatoms dominated the community throughout the study period. Many of the macroalgal blades examined were also covered by epiphytic animals (calcareous bryozoans, hydroids) over most of their surface, with a significant effect on the associated diatom community structure. Our findings suggest that the bio-physicochemical characteristics of each sampling site affected the epiphytic diatom communities more than the substrate type provided by the macroalgal host or the sampling depth.  相似文献   

5.
Large epiphytic and epilithic diatom species hosting other diatoms were observed in several fresh‐ and brackish water sites in Southern California. The most commonly encountered hosts were species forming long filaments attached to rocks or macroalgae, Hydrosera whampoensis (Schwarz) Hendey, Melosira varians Agardh, Pleurosira laevis (Ehrenberg) Compere and Terpsinoe musica Ehrenberg. These large diatoms often had smaller diatoms attached, usually to the girdle bands and occasionally to the mucilage pads connecting the cells. For example, cells of T. musica were observed supporting growth of a diverse diatom assemblage composed of species of the genera Achnanthes, Achnanthidium, Amphora, Cocconeis and Tabularia; Synedra sp. was attached to M. varians and B. paxillifer; and Cocconeis placentula was seen on H. whampoensis. Thus, large epiphytic and epilithic diatoms seem to provide suitable sites for attachment of small epiphytic diatom species, and it appears that this phenomenon is more common than previously thought.  相似文献   

6.
We assessed the feasibility of using herbarium specimens to validate reference conditions in the UK by comparing diatom community composition of river sites with both recent and historic diatom samples. The question of substrate specificity was addressed by comparing epilithon (stone-derived) and epiphyton (plant-derived) samples from a number of rivers. No significant differences were found between the Trophic Diatom Index (TDI), species richness, species diversity, and percentage of motile valves between paired diatom samples (epilithic and epiphytic) from contemporary samples. Significant differences were recorded between a number of indices derived from analysis of the historic diatom samples on plant material sampled pre-1930 compared with diatoms from stones collected post-1990 from the same river location. The TDI, mean species richness, and species diversity and percentage of motile valves and nutrient tolerant valves were all significantly greater in the contemporary samples (p ≤ 0.05). The percentage of nutrient sensitive valves was significantly lower in the contemporary samples (p ≤ 0.05).The relative abundance of Achnanthidium minutissimum and Cocconeis placentula var. lineata was significantly greater on the herbarium material compared to matched contemporary samples. Calculated values for the TDI (43 ± 3) expected at reference conditions were similar to the observed TDI values derived from herbarium material (44 ± 12) showing no significant deviation in ecological status.  相似文献   

7.
The structure of intertidal benthic diatoms assemblages in the Tagus estuary was investigated during a 2‐year survey, carried out in six stations with different sediment texture. Nonparametric multivariate analyses were used to characterize spatial and temporal patterns of the assemblages and to link them to the measured environmental variables. In addition, diversity and other features related to community physiognomy, such as size‐class or life‐form distributions, were used to describe the diatom assemblages. A total of 183 diatom taxa were identified during cell counts and their biovolume was determined. Differences between stations (analysis of similarity (ANOSIM), = 0.932) were more evident than temporal patterns (= 0.308) and mud content alone was the environmental variable most correlated to the biotic data (BEST, ρ = 0.863). Mudflat stations were typically colonized by low diversity diatom assemblages (H′ ~ 1.9), mainly composed of medium‐sized motile epipelic species (250–1,000 μm3), that showed species‐specific seasonal blooms (e.g., Navicula gregaria Donkin). Sandy stations had more complex and diverse diatom assemblages (H′ ~ 3.2). They were mostly composed by a large set of minute epipsammic species (<250 μm3) that, generally, did not show temporal patterns. The structure of intertidal diatom assemblages was largely defined by the interplay between epipelon and epipsammon, and its diversity was explained within the framework of the Intermediate Disturbance Hypothesis. However, the spatial distribution of epipelic and epipsammic life‐forms showed that the definition of both functional groups should not be over‐simplified.  相似文献   

