首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the potential for response to selection in typical physiological-thermoregulatory traits of mammals such as maximum metabolic rate (MMR), nonshivering thermogenesis (NST) and basal metabolic rate (BMR) on cold-acclimated animals. We used an animal model approach to estimate both narrow-sense heritabilities (h2) and genetic correlations between physiological and growth-related traits. Univariate analyses showed that MMR presented high, significant heritability (h2 = 0.69 +/- 0.35, asymptotic standard error), suggesting the potential for microevolution in this variable. However, NST and BMR presented low, nonsignificant h2, and NST showed large maternal/common environmental/nonadditive effects (c2 = 0.34 +/- 0.17). Heritabilities were large and significant (h2 > 0.5) for all growth-related traits (birth mass, growth rate, weaning mass). The only significant genetic correlations we found between a physiological trait and a growth-related trait was between NST and birth mass (r = -0.74; P < 0.05). Overall, these results suggest that additive genetic variance is present in several bioenergetic traits, and that genetic correlations could be present between those different kinds of traits.  相似文献   

2.
Basal metabolic rate (BMR), commonly used as a measure of the cost of living, is highly variable among species, and sources of the variation are subject to an enduring debate among comparative biologists. One of the hypotheses links the variation in BMR with diversity of food habits and life-history traits. We test this hypothesis by asking how BMR of a particular species, the bank vole Myodes (= Clethrionomys ) glareolus , would change under selection for high growth rate (measured as a postweaning body mass change; MDPW ) and the ability to cope with a low-quality herbivorous diet (measured as body mass change during a four-day test; MDLQD ). We show that both of the traits are heritable in the narrow sense ( MDPW : h 2= 0.30; MDLQD : h 2= 0.19), and are genetically correlated with mass-independent BMR (additive genetic correlation, rA = 0.28 for MDPW and 0.37 for MDLQD ). Thus, both of the traits could change in response to a selection, and the selection would also result in a correlated evolution of the level of metabolism. The results are consistent with the hypothesis that a part of the interspecific variation in BMR evolved in response to selection for life-history and ecological traits such as food habits.  相似文献   

3.
We present estimates of standardized selection (directional and quadratic) differentials via reproductive success on eight morphological traits in a newly founded long-term study population of great reed warblers Acrocephalus arundinaceus in Sweden. In order to predict the evolutionary response to selection in these traits we present estimates of heritabilities (h2), phenotypic (rP) and genetic (rA) correlations among the same traits. We also examined the extent of parental effects in the expression of the phenotypic traits. Overall, the population is subject to low levels of directional selection and higher levels of stabilizing selection. This makes us predict that the population is changing very little if anything, even though h2 in many cases are considerable. Midparent-midoffspring h2 ranged from 0.14 and 0.94 (mean 0.58) and were significant for seven of eight traits. We found indications of positive maternal effects in tarsus length. Phenotypic correlations between traits ranged from 0.02 to 0.43 (mean 0.15) and showed generally much lower values than the corresponding genetic correlations that ranged between 0.08 and 1.04 (mean 0.46). Overall, the correlation between rP and rA was significant, although moderate, but they tended to differ in magnitude, possibly due to overestimation of additive covariance between traits.  相似文献   

4.
Consistently with the prediction that selection should deplete additive genetic variance ( VA ) in fitness, traits closely associated to fitness have been shown to exhibit low heritabilities ( h 2= VA /( VA + VR )). However, empirical data from the wild indicate that this is in fact due to increased residual variance ( VR ), rather than due to decreased additive genetic variance, but the studies in this topic are still rare. We investigated relationships between trait heritabilities, additive genetic variances, and traits' contribution to lifetime reproductive success (≈fitness) in a red-billed gull ( Larus novaehollandiae ) population making use of animal model analyses as applied to 15 female and 13 male traits. We found that the traits closely associated with fitness tended to have lower heritabilities than traits less closely associated with fitness. However, in contrast with the results of earlier studies in the wild, the low heritability of the fitness-related traits was not only due to their high residual variance, but also due to their low additive genetic variance. Permanent environment effects—integrating environmental effects experienced in early life as well as nonadditive genetic effects—on many traits were large, but unrelated to traits' importance for fitness.  相似文献   

