首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sensing of extracellular Ca2+ concentration ([Ca2+]o) and modulation of cellular processes associated with acute or sustained changes in [Ca2+]o are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca2+]o signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca2+]o activated PKC-α and PKC-ε in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca2+]o required influx of Ca2+through Ni2+-sensitive Ca2+channels and phosphatidylinositol-dependent phospholipase C-β activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-α or -ε with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca2+]o. Activation of ERK1/2 by high [Ca2+]o was not necessary for the [Ca2+]o-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca2+]o signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.  相似文献   

2.
Activation of the extracellular calcium-sensing receptor (CaR) stimulates mitogen-activated protein kinases to upregulate the synthesis and secretion of parathyroid hormone related peptide (PTHrP) from cells expressing the CaR heterologously or endogenously. The current experiments demonstrate that this occurs because CaR activation "transactivates" the EGF receptor (EGFR). Time dependent increases in tyrosine phosphorylation of the EGFR after addition of extracellular calcium ([Ca2+]o, 3 mM) occurred in stably CaR-transfected HEK293 cells but not in non-transfected HEK293 cells. AG1478, an EGFR kinase inhibitor, prevented the CaR-mediated increases of pERK and PTHrP release, while AG1296, a PDGFR kinase inhibitor, had no effect. Inhibitors of matrix metalloproteinase and heparin bound-EGF prevented the CaR-mediated increases of pERK and PTHrP, consistent with a "triple-membrane-spanning signaling" requirement for transactivation of the EGFR by the CaR. Proximal and distal signal transduction cascades activated by the CaR may reflect transactivation of the EGFR by the extracellular calcium-sensing receptor.  相似文献   

3.
We examined the role of protein kinase C (PKC) in the mechanism and regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) oscillations elicited by an increase in the extracellular concentration of Ca(2+) ([Ca(2+)](e)) in human embryonic kidney 293 cells expressing the Ca(2+)-sensing receptor (CaR). Exposure to the PKC inhibitors bisindolylmaleimide I (GF I) or Ro-31-8220 converted oscillatory responses to transient, non-oscillatory responses, significantly reducing the percentage of cells that showed [Ca(2+)](i) oscillations but without decreasing the overall response to increase in [Ca(2+)](e). Exposure to 100 nm phorbol 12,13-dibutyrate, a direct activator of PKC, eliminated [Ca(2+)](i) oscillations. Addition of phorbol 12,13-dibutyrate at lower concentrations (3 and 10 nm) did not eliminate the oscillations but greatly reduced their frequency in a dose-dependent manner. Co-expression of CaR with constitutively active mutants of PKC (either epsilon or beta(1) isoforms) also reduced [Ca(2+)](i) oscillation frequency. Expression of a mutant CaR in which the major PKC phosphorylation site is altered by substitution of alanine for threonine (T888A) eliminated oscillatory behavior, producing [Ca(2+)](i) responses almost identical to those produced by the wild type CaR exposed to PKC inhibitors. These results support a model in which phosphorylation of the CaR at the inhibitory threonine 888 by PKC provides the negative feedback needed to cause [Ca(2+)](i) oscillations mediated by this receptor.  相似文献   

4.
The calcium-sensing receptor (CaR) is an allosteric protein that responds to extracellular Ca(2+) ([Ca(2+)](o)) and aromatic amino acids with the production of different patterns of oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). An increase in [Ca(2+)](o) stimulates phospholipase C-mediated production of inositol 1,4,5-trisphosphate and causes sinusoidal oscillations in [Ca(2+)](i). Conversely, aromatic amino acid-induced CaR activation does not stimulate phospholipase C but engages an unidentified signaling mechanism that promotes transient oscillations in [Ca(2+)](i). We show here that the [Ca(2+)](i) oscillations stimulated by aromatic amino acids were selectively abolished by TRPC1 down-regulation using either a pool of small inhibitory RNAs (siRNAs) or two different individual siRNAs that targeted different coding regions of TRPC1. Furthermore, [Ca(2+)](i) oscillations stimulated by aromatic amino acids were also abolished by inhibition of TRPC1 function with an antibody that binds the pore region of the channel. We also show that aromatic amino acid-stimulated [Ca(2+)](i) oscillations can be prevented by protein kinase C (PKC) inhibitors or siRNA-mediated PKCalpha down-regulation and impaired by either calmodulin antagonists or by the expression of a dominant-negative calmodulin mutant. We propose a model for the generation of CaR-mediated transient [Ca(2+)](i) oscillations that integrates its stimulation by aromatic amino acids with TRPC1 regulation by PKC and calmodulin.  相似文献   

