首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Parasite lactate dehydrogenase (pLDH) is a potential drug target for new antimalarials owing to parasite dependence on glycolysis for ATP production. The pLDH from all four species of human malarial parasites were cloned, expressed, and analyzed for structural and kinetic properties that might be exploited for drug development. pLDH from Plasmodium vivax, malariae, and ovale exhibit 90-92% identity to pLDH from Plasmodium falciparum. Catalytic residues are identical. Resides I250 and T246, conserved in most LDH, are replaced by proline in all pLDH. The pLDH contain the same five-amino acid insert (DKEWN) in the substrate specificity loops. Within the cofactor site, pLDH from P. falciparum and P. malariae are identical, while pLDH from P. vivax and P. ovale have one substitution. Homology modeling of pLDH from P. vivax, ovale, and malariae with the crystal structure of pLDH from P. falciparum gave nearly identical structures. Nevertheless, the kinetic properties and sensitivities to inhibitors targeted to the cofactor binding site differ significantly. Michaelis constants for pyruvate and lactate differ 8-9-fold; Michaelis constants for NADH, NAD(+), and the NAD(+) analogue 3-acetylpyridine adenine dinucleotide differ up to 4-fold. Dissociation constants for the inhibitors differ up to 21-fold. Molecular docking studies of the binding of the inhibitors to the cofactor sites of all four pLDH predict similar orientations, with the docked ligands positioned at the nicotinamide end of the cofactor site. pH studies indicate that inhibitor binding is independent of pH in the pH 6-8 range, suggesting that differences in dissociation constants for a specific inhibitor are not due to altered active site pK values among the four pLDH.  相似文献   

3.
Cardiac progenitor cells (CPCs) have the capacity to differentiate into cardiomyocytes, smooth muscle cells (SMC), and endothelial cells and hold great promise in cell therapy against heart disease. Among various methods to isolate CPCs, differentiation of embryonic stem cell (ESC) into CPCs attracts great attention in the field since ESCs can provide unlimited cell source. As a result, numerous strategies have been developed to derive CPCs from ESCs. In this protocol, differentiation and purification of embryonic CPCs from both mouse and human ESCs is described. Due to the difficulty of using cell surface markers to isolate embryonic CPCs, ESCs are engineered with fluorescent reporters activated by CPC-specific cre recombinase expression. Thus, CPCs can be enriched by fluorescence-activated cell sorting (FACS). This protocol illustrates procedures to form embryoid bodies (EBs) from ESCs for CPC specification and enrichment. The isolated CPCs can be subsequently cultured for cardiac lineage differentiation and other biological assays. This protocol is optimized for robust and efficient derivation of CPCs from both mouse and human ESCs.  相似文献   

4.
5.
Embryonic stem cells (ESCs) are a population of pluripotent cells which can differentiate into different cell types. However, there are few reports with regard to differentiate ESCs into epidermal cells in vitro. In this study, we aimed to investigate differentially methylated promoters involved in process of differentiation from ESCs into epidermal‐like cells (ELCs) induced by human amnion. We successfully induced ESCs into ELCs, which expressed the surface markers of CK19, CK15 and β1‐integrin. With MeDIP‐chip arrays, we identified 3435 gene promoters to be differentially methylated, involving 894 HCP (high CpG‐containing promoter), 974 ICP (intermediate CpG‐containing promoter) and 1567 LCP (low CpG‐containing promoter) among all the 17 500 DNA methylation regions of gene promoters in both ESCs and ELCs. Gene oncology and pathway analysis demonstrated that these genes were involved in all the three categories of GO enrichment analysis, including biological process, molecular function and cellular component. All these data suggested that embryonic stem cells can differentiate into epidermal‐like cells and promoter methylation is of great importance in this process. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
胚胎干细胞(embryonic stem cells,ESCs)具有自我更新、无限增殖和多向分化的特性,包括分化成心脏组织的多种类型细胞。经体细胞重编程产生的诱导多能干细胞(induced pluripotent stem cells,iPS)也被证明有类似胚胎干细胞的特性。但这些多能干细胞向心肌细胞自发分化的效率非常低,因此,如何有效地诱导这些多能干细胞向心肌细胞的定向分化对深入认识心肌发生发育的关键调控机制和实现其在药物发现和再生医学,如心肌梗塞、心力衰竭的细胞治疗以及心肌组织工程中的应用均具有非常重要的意义。该文重点综述了近年来胚胎干细胞及诱导多能干细胞向心肌细胞分化和调控的研究进展,并探讨了这一研究领域亟待解决的关键问题和这些多能干细胞的应用前景。  相似文献   