5.
Once adapted to the captive environment, mean minimum respiration rates were 118 mgO2 kg−1 h−1 for mackerel, body length ( b.l ) range 290 to 380 mm, at 11.1o C at a swimming speed of 0.6 b.l. s1 and 93 mgO2 kg−1 h1 for herring, length range 255 to 310 mm, at 9.3° C at a swimming speed of 0.3 b.l. s1.  相似文献   

6.
Oxygen consumption, rectal temperature, thermal conductance, and evaporative water loss (EWL) were determined in resting captive Tatera leucogaster at ambient temperatures of between 14 and 38 °C. Basal metabolic rate (BMR) was 0.86 ml O2. min−1 (S.D.=0.15, n = 6), 45% of that expected for a rodent of the same body mass (106.2 g). Minimum wet thermal conductance was 0.21 ml O2. min−1, °C−1 (S.D. = 0.01, n = 6), 113% of that expected for a mammal of the same body mass. Wet thermal conductance increased exponentially at temperatures greater than 32 °C. Mean rectal temperature was 35.3 °C below 35 °C (S.D. = 0.5, n = 6) and 39.3 (S.D. = 0.6, n = 5) at 38 °C. Mean resting EWL was 1.43 mg. min−1 (S.D. = 0.14, n = 6) between 15 and 32 °C and increased dramatically at temperatures above 32 °C. Combining our data with data from the literature suggests that gerbils (Family Muridae; subfamily Gerbillinae) have, on average, low BMR and average minimum wet thermal conductance when compared to other rodents and other mammals, respectively, of the same body mass. Similarly, rodents (including gerbils) from arid habitats have, on average, lower rates of EWL when at rest below thermoneutrality than do other rodents of the same body mass from mesic habitats.  相似文献   

7.
Clinical–chemical traits are diagnostic parameters essential for characterization of health and disease in veterinary practice. The traits show significant variability and are under genetic control, but little is known about the fundamental genetic architecture of this variability, especially in swine. We have identified QTL for alkaline phosphatase (ALP), lactate (LAC), bilirubin (BIL), creatinine (CRE) and ionized sodium (Na+), potassium (K+) and calcium (Ca++) from the serum of 139 F2 pigs from a Meishan/Pietrain family before and after challenge with Sarcocystis miescheriana , a protozoan parasite of muscle. After infection, the pigs passed through three stages representing acute disease, subclinical disease and chronic disease. Forty-two QTL influencing clinical–chemical traits during these different stages were identified on 15 chromosomes. Eleven of the QTL were significant on a genome-wide level; 31 QTL were chromosome-wide significant. QTL showed specific health/disease patterns with respect to the baseline values of the traits as well as the values obtained through the different stages of disease. QTL influencing different traits at different times were found primarily on chromosomes 1, 3, 7 and 14. The most prominent QTL for the investigated clinical–chemical traits mapped to SSC3 and 7. Baseline traits of ALP, LAC, BIL, Ca++ and K+ were influenced by QTL regions on SSC3, 6, 7, 8 and 13. Single QTL explained up to 21.7% of F2 phenotypic variance. Our analysis confirms that variation of clinical–chemical traits is associated with multiple chromosomal regions.  相似文献   

8.
Subterranean rodents inhabit closed tunnel systems that are hypoxic and hypercapnic and buffer aboveground ambient temperature. In contrast to other strictly subterranean rodents, Ctenomys talarum exhibits activity on the surface during foraging and dispersion and hence, is exposed also to the aboveground environment. In this context, this species is a valuable model to explore how the interplay between underground and aboveground use affects the relationship among basal metabolic rate (BMR), cold-induced maximum metabolic rate (MMR), shivering (ST), and non-shivering thermogenesis (NST). In this work, we provide the first evidence of the presence of NST, including the expression of uncoupling proteins in brown adipose tissue (BAT), and shivering thermogenesis in Ctenomys talarum, a species belonging to the most numerous subterranean genus, endemic to South America. Our results show no differences in BMR, cold-induced MMR, and NST between cold- (15?°C) and warm- (25?°C) acclimated individuals. Furthermore, thermal acclimation had no effect on the expression of mitochondrial uncoupling protein 1 (UCP1) in BAT. Only cytochrome c oxidase (COX) content and activity increased during cold acclimation. When interscapular BAT was removed, NST decreased more than 30?%, whereas cold-induced MMR remained unchanged. All together, these data suggest that cold-induced MMR reaches a maximum in warm-acclimated individuals and so a probable ceiling in NST and UCP1 expression in BAT. Possible thermogenic mechanisms explaining the increase in the oxidative capacity, mediated by COX in BAT of cold-acclimated individuals and the role of ST in subterranean life habits are proposed.  相似文献   