5.
Extracellular Ca(2+) concentration ([Ca(2+)](o)) regulates the functions of many cell types through a G protein-coupled [Ca(2+)](o)-sensing receptor (CaR). Whether the receptor is functionally expressed in vascular endothelial cells is largely unknown. In cultured human aortic endothelial cells (HAEC), RT-PCR yielded the expected 555-bp product corresponding to the CaR, and CaR protein was demonstrated by fluorescence immunostaining and Western blot. RT-PCR also demonstrated the expression in HAEC of alternatively spliced variants of the CaR lacking exon 5. Although stimulation of fura 2-loaded HAEC by several CaR agonists (high [Ca(2+)](o), neomycin, and gadolinium) failed to increase intracellular Ca(2+) concentration ([Ca(2+)](i)), the CaR agonist spermine stimulated an increase in [Ca(2+)](i) that was diminished in buffer without Ca(2+) and was abolished after depletion of an intracellular Ca(2+) pool with thapsigargin or after blocking IP(3)- and ryanodine receptor-mediated Ca(2+) release with xestospongin C and with high concentration ryanodine, respectively. Spermine stimulated an increase in DAF-FM fluorescence in HAEC, consistent with NO production. Both the increase in [Ca(2+)](i) and in NO production were reduced or absent in HAEC transfected with siRNA specifically targeted to the CaR. HAEC express a functional CaR that responds to the endogenous polyamine spermine with an increase in [Ca(2+)](i), primarily due to release of IP(3)- and ryanodine-sensitive intracellular Ca(2+) stores, leading to the production of NO. Expression of alternatively spliced variants of the CaR may result in the absence of a functional response to other known CaR agonists in HAEC.  相似文献   

6.
7.
In HEK 293 cells stably expressing type 1 parathyroid (PTH) receptors, PTH stimulated release of intracellular Ca(2+) stores in only 27% of cells, whereas 96% of cells responded to carbachol. However, in almost all cells PTH potentiated the response to carbachol by about 3-fold. Responses to carbachol did not desensitize, but only the first challenge in Ca(2+)-free medium caused an increase in [Ca(2+)](i), indicating that the carbachol-sensitive Ca(2+) stores had been emptied. Subsequent addition of PTH also failed to increase [Ca(2+)](i), but when it was followed by carbachol there was a substantial increase in [Ca(2+)](i). A similar potentiation was observed between ATP and PTH but not between carbachol and ATP. Intracellular heparin inhibited responses to carbachol and PTH, and pretreatment with ATP and carbachol abolished responses to PTH, suggesting that the effects of PTH involve inositol trisphosphate (IP(3)) receptors. PTH neither stimulated detectable IP(3) formation nor affected the amount formed in response to ATP or carbachol. PTH stimulated cyclic AMP formation, but this was not the means whereby PTH potentiated Ca(2+) signals. We suggest that PTH may regulate Ca(2+) mobilization by facilitating translocation of Ca(2+) between discrete intracellular stores and that it thereby regulates the size of the Ca(2+) pool available to receptors linked to IP(3) formation.  相似文献   

8.
The extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) activates Ca(2+) influx independent of the release of intracellular Ca(2+) stores. The latter can be negatively regulated by protein kinase C (PKC) through phosphorylation of Thr-888 of the CaR. In this study, we substituted Thr-888 with various amino acid residues or a stop codon to understand how PKC phosphorylation of the CaR inhibits receptor-mediated release of intracellular Ca(2+) stores. Substitutions of Thr-888 with hydrophobic and hydrophilic amino acid residues had various effects on CaR-mediated release of intracellular Ca(2+) stores as well as activation of Ca(2+) influx. Several point mutations, such as T888D, had marked negative effects on CaR-mediated release of intracellular Ca(2+) stores but not on phorbol myristate acetate-insensitive activation of Ca(2+) influx. Presumably, the negatively charged aspartate mimics phospho-threonine. Interestingly, truncating the receptor at 888 had an even more pronounced negative effect on CaR-elicited release of intracellular Ca(2+) stores without significantly affecting CaR-mediated activation of Ca(2+) influx. Therefore, truncation at position 888 of the CaR affects the activity of the receptor in a manner that resembles PKC phosphorylation of the CaR. This in turn suggests that PKC phosphorylation of the CaR prevents G protein subtypes from interacting with the region of the receptor critical for releasing Ca(2+) stores, which is missing in the truncated receptor.  相似文献   