7.
Physico-chemical properties of erythrocyte glucose-6-phosphate dehydrogenase including erythrocyte G6PD activity, Michaelis constants, KmG6P and NADP, pH optimum, thermostability and molecular weight were investigated in “brown-howler” monkeys and then compared with the values of human G6PD B(+). The values of Michaelis constants (KmG6P and NADP) pH optimum were the same as the values of human G6PD B(+). The human G6PD has a dimeric form in the assay conditions employed in the present study, monkey enzyme showing great similariy with human one. Otherwise, the thermostability differed from the human G6PD. The simian enzymatic activity was about four times higher than the human G6PD. A comparison of physico-chemical properties of glucose-6-phosphate dehydrogenase among primates is also presented.  相似文献   

8.
MicroRNAs (miRNAs) have been identified as key players in cardiogenesis and heart pathophysiological processes. However, many miRNAs are still not recognized for their roles in cardiomyocytes differentiation. In this study, we evaluated the effects of microRNA-218 (miR-218) in cardiomyocyte differentiation of the mouse embryonic stem cells (ESCs) in vitro. The percentage of the beating embryoid bodies (EBs) in miR-218 mimic-treated cells was reduced to 32% compared with miR-218 mimic negative control (56%) on day 5 + 3. The amplitude of the intracellular Ca2+ transients in the cardiomyocytes derived from ESCs was reduced upon miR-218 overexpression, followed by the decreased calcium-related proteins and cell junction proteins expressions. Besides, miR-218 expression in ESCs was related to the directional spreading ability of EBs during differentiation. The increased expression of miR-218 could promote the migration of ESCs in vitro, while the decreased expression of miR-218 could inhibit the migration by the transwell experiment. Meanwhile, miR-218 could regulate cell migration–related proteins Cdc42 and Rac1. Platelet-derived growth factor receptor α (PDGFRα) was further confirmed to be a direct target of miR-218 both physically and functionally by dual-luciferase reporter assay. Our data further described that overexpression of PDGFRα rescued the miR-218-mediated inhibition of cardiomyocyte differentiation and restored the miR-218-mediated promotion of cell migration. In conclusion, miR-218 was demonstrated to exert an inhibitory function and promoted cell migration via targeting PDGFRα during cardiomyocyte differentiation from ESCs. The current study revealed the role of miR-218 and may provide an important hint for cardiomyocyte differentiation of ESCs and induced pluripotent stem cells.  相似文献   

9.
Myocardin is a serum response factor (SRF) coactivator exclusively expressed in cardiomyocytes and smooth muscle cells (SMCs). However, there is highly controversial evidence as to whether myocardin is essential for normal differentiation of these cell types, and there are no data showing whether cardiac or SMC subtypes exhibit differential myocardin requirements during development. Results of the present studies showed the virtual absence of myocardin(-/-) visceral SMCs or ventricular myocytes in chimeric myocardin knockout (KO) mice generated by injection of myocardin(-/-) embryonic stem cells (ESCs) into wild-type (WT; i.e., myocardin(+/+) ESC) blastocysts. In contrast, myocardin(-/-) ESCs readily formed vascular SMC, albeit at a reduced frequency compared with WT ESCs. In addition, myocardin(-/-) ESCs competed equally with WT ESCs in forming atrial myocytes. The ultrastructural features of myocardin(-/-) vascular SMCs and cardiomyocytes were unchanged from their WT counterparts as determined using a unique X-ray microprobe transmission electron microscopic method developed by our laboratory. Myocardin(-/-) ESC-derived SMCs also showed normal contractile properties in an in vitro embryoid body SMC differentiation model, other than impaired thromboxane A2 responsiveness. Together, these results provide novel evidence that myocardin is essential for development of visceral SMCs and ventricular myocytes but is dispensable for development of atrial myocytes and vascular SMCs in the setting of chimeric KO mice. In addition, results suggest that as yet undefined defects in development and/or maturation of ventricular cardiomyocytes may have contributed to early embryonic lethality observed in conventional myocardin KO mice and that observed deficiencies in development of vascular SMC may have been secondary to these defects.  相似文献   