9.
Abstract The mating response of the fission yeast Schizosaccharomyces pombe is mediated by mating pheromones, M-factor and P-factor, produced by h and h+ cells, respectively. When the M-factor receptor (Map3) was ectopically expressed in h cells lacking the P-factor receptor (Mam2), they acquired mating competence in response to M-factor which they secreted. The autocrine response to P-factor in h+ cells was so weak that mating competence was not acquired, although expression of the pheromone-responsive gene mat1-Pm was detected. These observations support the notion that the intensity of cellular response to mating pheromones is different between h and h+ cells, although downstream pathways of the pheromone receptors are shared by the two mating types.  相似文献   

10.
Field metabolic rates (FMR) and activity patterns of black-browed albatrosses Thalassarche melanophrys were measured while at sea and on nest during the incubation stage at Kerguelen Island, southwestern Indian Ocean. Activity-specific metabolic rates of five albatrosses at sea (FMRat-sea) were measured using doubly labeled water (DLW), and by equipping birds with wet-dry activity data loggers that determined when birds were in flight or on the water. The metabolic rates of four birds incubating their eggs (FMRon-nest) were also measured using DLW. The mean±SD FMRat-sea of albatrosses was 611±96 kJ kg−1 d−1 compared to FMRon-nest of 196±52 kJ kg−1 d−1. While at sea, albatrosses spent 52.9±8.2% (N=3) of their time in flight and they landed on the water 41.2±13.9 times per day. The FMR of black-browed albatrosses appear to be intermediate to that of three other albatross species. Based on at-sea activity, the power requirement of flight was estimated to be 8.7 W kg−1 (or 4.0×predicted BMR), which is high compared to other albatross species, but may be explained by the high activity levels of the birds when at sea. The FMRat-sea of albatrosses, when scaled with body mass, are lower than other seabirds of similar body size, which probably reflects the economical nature of their soaring flight.  相似文献   

11.
Many small mammals inhabiting fluctuating and cold environments display enhanced capacity for seasonal changes in nonshivering thermogenesis (NST) and thermoregulatory maximum metabolic rate (MMR). However, it is not known how this plasticity remains in a mammal that rarely experiences extreme thermal fluctuations. In order to answer this question, we determined body mass (m(b)), basal metabolic rate (BMR), NST, MMR, and minimum thermal conductance (C) on a Chilean fossorial caviomorph (Spalacopus cyanus) from a coastal population, acclimated to cold (15 degrees C) and warm (30 degrees C) conditions. NST was measured as the maximum response of metabolic rate (NST(max)) after injection of norepinephrine (NE) in thermoneutrality minus BMR. Maximum metabolic rate was assessed in animals exposed to enhanced heat-loss atmosphere (He-O2) connected with an open-flow respirometer. Body mass and metabolic variables increased significantly after cold acclimation with respect to warm acclimation but to a low extent (BMR, 26%; NST, 10%; and MMR, 12%). However, aerobic scope (MMR/BMR), calculated shivering thermogenesis (ST), and C did not change with acclimation regime. Our data suggest that physiological plasticity of S. cyanus is relatively low, which is in accordance with a fossorial mode of life. Although little is known about MMR and NST in fossorial mammals, S. cyanus has remarkably high NST; low MMR; and surprisingly, a nil capacity of ST when compared with other rodents.  相似文献   