9.
We co-immunoprecipitated the Ca(2+)-sensing receptor (CaR) and type B gamma-aminobutyric acid receptor (GABA-B-R) from human embryonic kidney (HEK)-293 cells expressing these receptors and from brain lysates where both receptors are present. CaRs extensively co-localized with the two subunits of the GABA-B-R (R1 and R2) in HEK-293 cell membranes and intracellular organelles. Coexpressing CaRs and GABA-B-R1s in HEK-293 cells suppressed the total cellular and cell surface expression of CaRs and inhibited phospholipase C activation in response to high extracellular [Ca(2+)] ([Ca(2+)](e)). In contrast, coexpressing CaRs and GABA-B-R2s enhanced CaR expression and signaling responses to raising [Ca(2+)](e). The latter effects of the GABA-B-R2 on the CaR were blunted by coexpressing the GABA-B-R1. Coexpressing the CaR with GABA-B-R1 or R2 enhanced the total cellular and cell surface expression of the GABA-B-R1 or R2, respectively. Studies with truncated CaRs indicated that the N-terminal extracellular domain of the CaR participated in the interaction of the CaR with the GABA-B-R1 and R2. In cultured mouse hippocampal neurons, CaRs co-localized with the GABA-B-R1 and R2. CaRs and GABA-B-R1s also co-immunoprecipitated from brain lysates. The expression of the CaR was increased in lysates from GABA-B-R1 knock-out mouse brains and in cultured hippocampal neurons with their GABA-B-R1 genes deleted in vitro. Thus, CaRs and GABA-B-R subunits can form heteromeric complexes in cells, and their interactions affect cell surface expression and signaling of CaR, which may contribute to extracellular Ca(2+)-dependent receptor activation in target tissues.  相似文献   

10.
Serotonin activates Ras and Ras-dependent ERK1/2 phosphorylation in HEK293 cells expressing G(s)-coupled 5-HT(4) or 5-HT(7) serotonin receptors through unknown mechanisms. Both Epac/Rap-dependent and -independent pathways for Ras-dependent ERK1/2 activation have been suggested. Epac overexpression or Epac-specific 8-CPT-2'-O-Me-cAMP did not cause ERK1/2 phosphorylation, despite Rap activation. The data did not support a role for PLCepsilon or DAG-dependent Ras GEFs of the Ras-GRP family in Ras-dependent ERK1/2 phosphorylation. However, serotonin stimulated phosphorylation of endogenous and recombinant Ras-GRF1, increased [Ca(2+)](i) and caused Ca(2+)- and calmodulin-dependent ERK1/2 phosphorylation. Different signalling pathways seem to be utilised by G(s)-coupled receptors in various isolates of HEK293 cells.  相似文献   

11.
This study examined the mechanism of Ca2+ entry and the role of protein kinase C (PKC) in Ca2+ signaling induced by activation of the calcium sensing receptor (CaR) in HEK293 cells stably expressing the CaR. We demonstrate that influx of Ca2+ following CaR activation exhibits store-operated characteristics in being associated with Ca2+ store depletion and inhibited by 2-aminoethoxydiphenyl borate. Inhibition of PKC with GF109203X, Go6983, or Go6976 and down-regulation of PKC activity enhanced the release of Ca2+ from internal stores in response to the polyvalent cationic CaR agonist neomycin, whereas activation of PKC with acute 12-O-tetradecanoylphorbol-13-acetate treatment decreased the release. In contrast, overexpression of wild type PKC-alpha or -epsilon augmented the neomycin-induced release of Ca2+ from internal stores, whereas dominant negative PKC-epsilon strongly decreased the release, but dominant negative PKC-alpha had little effect. Prolonged treatment of cells with 12-O-tetradecanoylphorbol-13-acetate effectively down-regulated immunoreactive PKC-alpha but had little effect on the expression of PKC-epsilon. Together these results indicate that diacylglycerol-responsive PKC isoforms differentially influence CaR agonist-induced release of Ca2+ from internal stores. The fundamentally different results obtained when overexpressing or functionally down-regulating specific PKC isoforms as compared with pharmacological manipulation of PKC activity indicate the need for caution when interpreting data obtained with the latter approach.  相似文献   