8.
The composition of the diatom community on the bryozoans Electra pilosa, Membranipora membranacea, Flustra foliacea, and Alcyonidium gelatinosum from the German Bight was studied by light and scanning electron microscopy. In total, members of 26 diatom genera were found, with Cocconeis, Tabularia, Licmophora, Amphora, and Navicula being the most abundant. The amount and the composition of the diatom covering seem to be typical for single bryozoan species. Electra pilosa and Membranipora membranacea showed a rather dense covering with 71–547 cells/mm2 and 77–110 cells/mm2, respectively. The most prominent genus on Electra pilosa was Cocconeis, reaching up to 58% of all diatoms in one sample, followed by Navicula, Tabularia and Amphora. The most abundant genera on Membranipora membranacea were Tabularia and Licmophora, making up almost 70% of all diatoms in one sample, followed by Navicula, Cocconeis and Amphora. The diatom composition was very stable on all Electra samples, but varied on Membranipora samples. With <1–27 cells/mm2, diatoms were much less abundant on Alcyonidium gelatinosum. Members of the genera Tabularia and Navicula were the most frequently found benthic diatoms, whereas the planktonic forms Coscinodiscus, Cyclotella, and Thalassiosira made up 35% of the diatoms. On Flustra foliacea, diatoms were virtually absent, with fewer than 5 cells/mm2. The low diatom numbers are probably due to toxic metabolites produced by the host. The same may be true for Alcyonidium gelatinosum, but here they might also be a consequence of the surface properties of the bryozoan. Electronic Publication  相似文献   

9.
Martin Haase 《Hydrobiologia》1996,332(2):119-129
Grain density microautoradiography (MAR) was used to study uptake of dissolved amino acids (DFAA) in microalgal communities from a sandy bay on the west coast of Sweden. A mixture of fifteen 3H-labeled amino acids (final concentration 20–80 nmol l–1) was added to sediment samples collected from two depths (0.5 and 4 m), on five occasions representing different seasons. On all sampling occasions, the microflora was dominated by diatoms (> 85% of the total biomass). Cyanobacteria occurred in the summer and autumn, but never dominated the biomass. Between 5 and 48% of all counted algal cells showed uptake (1–44% of algal biomass). Uptake was recorded for all majors microalgal groups (diatoms, cyanobacteria and autotrophic flagellates). Uptake was more frequent on the shallow site and the highest proportion of cells showing uptake occurred in May. Although uptake was common among both motile and attached growth forms, on several occasions uptake frequencies were higher for attached cells. As the attached fraction is frequently burried out of the photic zone, and not able to rapidly migrate towards light, this implies that heterotrophic capacity should be valuable. Also at species level, some taxa showed higher uptake frequencies than others, for example populations of motile diatom species that displayed a seasonal behaviour (blooming species), such as Nitzschia cf. dissipata and Cylindrotheca closterium. Other species showing frequent uptake were the coccoid colony-forming cyanobacterium Microcrocis sp., and the filamentous cyanobacterium Phormidium sp.. The results suggest that there is a high potential for DFAA uptake in the microphytobenthic community and that for some growth forms and species this could imply a competitive advantage.  相似文献   

10.
Diatoms are one of the dominant groups in phytoplankton communities of the western Antarctic Peninsula (WAP). Although generally well‐studied, little is known about size dependent photophysiological responses in diatom bloom formation and succession. To increase this understanding, four Antarctic diatom species covering two orders of magnitude in cell size were isolated in northern Marguerite Bay (WAP). Fragilariopsis sp., Pseudo‐nitzschia cf. subcurvata, Thalassiosira cf. antarctica, and Proboscia cf. alata were acclimated to three different irradiances after which photophysiology, electron transport, carbon fixation, and growth were assessed. The small species Fragilariopsis sp., Pseudo‐nitzschia cf. subcurvata, and large species Proboscia cf. alata showed similar photoacclimation to higher irradiances with a decrease in cellular chlorophyll a and an increase in chlorophyll a specific absorption and xanthophyll cycle pigments and activity. In contrast, pigment concentrations and absorption remained unaffected by higher irradiances in the large species Thalassiosira cf. antarctica. Overall, the small species showed significantly higher growth rates compared to the large species, which was related to relatively high light harvesting capacity and electron transport rates in the smaller species. However, photophysiological responses related to photoinhibition and photoprotection and carbon fixation showed no relationship with cell size. This study supports the dominance of small diatoms at low irradiances during winter and early spring, but does not provide photophysiological evidence for the dominance of large diatoms during the phytoplankton bloom in the WAP. This suggests that other factors such as grazing and nutrient availability are likely to play a major role in diatom bloom formation.  相似文献   

