首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces a new subcellular localization system (TSSub) for eukaryotic proteins. This system extracts features from both profiles and amino acid sequences. Four different features are extracted from profiles by four probabilistic neural network (PNN) classifiers, respectively (the amino acid composition from whole profiles; the amino acid composition from the N-terminus of profiles; the dipeptide composition from whole profiles and the amino acid composition from fragments of profiles). In addition, a support vector machine (SVM) classifier is added to implement the residue-couple feature extracted from amino acid sequences. The results from the five classifiers are fused by an additional SVM classifier. The overall accuracies of this TSSub reach 93.0 and 77.4% on Reinhardt and Hubbard's eukaryotic protein dataset and Huang and Li's eukaryotic protein dataset, respectively. The comparison with existing methods results shows TSSub provides better prediction performance than existing methods. AVAILABILITY: The web server is available from http://166.111.24.5/webtools/TSSub/index.html.  相似文献   

2.
Guo J  Lin Y  Liu X 《Proteomics》2006,6(19):5099-5105
This paper proposes a new integrative system (GNBSL--Gram-negative bacteria subcellular localization) for subcellular localization specifized on the Gram-negative bacteria proteins. First, the system generates a position-specific frequency matrix (PSFM) and a position-specific scoring matrix (PSSM) for each protein sequence by searching the Swiss-Prot database. Then different features are extracted by four modules from the PSFM and the PSSM. The features include whole-sequence amino acid composition, N- and C-terminus amino acid composition, dipeptide composition, and segment composition. Four probabilistic neural network (PNN) classifiers are used to classify these modules. To further improve the performance, two modules trained by support vector machine (SVM) are added in this system. One module extracts the residue-couple distribution from the amino acid sequence and the other module applies a pairwise profile alignment kernel to measure the local similarity between every two sequences. Finally, an additional SVM is used to fuse the outputs from the six modules. Test on a benchmark dataset shows that the overall success rate of GNBSL is higher than those of PSORT-B, CELLO, and PSLpred. A web server GNBSL can be visited from http://166.111.24.5/webtools/GNBSL/index.htm.  相似文献   

3.
MOTIVATION: Remote homology detection is the problem of detecting homology in cases of low sequence similarity. It is a hard computational problem with no approach that works well in all cases. RESULTS: We present a method for detecting remote homology that is based on the presence of discrete sequence motifs. The motif content of a pair of sequences is used to define a similarity that is used as a kernel for a Support Vector Machine (SVM) classifier. We test the method on two remote homology detection tasks: prediction of a previously unseen SCOP family and prediction of an enzyme class given other enzymes that have a similar function on other substrates. We find that it performs significantly better than an SVM method that uses BLAST or Smith-Waterman similarity scores as features.  相似文献   

4.
Remote homology detection refers to the detection of structure homology in evolutionarily related proteins with low sequence similarity. Supervised learning algorithms such as support vector machine (SVM) are currently the most accurate methods. In most of these SVM-based methods, efforts have been dedicated to developing new kernels to better use the pairwise alignment scores or sequence profiles. Moreover, amino acids’ physicochemical properties are not generally used in the feature representation of protein sequences. In this article, we present a remote homology detection method that incorporates two novel features: (1) a protein's primary sequence is represented using amino acid's physicochemical properties and (2) the similarity between two proteins is measured using recurrence quantification analysis (RQA). An optimization scheme was developed to select different amino acid indices (up to 10 for a protein family) that are best to characterize the given protein family. The selected amino acid indices may enable us to draw better biological explanation of the protein family classification problem than using other alignment-based methods. An SVM-based classifier will then work on the space described by the RQA metrics. The classification scheme is named as SVM-RQA. Experiments at the superfamily level of the SCOP1.53 dataset show that, without using alignment or sequence profile information, the features generated from amino acid indices are able to produce results that are comparable to those obtained by the published state-of-the-art SVM kernels. In the future, better prediction accuracies can be expected by combining the alignment-based features with our amino acids property-based features. Supplementary information including the raw dataset, the best-performing amino acid indices for each protein family and the computed RQA metrics for all protein sequences can be downloaded from http://ym151113.ym.edu.tw/svm-rqa.  相似文献   

5.
蛋白质折叠模式识别是一种分析蛋白质结构的重要方法。以序列相似性较低的蛋白质为训练集,提取蛋白质序列信息频数及疏水性等信息作为折叠类型特征,从SCOP数据库中已分类蛋白质构建1 393种折叠模式的数据集,采用SVM预测蛋白质1 393种折叠模式。封闭测试准确率达99.612 2%,基于SCOP的开放测试准确率达79.632 9%。基于另一个权威测试集的开放测试折叠准确率达64.705 9%,SCOP类准确率达76.470 6%,可以有效地对蛋白质折叠模式进行预测,从而为蛋白质从头预测提供参考。  相似文献   