10.
The electrophoretic distribution of lactate dehydrogenase (LDH) isoenzymes, Michaelis constant, reaction with substrate, and dissociation into subunits with guanidine hydrochloride was examined in undifferentiated and differentiated human myeloid leukemia cells. Differentiation was induced with 1/microgram/ml tunicamycin. Undifferentiated cells did not display phagocytic ability, and less than 5% of these cells had Fc receptors. After exposure to tunicamycin for 40 hr, 40% of these differentiated cells had Fc receptors, and 35% showed phagocytic activity after 160 hr. The majority of the LDH activity in the undifferentiated cells was found in fraction 3, and following differentiation almost a 50% reduction in LDH activity was observed in this fraction. In addition, LDH 3 isoenzyme levels were found to be greater in patients containing a high percentage of undifferentiated cells than in patients containing a high percentage of differentiated cells. Differentiated cells displayed LDH isoenzyme fraction pattern, Michaelis constant, and reaction with substrate similar to those found in the normal granulocytes. Differences in the dissociation of LDH into subunits with guanidine hydrochloride were found between undifferentiated and differentiated acute myeloid leukemia (AML) cells. Treatment with 0.75 M guanidine hydrochloride caused complete inactivation of LDH derived from normal differentiated cells, whereas similar treatment caused complete inactivation of LDH derived from AML or normal granulocytes. LDH isoenzymes derived from normal granulocytes and differentiated AML cells were also more sensitive to guanidine hydrochloride depression of fluorescence intensity. The sedimentation constant for single peak LDH at 5.5 M guanidine hydrochloride was calculated as 1.65 sec for differentiated and 1.70 sec for undifferentiated cells. The molecular weight of the polypeptide subunits for undifferentiated cells was 30,000 and for differentiated cells was 39,000. The apparent parallel between leukemic cells after induction of differentiation and normal granulocytes indicates that the leukemic cells retain their maturation potential when exposed to an inducer of differentiation.  相似文献   

11.
Hanging drop (HD) culture is used to induce differentiation of embryonic stem cells (ESCs) into other cell types including cardiomyocytes. However, the factors affecting cardiac differentiation of ESCs with this method remain incompletely understood. We have investigated the effects of the starting number of ESCs in embryoid bodies (EBs) and the time of EB adherence to gelatin-coated plates on cardiac differentiation: cardiac differentiation was increased in the EBs by a larger number of ESCs and was decreased by plating EBs at day 4 or earlier. These two factors can thus be optimized to enrich the cardiac differentiation in ESCs using the HD method.  相似文献   

12.
A systematic analysis of the kinetic properties of duck lens epsilon-crystallin with lactate dehydrogenase [LDH, (E.C. 1.1.1.27)] activity was carried out by employing some 19 different alpha-keto acids as substrates for this NADH-dependent LDH-catalyzed reaction. The steady-state Michaelis and catalytic constants (Km, kcat) were determined for a broad range of organic compounds. The results provide important insights regarding the binding and affinity of substrates to active sites of this enzyme crystallin and indicate a great potential for the application of the stable epsilon-crystallin as a catalyst to the synthesis of some important chiral alpha-hydroxyacids in a convenient and efficient way. It is also demonstrated for the first time that in addition to the enzymatic activity of lactate dehydrogenase, duck epsilon-crystallin also possesses the enzymatic activity of malate dehydrogenase.  相似文献   

13.
Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+) common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+)/CXCR4(+)/VE-cadherin(-) (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1(+) cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1(+) cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs.  相似文献   