11.
The large variation in size and shape in diatoms is shown by morphometric measurements of 515 benthic and pelagic diatom species from the Baltic Sea area. The largest mean cell dimension (mostly the apical axis) varied between 4.2 and 653 μm, cell surface area between 55 and 344,000 μm2, and cell volume between 21 and 14.2 × 106μm3. The shape‐related index, length to width ratio, was between 1.0 and 63.3 and the shape‐ and size‐related index, surface area to volume ratio, was between 0.02 and 3.13. Diatom community analysis by multivariate statistics is usually based on counts of a fixed number of diatom valves with species scores irrespective of cell size. This procedure underestimates the large species for two reasons. First, the importance of a species with higher cell volume is usually larger in a community. Second, larger species usually have lower abundances and their occurrence in the diatom counts is stochastic. This article shows that co‐occurring small and large diatom species can respond very differently to environmental constraints. Large epiphytic diatoms responded most to macroalgal host species and small epiphytic diatoms most to environmental conditions at the sampling site. Large epilithic diatoms responded strongly to salinity, whereas small epilithic diatoms did so less clearly. The conclusion is that different scale‐dependent responses are possible within one data set. The results from the test data also show that important ecological information from diatom data can be missed when the large species are neglected or underestimated.  相似文献   

12.
 Diatom composition and biomass were investigated in the nearshore water (<30 m in depth) of Maxwell Bay, Antarctica during the 1992/1993 austral summer. Epiphytic or epilithic diatoms such as Fragilaria striatula, Achnanthes brevipes var. angustata and Licmophora spp. dominated the water column microalgal populations. Within the bay, diatom biomass in surface water was several times higher at the nearshore (2.4–14 μg C l-1) than at the offshore stations (>100 m) (1.2–3.2 μg C l-1) with a dramatic decrease towards the bay mouth. Benthic forms accounted for >90% of diatom carbon in all nearshore stations, while in the offshore stations planktonic forms such as Thalassiosira antarctica predominated (50–>90%). Microscopic examination revealed that many of these diatoms have become detached from a variety of macroalgae growing in the intertidal and shallow subtidal bottoms. Epiphytic diatoms persistently dominated during a 19-day period in the water column at a fixed nearshore station, and the biomass of these diatoms fluctuated from 0.86 to 53 μg C l-1. A positive correlation between diatom biomass and wind speed strongly suggests that wind-driven resuspension of benthic forms is the major mechanism increasing diatom biomass in the water column. Received: 28 April 1995/Accepted: 1 April 1996  相似文献   

13.
Bacteria and diatoms are primary colonizers of marine surfaces and hence play a crucial role in the attachment and subsequent growth of macroorganisms. It has been suggested that the temperate green alga Ulva lactuca relies on the defence provided by the epiphytic bacterial community to regulate surface fouling of colonising organisms. In this study, ten resident bacterial isolates from tropical U. lactuca were tested for their antibacterial and antidiatom properties that may regulate surface colonization on the algae. Sixty percent of the epiphytic isolates expressed antibacterial properties against other resident bacteria and 80% had antidiatom activity against the pennate diatom, Cylindrotheca fusiformis. Isolates of the Pseudoalteromonas genus showed both- antibacterial and antidiatom activities, while members of the genus Bacillus, Vibrio and Shewanella mostly possessed antidiatom activity. Our results show that a high proportion of bacterial isolates from tropical U. lactuca, like that of their temperate counterparts contain antibiotic properties that might impact on the bacterial community composition and prevent fouling by diatoms.  相似文献   