12.
To determine the role of amino acids in the second and third intracellular (IC) loops of the Ca(2+)-sensing receptor (CaR) in phospholipase C (PLC) activation, we mutated residues in these loops either singly or in tandem to Ala and assessed PLC activity by measuring high extracellular [Ca(2+)] ([Ca(2+)](o))-induced inositol phosphate accumulation and protein expression by immunoblotting and immunocytochemistry in human embryonic kidney 293 cells. Two CaR constructs in the second IC loop, F707A CaR and to a lesser extent L704A CaR, demonstrated reduced activation of PLC, despite levels of protein expression comparable with the wild-type (wt) CaR. Substitution of Tyr or His for Phe-707, but not Leu, Val, Glu, or Trp, partially restored the ability of high [Ca(2+)](o) to activate PLC. Eight residues in the third IC loop were involved in PLC signaling. The responses to high [Ca(2+)](o) in cells expressing CaRs with Ala substitutions at these sites were <35% of the wt CaR. The L798A, F802A, and E804A CaRs were dramatically impaired in their responses to [Ca(2+)](o) even up to 30 mm. Substitutions of Leu-798 with other hydrophobic residues (Ile, Val, or Phe), but not with acidic, basic, or polar residues, produced reduced responses compared with wt. Phe-802 could be replaced with either Tyr or Trp with partial retention of the ability to activate PLC. Glu-804 could only be substituted with Asp or Gln and maintain its signaling capacity. Cell surface expression of the CaRs mutated at Leu-798 and Phe-802 appeared normal compared with wt CaR. Cell surface CaR expression was, however, reduced substantially in cells expressing several mutants at position Glu-804 by confocal microscopy. These studies strongly implicate specific hydrophobic and acidic residues in the second and third IC loops of the parathyroid CaR (and potentially larger stretches of the third loop) in mediating efficient high [Ca(2+)](o)-induced PLC activation and or CaR expression.  相似文献   

13.
In order to investigate the currently unknown cellular signaling pathways of T-type Ca(2+) channels, we decided to construct a new cell line which would stably express alpha(1G) and Kir2.1 subunits in HEK293 cells (HEK293/alpha(1G)/Kir2.1). Compared to cells which only expressed alpha(1G) (HEK293/alpha(1G)), HEK293/alpha(1G)/Kir2.1 cells produced an enormous inward rectifying current which was blocked by external Ba(2+) and Cs(+) in a concentration-dependent manner. The expression of Kir2.1 channels contributed significantly to the shift of membrane potential from -12.2+/-2.8 to -57.3+/-3.7mV. However, biophysical and pharmacological properties of alpha(1G)-mediated Ca(2+) channels remained unaffected by the expression of Kir2.1 subunits, except for the enlarging of the window current region. Biochemical activation of alpha(1G) channels using 150mM KCl brought about an increase in [Ca(2+)](i), which was blocked by mibefradil, the T-type Ca(2+) channel blocker. These data suggest that the HEK293/alpha(1G)/Kir2.1 cell line would have potential uses in the study of T-type Ca(2)(+) channel-mediated signaling pathways and possibly useful in the development of new therapeutic drugs associated with T-type Ca(2)(+) channels.  相似文献   