12.
The acute toxicity of copper, zinc and manganese and copper-zinc and copper-manganese mixtures were determined for juvenile longfin dace, Agosia chrysogaster in hard water bioassays (mean=218 mg 1−1 CaCO3). Copper-zinc was the most lethal toxicant (96-h L.c.50= 0.21 mg 1−1 copper and 0.28 mg 1−1 zinc) and exhibited a more than additive toxicity which was in contrast to the additive toxicity of copper-manganese mixtures (96-h L.c.50= 0.45 mg 1−1 copper and 64.0 mg 1−1 manganese). The toxicity of copper (96-h L.c.50= 0.86 mg 1−1) and zinc (96-h L.c.50= 0.79 mg 1−1) to the fish was similar but both were considerably more lethal than manganese (96-h L.c.50= 130 mg 1−1).  相似文献   

13.
横断山区中华姬鼠的体温调节和蒸发失水   总被引:2,自引:0,他引:2  
为探讨中华姬鼠的生理生态适应特征,对该鼠的代谢率、热传导、体温和蒸发失水等生理生态指标随环境温度从-5℃ ~ 35℃ 的变化进行了测定。结果表明:中华姬鼠的热中性区(TNZ)为20℃ ~ 30℃ ,平均体温为37. 2 ±0.3℃ ,体温在20℃ ~30℃ 范围内维持恒定;基础代谢率为3.17 ±0.08 ml O2 / g· h,最大非颤抖性产热为5.99 ±0.58 ml O2 / g· h,非颤抖性产热范围(最大非颤抖性产热与基础代谢率的比率)为1. 90,平均最小热传导(Cm )为0.16 ± 0.02 ml O2 / g· h℃ ,热中性区内,中华姬鼠的F 值(RMR /Kleiber 期望RMR)/ (C /Bradley 期望C)为1.58 ±0.10,中华姬鼠的蒸发失水随着温度增高而增加,蒸发失水在35℃ 达到峰值,为0.10 ±0.02 mgH2 O/ g· h。这些结果表明中华姬鼠对林地的适应特征是:基础代谢率较高,体温相对较低,最小热传导率与期望值相当,热中性区较宽,下临界温度较低;较高的最大非颤抖性产热和非颤抖性产热范围;蒸发失水在体温调节中占一定地位;这些特征与该物种的生活习性和栖息生境等因素密切相关,也可能是该物种对横断山区的适应对策。  相似文献   

14.
15.
Carbon dioxide transport in African lungfish Protopterus aethiopicus blood conformed to the typical vertebrate scheme, implying a crucial and rate-limiting role of erythrocyte Cl/HCO3 exchange. The rate coefficient for unidirectional Cl efflux via the anion exchanger ( k , s−1) increased with temperature in African lungfish, but values were well below those reported in other species. The erythrocytes of African lungfish were, however, very large (mean cellular volume = 6940 µm3), and the ratio of cell water volume to membrane surface area was high ( V w A m−1 = 1·89). Hence, the apparent Cl permeability ( P Cl =  kV w A m−1, µm s−1) was close to that in other vertebrates. The plot of ln P Cl against the inverse absolute temperature was left-shifted in the tropical African lungfish compared to the temperate rainbow trout Oncorhynchus mykiss , which supports the idea that P Cl is similar among animals when compared at their preferred temperatures. Also, Q 10 for anion exchange calculated from P Cl values in African lungfish was 2·0, supporting the idea that the temperature sensitivity of erythrocyte anion exchange matches the temperature sensitivity of CO2 production and transport in ectothermic vertebrates.  相似文献   

16.
The growth of two commercially important flatfish, turbot ( Psetta maxima ) (L.) and brill ( Scophthalmus rhombus ) (L.), was investigated in the Adriatic using whole otoliths (sagittae) and stained otolith sections. At variance with the pattern usually observed in temperate seas, the opaque zone was found to be laid down in autumn and winter, and the translucent zone in spring and summer. Growth rates differed according to sex, with the females attaining greater body lengths. The von Bertalanffy growth parameters were: L=66.2 cm, K=0.31 years–1, and t0=–0.14 years for turbot males, L=81.5 cm, K=0.21 years–1, and t0=–0.48 years for turbot females; L=40.2 cm, K=0.49 years–1, and t0=–1.03 years for brill males; L=50.1 cm, K=0.27 years–1, and t0=–1.75 years for brill females. Growth rates and maximum age recorded for turbot were comparable to those reported in the North Sea.  相似文献   