14.
The enzyme ADH1 has been extracted and purified from the budding yeast Kluyveromyces marxianus, and its enzymatic activity has been compared, with the ADH1 extracted and purified in the same way from the well known yeast Saccharomyces cerevisiae. K. marxianus ADH1 has an optimal temperature higher than the S. cerevisiae enzyme (45-50 degrees vs 35 degrees C), a better stability to pH variations in the oxidative reaction (pH optimum 7.5), a lower Michaelis constant for acetaldehyde, and a good catalytic activity both for fermentative and oxidative reactions. In fact, while in Saccharomyces the constants ratio (velocity constant fermentation/velocity constant oxidation) is about 20,000, in Kluyveromyces the same ratio is only 15. Even if these two Genera are quite related (they belong to the same subfamily) it seems that their ADH1s possess different catalytic properties.  相似文献   

15.
Embryonic stem cells (ESCs) are an important source of cardiomyocytes for regenerating injured myocardium. The successful use of ESC-derived cardiomyocytes in cardiac tissue engineering requires an understanding of the important scaffold properties and culture conditions to promote cell attachment, differentiation, organization, and contractile function. The goal of this work was to investigate how scaffold architecture and coculture with fibroblasts influences the differentiated phenotype of murine ESC-derived cardiomyocytes (mESCDCs). Electrospinning was used to process an elastomeric biodegradable polyurethane (PU) into aligned or unaligned fibrous scaffolds. Bioreactor produced mESCDCs were seeded onto the PU scaffolds either on their own or after pre-seeding the scaffolds with mouse embryonic fibroblasts (MEFs). Viable mESCDCs attached to the PU scaffolds and were functionally contractile in all conditions tested. Importantly, the aligned scaffolds led to the anisotropic organization of rod-shaped cells, improved sarcomere organization, and increased mESCDC aspect ratio (length-to-diameter ratio) when compared to cells on the unaligned scaffolds. In addition, pre-seeding the scaffolds with MEFs improved mESCDC sarcomere formation compared to mESCDCs cultured alone. These results suggest that both fiber alignment and pre-treatment of scaffolds with fibroblasts improve the differentiation of mESCDCs and are important parameters for developing engineered myocardial tissue constructs using ESC-derived cardiac cells.  相似文献   

16.
Kinetics and specificity of T4 polynucleotide kinase.   总被引:12,自引:0,他引:12  
J R Lillehaug  K Kleppe 《Biochemistry》1975,14(6):1221-1225
The kinetics of T4 polynucleotide kinase has been investigated at pH 8.0 and 37 degrees. Double reciprocal plots of initial rates vs. substrate concentrations as well as product inhibition studies have indicated that the enzyme reacts according to the ordered sequential mechanism shown in eq 2 in the text for phosphorylation of a DNA molecule. Based on this mechanism the rate equation for the overall reaction was deduced and the various kinetic constants estimated. Hill plots indicated little or no interaction between active sites in the enzyme. The apparent Michaelis constants and V-max were determined at a fixed ATP concentration, 66 muM, for a number of different substrates varying in chain length, base composition, and nature of the sugar, and a wide variation was found. For the nucleoside 3'-monophosphates tested both the apparent Michaelis constant and V-max values were from approximately 2 to 5 times larger than for the corresponding oligonucleotide. The following orders were obtained with regard to apparent Michaelis constants and V-max for the nucleoside 3'-monophosphates investigated: Michaelis constant, rGP greater than rUp greater than rCp greater than rAp greater than dTp; V-max, rGp greater than rCp greater than rAp greater than dTp greater than rUp. Somewhat similar results were also obtained with the deoxyoligonucleotides tested.  相似文献   

17.
The therapeutic potential of transplantation of embryonic stem cells (ESCs) in animal model of myocardial infarction has been consistently demonstrated. The development of superparamagnetic iron oxide (SPIO) nanoparticles labeling and cardiac magnetic resonance imaging (MRI) have been increasingly used to track the migration of transplanted cells in vivo allowing cell fate determination. However, the impact of SPIO- labeling on cell phenotype and cardiac differentiation capacity of ESCs remains unclear. In this study, we demonstrated that ESCs labeled with SPIO compared to their unlabeled counterparts had similar cardiogenic capacity, and SPIO-labeling did not affect calcium-handling property of ESC-derived cardiomyocytes. Moreover, transplantation of SPIO-labeled ESCs via direct intra-myocardial injection to infarct myocardium resulted in significant improvement in heart function. These findings demonstrated the feasibility of in vivo ESC tracking using SPIO-labeling and cardiac MRI without affecting the cardiac differentiation potential and functional properties of ESCs.  相似文献   