14.
The calcium-sensing receptor (CaR) mediates feedback control of Ca2+o (extracellular Ca2+) concentration. Although the mechanisms are not fully understood, the CaR couples to several important intracellular signalling enzymes, including PI-PLC (phosphoinositide-specific phospholipase C), leading to Ca2+i (intracellular Ca2+) mobilization, and ERK1/2 (extracellular-signal-regulated kinase 1/2). In addition to Ca2+o, the CaR is activated allosterically by several subclasses of L-amino acids, including the aromatics L-phenylalanine and L-tryptophan. These amino acids enhance the Ca2+o-sensitivity of Ca2+i mobilization in CaR-expressing HEK-293 (human embryonic kidney) cells and normal human parathyroid cells. Furthermore, on a background of a physiological fasting serum L-amino acid mixture, they induce a small, but physiologically significant, enhancement of Ca2+o-dependent suppression of PTH (parathyroid hormone) secretion. The impact of amino acids on CaR-stimulated ERK1/2, however, has not been determined. In the present study, we examined the effects of L-amino acids on Ca2+o-stimulated ERK1/2 phosphorylation as determined by Western blotting and a newly developed quantitative assay (SureFire). L-Amino acids induced a small, but significant, enhancement of Ca2+o-stimulated ERK1/2. In CaR-expressing HEK-293 cells, 10 mM L-phenylalanine lowered the EC50 for Ca2+o from approx. 2.3 to 2.0 mM in the Western blot assay and from 3.4 to 2.9 mM in the SureFire assay. The effect was stereoselective (L>D), and another aromatic amino acid, L-tryptophan, was also effective. The effects of amino acids were investigated further in HEK-293 cells that expressed the CaR mutant S169T. L-Phenylalanine normalized the EC50 for Ca2+o-stimulated Ca2+i mobilization from approx. 12 mM to 5.0 mM and ERK1/2 phosphorylation from approx. 4.6 mM to 2.6 mM. Taken together, the data indicate that L-phenylalanine and other amino acids enhance the Ca2+o-sensitivity of CaR-stimulated ERK1/2 phosphorylation; however, the effect is comparatively small and operates in the form of a fine-tuning mechanism.  相似文献   

15.
16.
Increased extracellular Ca(2+) ([Ca(2+)](o)) can damage tissues, but the molecular mechanisms by which this occurs are poorly defined. Using HEK 293 cell lines that stably overexpress the Ca(2+)-sensing receptor (CaR), a G protein-coupled receptor, we demonstrate that activation of the CaR leads to apoptosis, which was determined by nuclear condensation, DNA fragmentation, caspase-3 activation, and increased cytosolic cytochrome c. This CaR-induced apoptotic pathway is initiated by CaR-induced accumulation of ceramide which plays an important role in inducing cell death signals by distinct G protein-independent signaling pathways. Pretreatment of wild-type CaR-expressing cells with pertussis toxin inhibited CaR-induced [(3)H]ceramide formation, c-Jun phosphorylation, and caspase-3 activation. The ceramide accumulation, c-Jun phosphorylation, and caspase-3 activation by the CaR can be abolished by sphingomyelinase and ceramide synthase inhibitors in different time frames. Cells that express a nonfunctional mutant CaR that were exposed to the same levels of [Ca(2+)](o) showed no evidence of activation of the apoptotic pathway. In conclusion, we report the involvement of the CaR in stimulating programmed cell death via a pathway involving GTP binding protein alpha subunit (Galpha(i))-dependent ceramide accumulation, activation of stress-activated protein kinase/c-Jun N-terminal kinase, c-Jun phosphorylation, caspase-3 activation, and DNA cleavage.  相似文献   

17.
Protein kinase C (PKC) plays a role in cardioprotection through reduction of intracellular Ca(2+) concentration [Ca(2+)](i) during ischemic preconditioning (IPC). Cardioprotection against ischemic post-conditioning (PC) could be associated with reduced [Ca(2+)](i) through PKC. The calcium-sensing receptor (CaR), G protein-coupled receptor, causes accumulation of inositol phosphate (IP) to increase the release of intracellular Ca(2+). However, this phenomenon can be negatively regulated by PKC through phosphorylation of Thr-888 of the CaR. This study tested the hypothesis that the prevention of cardiomyocyte damage by PC is associated with [Ca(2+)](i) reduction through an interaction of PKC with the CaR. Isolated rat hearts were subjected to 40min of ischemia followed by 90min of reperfusion. The hearts were post-conditioned after the 40min of ischemia by three cycles of 30s of reperfusion and 30s of re-ischemia applied before the 90min of reperfusion. Immunolocalization of PKCepsilon in the cell membrane was observed with IPC and PC, and in hearts exposed to GdCl(3) during PC. CaR was expressed in cardiac cell membrane and interacted with PKC in IPC, PC, and exposure to GdCl(3) during PC groups. On laser confocal microscopy, intracellular Ca(2+) was significantly decreased with IPC, PC, and exposure to GdCl(3) during PC compared with the I/R and PKC inhibitor groups, and cell structure was better preserved and promoted the recovery of cardiac function after reperfusion in the same groups. These results suggested that PKC is involved in cardioprotection against PC through negative feedback of a CaR-mediated reduction in [Ca(2+)](i).  相似文献   