14.
As an important adaptation for survival in the sediments of intertidal flats, benthic diatoms move up and down in response to a wide range of environmental stimuli. We investigated the vertical migration of two diatoms—Cylindrotheca closterium (Agradh) Kützing (B-25) and Nitzschia sp. (B-3)—under different combinations of light intensity and temperature conditions. An imaging pulse amplitude modulated (PAM) fluorometer was used to measure the minimum fluorescence (F 0) in order to monitor variations in diatom biomass in surface sediments. Rapid light curves (RLCs) were applied to assess their photosynthetic activities. Both species had increased motility under higher temperatures, with the longer valved C. closterium being twice as fast as the shorter valved Nitzschia sp. The former was also influenced by exposure to light intensities of 100 or 250 μmol m−2 s−1, whereas the latter was not. Consequently, no light/temperature interaction effect was associated with the vertical migration of Nitzschia sp., perhaps because of its lower photosynthetic capacity and smaller cell size. Therefore, we conclude that motile benthic diatoms exhibit species-specific responses to light and temperature due to differences in their photosynthetic capability and morphological characteristics.  相似文献   

15.
Although the sea turtles have long been familiar and even iconic to marine biologists, many aspects of their ecology remain unaddressed. The present study is the first of the epizoic diatom community covering the olive ridley turtle’s (Lepidochelys olivacea) carapace and the first describing diatoms living on sea turtles in general, with the primary objective of providing detailed information on turtle epibiotic associations. Samples of turtle carapace including the associated diatom biofilm and epizoic macro-fauna were collected from Ostional beach (9° 59´ 23.7´´ N 85° 41´ 52.6´´ W), Costa Rica, during the arribada event in October 2013. A complex diatom community was present in every sample. In total, 11 macro-faunal and 21 diatom taxa were recorded. Amongst diatoms, the most numerous were erect (Achnanthes spp., Tripterion spp.) and motile (Haslea sp., Navicula spp., Nitzschia spp., Proschkinia sp.) forms, followed by adnate Amphora spp., while the most common macro-faunal species was Stomatolepas elegans (Cirripedia). Diatom densities ranged from 8179 ± 750 to 27685 ± 4885 cells mm-2. Epizoic microalgae were either partly immersed or entirely encapsulated within an exopolymeric coat. The relatively low diatom species number, stable species composition and low inter-sample dissimilarities (14.4% on average) may indicate a mutualistic relationship between the epibiont and the basibiont. Dispersal of sea turtle diatoms is probably highly restricted and similar studies will help to understand both diatom diversity, evolution and biogeography, and sea turtle ecology and foraging strategies.  相似文献   

16.
The diatom flora in a 164 cm long sediment core obtained from Jiaozhou Bay (Yellow Sea, China) was analyzed in order to trace the response of diatoms to environmental changes over the past 100 years. The sediment core was dated by 210Pb and 137Cs and represented approximately 100 years (1899–2001 A.D.). The flora was mainly composed of centric diatoms (59–96%). The concentration of diatoms declined sharply above 30 cm (after ~ 1981 A.D.), while the dominant species changed from Thalassiosira anguste-lineatus, Thalassiosira eccentria, Coscinodiscus excentricus, Coscinodiscus concinnus and Diploneis gorjanovici to Cyclotella stylorum and Paralia sulcata. Species richness decreased slightly, and the cell abundance of warm-water species increased. We argue that these floral changes were probably caused by climate change in combination with eutrophication resulting from aquaculture and sewage discharge.  相似文献   

17.
Some diatoms are able to colonize as epibionts on their potential zooplankton predators. Here, we report Pseudohimantidium pacificum living on the copepod Corycaeus giesbrechti and as a new finding on Oithona nana, Protoraphis atlantica living on the copepod Pontellopsis brevis, Protoraphis hustedtiana on the cypris larvae of barnacles, and Falcula hyalina on the copepod Acartia lilljeborgii. The epizoic diatoms were able to grow as free‐living forms under culture conditions. Pseudohimantidium pacificum and P. atlantica appeared as the most derived species from their benthic diatom ancestors. The mucilage pad or stalk of the strains of these species showed important morphological distinction when compared with their epizoic forms. Barnacle larvae explore benthic habitats before settlement, and epibiosis on them is an example where P. hustedtiana profits from the host behavior for dispersal of its benthic populations. Molecular phylogenies based on the SSU rRNA and RuBisCO large subunit (rbcL) gene sequences revealed F. hyalina as an independent lineage within the Fragilariales (Tabularia, Catacombas, and others), consistent with its morphological distinction in the low number of rows (≤6) in the ocellulimbus, among other features. We propose the transfer of F. hyalina to the genus Pseudofalcula gen. nov. Molecular phylogeny suggests a single order for the members of the Cyclophorales and the Protoraphidales, and that the epibioses of araphid diatoms on marine zooplankton have been independently acquired several times. These clades are constituted of both epizoic and epiphytic/epilithic forms that evidence a recent acquisition of the epizoic modus vivendi.  相似文献   