18.
Signal transduction pathways are integral components of the developmental regulatory network that guides progressive cell fate determination. MKK4 and MKK7 are upstream kinases of the mitogen-activated protein kinases (MAPKs), responsible for channeling physiological and environmental signals to their cellular responses. Both kinases are essential for survival of mouse embryos, but because of embryonic lethality, their precise developmental roles remain largely unknown. Using gene knock-out mouse ESCs, we studied the roles of MKK4 and MKK7 in differentiation in vitro. While MKK4 and MKK7 were dispensable for ESC self-renewal and pluripotency maintenance, they exhibited unique signaling and functional properties in differentiation. MKK4 and MKK7 complemented each other in activation of the JNK-c-Jun cascades and loss of both led to senescence upon cell differentiation. On the other hand, MKK4 and MKK7 had opposite effects on activation of the p38 cascades during differentiation. Specifically, MKK7 reduced p38 activation, while Mkk7(-/-) ESCs had elevated phosphorylation of MKK4, p38, and ATF2, and increased MEF2C expression. Consequently, Mkk7(-/-) ESCs had higher expression of MHC and MLC and enhanced formation of contractile cardiomyocytes. In contrast, MKK4 was required for p38 activation and Mkk4(-/-) ESCs exhibited diminished p-ATF2 and MEF2C expression, resulting in impaired MHC induction and defective cardiomyocyte differentiation. Exogenous MKK4 expression partially restored the ability of Mkk4(-/-) ESCs to differentiate into cardiomyocytes. Our results uncover complementary and interdependent roles of MKK4 and MKK7 in development, and identify the essential requirement for MKK4 in p38 activation and cardiomyocyte differentiation.  相似文献   

19.
Embryonic stem cells (ESCs) are pluripotent cells derived from the inner cell mass (ICM) that are able to self-renew or undergo differentiation depending on a complex interplay of extracellular signals and intracellular factors. However, the feedback regulation of differentiation-dependent ESC self-renewal is poorly understood. Retinoic acid (RA), a derivative of vitamin A, plays a critical role in ESC differentiation and embryogenesis. In the present study, we demonstrate that short-term treatment of murine (m) ESCs with RA during the early differentiation stage prevented spontaneous differentiation of mESCs. The RA-treated cells maintained self-renewal capacity and could differentiate into neuronal cells, cardiomyocytes, and visceral endoderm cells derived from three germ layers. The differentiation-inhibitory effect of RA was mimicked by conditioned medium from RA-treated ESCs and was accompanied with up-regulated expression of leukemia inhibitory factor (LIF), Wnt3a, Wnt5a, and Wnt6. Such RA-induced prevention of ESC differentiation was attenuated by a neutralizing antibody against LIF or by a specific Wnt antagonist Fz8-Fc and was totally reversed in the presence of both of them. Furthermore, knock-down of beta-catenin, a component of the Wnt signaling pathway, by small interfering RNA counteracted the effect of RA. In addition, RA treatment enhanced expression of endodermal markers GATA4 and AFP but inhibited expression of primitive ectodermal marker Fgf-5 and mesodermal marker Brachyury. These findings reveal a novel role of RA in ESC self-renewal and provide new insight into the regulatory mechanism of differentiation-dependent self-renewal of ESCs, in which Wnt proteins and LIF induced by RA have the synergistic action. The short-term treatment of ESCs with RA also offers a unique model system for study of the regulatory mechanism that controls self-renewal and specific germ-layer differentiation of ESCs.  相似文献   

20.
Non-steady-state kinetics of lactate dehydrogenase (LDH) catalyzed reaction was investigated for a wide time interval (from 100 msec to 1-3 min) by using stopped-flow methods. A two-stage character of LDH reaction, slow changes like a lag-period on kinetic curves at pH 8.0, flexions on kinetic curves after pre-mixing LDH with NAD+ and pyruvate have been revealed. The graph theory for mathematical analysis of experimental data was applied, which has been developed for the non-steady-state kinetics. An enzyme model of the two-conformer LDH structure was used. The reaction scheme with a preferential inhibition of one of the conformers (pH 8.0) is suggested. The obtained values of kinetic constants prove that transitions between LDH conformers must be slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号