17.
Routine oxygen consumption rates of juvenile spot, Leiostomus xanthums , were measured over a range of temperatures, salinities and fish weights. As predicted, Q O2 increased with temperature and decreased with body weight. However, Q O2 decreased with decreasing salinity and did not show the expected minimum at isosmotic concentrations. The data are best described by the relationship: log10 Q O2 (mg O2 g−1 h−1) = 0.129 loglo salinity (%0) + 1.604 log10 temperature (°C)-0.1401og10(g)-2.767.  相似文献   

18.
Abstract. Measurements of the water-relation parameters of the giant subepidermal cells (volume, V = 0.119 to 1.658 mm3; = 0.53±0.35 mm3, SD, n = 23) and the smaller mesocarp parenchyma cells ( V = 0.10 to 0.79×10−3 mm3; = 0.36±0.27×10−3 mm3, SD, n = 6) of the inner pericarp surface of Capsicum annuum L. were made using the Jülich pressure probe. The volumetric elastic modulus ɛ for the large cells was between 1.5 and 27 MPa for a pressure range of 0.09 to 0.41 MPa. For the small cells ɛ was 0.1 to 0.6 MPa for a pressure range of 0.22 to 0.39 MPa. The turgor pressure P , the half-time of water exchange T 1/2, and the hydraulic conductivity L p were as follows, with SD and number of replicates: large cells, P = 0.27±0.06 MPa (23), T 1/2=2.7±2.2 s (46), L p=5.8±3.7 pm s−1 Pa (46); small cells, P = 0.33±0.07 MPa (6), T 1/2= 33±10s (12), L p=0.21±0.07 pm s−1 Pa−1 (12). The determination of these basic water-relation parameters is considered as a prerequisite for future ecotoxicological and phytopathological studies. The differences between the large and the small cells are discussed in relation to a desirable biophysical definition of succulence. Further, for the large cells a pressure and volume dependence of ɛ was demonstrated.  相似文献   

19.
Leaf-dip assay of Plutella xylostella against indoxacarb showed that the concentration that produced 50% mortality (LC50) of indoxacarb ranged from 20.1 to 11.9 ppm, with highest in Nasik and lowest levels in Coimbatore strains. In selection studies, the LC50 of indoxacarb was 18.5 ppm at generation 1 (G1), which increased to 31.3-fold (167.8 ppm) resistance after ten exposed generations (G10) as compared to unexposed. The LC50 of quinalphos was 74.4 ppm, which increased to 10.0-fold (631.5 ppm) resistance after G10. The LC50 of cypermethrin resistant strain resulted in an 11.5-fold increase in resistance after G10. In P. xylostella , heritability (h2) after ten generations of selection was estimated at 0.4. The number of generations required for tenfold increase in LC50 (1/R) were 6.7. The response to indoxacarb selection in P. xylostella was 0.2 and the selection differential was estimated as 0.4. The phenotypic standard deviation was 0.2. Reciprocal crosses between indoxacarb-resistant and susceptible strains showed that the inheritance of indoxacarb resistance was autosomal. The degree of heritability (DLC) (0.4, 0.4) indicated incomplete recessive inheritance of indoxacarb resistance.  相似文献   

20.
SUMMARY. Oxygen consumption of P. zietziana was measured monthly in two saline (>60‰ salinity) lakes from November 1973 to November 1975 with short (<2 h) in situ incubations in BOD bottles. Tests in which oxygen decline was monitored continuously showed that there was no handling effect and respiratory rate was constant down to 1.8–1.9 mg O2 1−1, about 40% of the usual initial concentration. Incubations over 24 h demonstrated no diurnal fluctuations in oxygen consumption. Multiple regression analysis indicated that 90% of the variance in respiratory rate ( R in mg O2x10−4h−1 individual−1) was accounted for by changes in salinity (3%; S in ‰), temperature (7%; T in °C) and dry weight (8%; W in mg × 10−3): log R =−1.123+0.0025+0.021 T+ 0.756 log W. From this equation and data on population density, population respiration was calculated: 91864.5 mg O2 m−2 year−1 in Pink Lake and 12367.5 mg O2 m−2year−1 in Lake Cundare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号