18.
19.
Removal of extracellular Ca(2+) concentration ([Ca(2+)](o)) and pretreatment of canine basilar arterial rings with either an antagonist of voltage-gated Ca(2+) channels (verapamil), a selective antagonist of the sarcoplasmic reticulum Ca(2+) pump [thapsigargin (TSG)], caffeine plus a specific antagonist of ryanodine-sensitive Ca(2+) release (ryanodine), or a D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)]- mediated Ca(2+) release antagonist (heparin) markedly attenuates low extracellular Mg(2+) concentration ([Mg(2+)](o))-induced contractions. Low [Mg(2+)](o)-induced contractions are significantly inhibited by pretreatment of the vessels with G?-6976 [a protein kinase C-alpha (PKC-alpha)- and PKC-betaI-selective antagonist], bisindolylmaleimide I (Bis, a specific antagonist of PKC), and wortmannin or LY-294002 [selective antagonists of phosphatidylinositol-3 kinases (PI3Ks)]. These antagonists were also found to relax arterial contractions induced by low [Mg(2+)](o) in a concentration-dependent manner. The absence of [Ca(2+)](o) and preincubation of the cells with verapamil, TSG, heparin, or caffeine plus ryanodine markedly attenuates the transient and sustained elevations in the intracellular Ca(2+) concentration ([Ca(2+)](i)) induced by low-[Mg(2+)](o) medium. Low [Mg(2+)](o)-produced increases in [Ca(2+)](i) are also suppressed markedly in the presence of G?-6976, Bis, wortmannin, or LY-294002. The present study suggests that both Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from intracellular stores [both Ins(1,4,5)P(3) sensitive and ryanodine sensitive] play important roles in low-[Mg(2+)](o) medium-induced contractions of isolated canine basilar arteries. Such contractions are clearly associated with activation of PKC isoforms and PI3Ks.  相似文献   

20.
Effects of extracellular calcium ([Ca(2+)](ext)) on parathyroid cells are mainly due to the activation of a plasma membrane calcium receptor (CaR) coupled with release of intracellular calcium. In addition, high [Ca(2+)](ext) activates the sphingomyelin pathway in bovine parathyroid cells, generating ceramides and sphingosine. This study explored the direct effects of synthetic ceramides on [Ca(2+)](i) in human parathyroid cells. Cells from five parathyroid adenomas removed from patients with primary hyperparathyroidism were dispersed and maintained in primary culture. Intracellular calcium concentration ([Ca(2+)](i)) [Ca(2+)](i) was monitored using standard quantitative fluorescence microscopy in Fura-2/AM-loaded cells. Laser scanning microscopy was used to monitor the intracellular distribution of a fluorescent ceramide analogue (BODIPY-C5). After addition of 10 microM C2-ceramide (N-acetyl-d-erythro-sphingosine), [Ca(2+)](i) increased rapidly (30-60 s) to a peak three times above basal levels in 70% of cells (37/55 cells in four experiments). This effect appeared to be due to release of Ca(2+) from intracellular stores rather than Ca(2+) entry from the extracellular medium. C2-responsive cells had a smaller [Ca(2+)](i) response to subsequent stimulation with the CaR agonist-neomycin (1 mM). These responses were specific to C2 since C6-ceramide (N-hexanoyl-d-erythro-sphingosine) did not affect basal [Ca(2+)](i) nor the responses to an increase in [Ca(2+)](ext) and to neomycin. C5-BODIPY generated intense perinuclear fluorescence, suggesting targeting of the ceramides to the Golgi apparatus. These data demonstrate that endogenous generation of ceramides has the potential to modulate changes in [Ca(2+)](i) and secretion in response to [Ca(2+)](ext) in human parathyroid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号