18.
In the present study, two abundant epiphytic diatom taxa were isolated from the assimilation hairs of the brown macroalga Chordaria flagelliformis collected in the Arctic Kongsfjorden (Spitsbergen, Norway), established as unialgal cultures and their growth rates determined under controlled photon fluence rate and temperature conditions. Using morphological (light and scanning electron microscopy) and SSU rRNA gene data both isolates (ROS D99 and ROS D125) were identified as members of a Fragilaria–Synedropsis clade. The molecular data of ROS D99 and ROS D125 were not identical to any other published sequence. While ROS D99 has been identified as Fragilaria barbararum mainly due to the SEM characteristics, ROS D125 could not be definitely identified although morphological data speak for Fragilaria striatula. Both diatom species showed similar growth rates at all temperatures and photon fluence rates tested. They grew well between 0 and 15°C with optimum temperatures of 12–14°C, but did not survive 20°C. Therefore, compared to Antarctic diatoms both taxa from Kongsfjorden can be characterised as eurythermal organisms. Increasing photon fluence rates between 2 and 15 μmol m−2 s−1 were accompanied with an almost twofold increase in growth rates, but photon fluence rates >15 μmol m−2 s−1 did not further enhance growth pointing to low light requirements. From these data optimum, minimum and maximum photon fluence rates and temperatures for growth can be assessed indicating that both diatoms are well acclimated to the fluctuating environmental conditions in the Arctic habitat.  相似文献   

19.
The depth distribution of photosynthetic pigments and benthic marine diatoms was investigated in late spring at three different sites on the Swedish west coast. At each site, sediment cores were taken at six depths (7–35 m) by scuba divers. It was hypothesized that (1) living benthic diatoms constitute a substantial part of the benthic microflora even at depths where the light levels are <1% of the surface irradiance, and (2) the changing light environment along the depth gradient will be reflected in (a) the composition of diatom assemblages, and (b) different pigment ratios. Sediment microalgal communities were analysed using epifluorescence microscopy (to study live cells), light microscopy and scanning electron microscopy (diatom preparations), and HPLC (photosynthetic pigments). Pigments were calculated as concentrations (mg m–2) and as ratios relative to chlorophyll a. Hypothesis (1) was accepted. At 20 m, the irradiance was 0.2% of surface irradiance and at 7 m, 1%. Living (epifluorescent) benthic diatoms were found down to 20 m at all sites. The cell counts corroborated the diatom pigment concentrations, decreasing with depth from 7 to 25 m, levelling out between 25 and 35 m. There were significant positive correlations between chlorophyll a and living (epifluorescent) benthic diatoms and between the diatom pigment fucoxanthin and chlorophyll a. Hypothesis (2) was only partly accepted because it could not be shown that light was the main environmental factor. A principal component analysis on diatom species showed that pelagic forms characterized the deeper locations (25–35 m), and epipelic–epipsammic taxa the shallower sites (7–20 m). Redundancy analyses showed a significant relationship between diatom taxa and environmental factors – temperature, salinity, and light intensities explained 57% of diatom taxa variations.  相似文献   

20.
The diatom assemblage associated with the Antarctic sponge Mycale acerata was studied through an analysis of the diatom frustule and pigment concentrations in both the sponge ectosome and choanosome. Sponges were sampled weekly from November 2001 to February 2002 at Terra Nova Bay, Antarctica, at a depth of 25–35 m. The most abundant diatoms were Porannulus contentus, Fragilariopsis curta, Thalassiosira cf. gracilis, T. perpusilla and Plagiotropis sp. High abundances of P. contentus were found on the sponge ectosome up to the beginning of November, before the ice melted, while later frustules were incorporated inside, indicating that P. contentus lives epibiontically on M. acerata and represents a potential food source for the sponge. The presence of other diatom species was mainly related to the summer phytoplankton bloom. The sponge incorporates diatoms from the water column and utilises them as a food source, accumulating frustules inside the choanosome. The lack of planktonic diatom frustules at the beginning of the summer indicates that they are expelled or dissolved during the cold season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号