6.
Ubiquitin functions to regulate protein turnover in a cell by closely regulating the degradation of specific proteins. Such a regulatory role is very important, and thus I have analyzed the proteins that are ubiquitin-like, using an artificial neural network, support vector machines and a hidden Markov model (HMM). The methods were trained and tested on a set of 373 ubiquitin proteins and 373 non-ubiquitin proteins, obtained from Entrez protein database. The artificial neural network and support vector machine are trained and tested using both the physicochemical properties and PSSM matrices generated from PSI-BLAST, while in the HMM based method direct sequences are used for training-testing procedures. Further, the performance measures of the methods are calculated for test sequences, i.e. accuracy, specificity, sensitivity and Matthew's correlation coefficients of the methods are calculated. The highest accuracy of 90.2%, specificity of 87.04% and sensitivity of 94.08% was achieved using the support vector machine model with PSSM matrices. While accuracies of 86.82%, 83.37%, 80.18% and 72.11% were obtained for the support vector machine with physicochemical properties, neural network with PSSM matrices, neural networks with physicochemical properties, and hidden Markov model, respectively. As the accuracy for SVM model is better both using physicochemical properties and the PSSM matrices, it is concluded that kernel methods such as SVM outperforms neural networks and hidden Markov models.  相似文献   

7.
This study presents an allergenic protein prediction system that appears to be capable of producing high sensitivity and specificity. The proposed system is based on support vector machine (SVM) using evolutionary information in the form of an amino acid position specific scoring matrix (PSSM). The performance of this system is assessed by a 10-fold cross-validation experiment using a dataset consisting of 693 allergens and 1041 non-allergens obtained from Swiss-Prot and Structural Database of Allergenic Proteins (SDAP). The PSSM method produced an accuracy of 90.1% in comparison to the methods based on SVM using amino acid, dipeptide composition, pseudo (5-tier) amino acid composition that achieved an accuracy of 86.3, 86.5 and 82.1% respectively. The results show that evolutionary information can be useful to build more effective and efficient allergen prediction systems.  相似文献   

8.
Prediction of RNA binding sites in a protein using SVM and PSSM profile   总被引:1,自引:0,他引:1  
Kumar M  Gromiha MM  Raghava GP 《Proteins》2008,71(1):189-194
  相似文献   

9.
Huang WL  Tung CW  Huang HL  Hwang SF  Ho SY 《Bio Systems》2007,90(2):573-581
Accurate prediction methods of protein subnuclear localizations rely on the cooperation between informative features and classifier design. Support vector machine (SVM) based learning methods are shown effective for predictions of protein subcellular and subnuclear localizations. This study proposes an evolutionary support vector machine (ESVM) based classifier with automatic selection from a large set of physicochemical composition (PCC) features to design an accurate system for predicting protein subnuclear localization, named ProLoc. ESVM using an inheritable genetic algorithm combined with SVM can automatically determine the best number m of PCC features and identify m out of 526 PCC features simultaneously. To evaluate ESVM, this study uses two datasets SNL6 and SNL9, which have 504 proteins localized in 6 subnuclear compartments and 370 proteins localized in 9 subnuclear compartments. Using a leave-one-out cross-validation, ProLoc utilizing the selected m=33 and 28 PCC features has accuracies of 56.37% for SNL6 and 72.82% for SNL9, which are better than 51.4% for the SVM-based system using k-peptide composition features applied on SNL6, and 64.32% for an optimized evidence-theoretic k-nearest neighbor classifier utilizing pseudo amino acid composition applied on SNL9, respectively.  相似文献   

10.
Mismatch string kernels for discriminative protein classification   总被引:1,自引:0,他引:1  
MOTIVATION: Classification of proteins sequences into functional and structural families based on sequence homology is a central problem in computational biology. Discriminative supervised machine learning approaches provide good performance, but simplicity and computational efficiency of training and prediction are also important concerns. RESULTS: We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the problem of protein classification and remote homology detection. These kernels measure sequence similarity based on shared occurrences of fixed-length patterns in the data, allowing for mutations between patterns. Thus, the kernels provide a biologically well-motivated way to compare protein sequences without relying on family-based generative models such as hidden Markov models. We compute the kernels efficiently using a mismatch tree data structure, allowing us to calculate the contributions of all patterns occurring in the data in one pass while traversing the tree. When used with an SVM, the kernels enable fast prediction on test sequences. We report experiments on two benchmark SCOP datasets, where we show that the mismatch kernel used with an SVM classifier performs competitively with state-of-the-art methods for homology detection, particularly when very few training examples are available. Examination of the highest-weighted patterns learned by the SVM classifier recovers biologically important motifs in protein families and superfamilies.  相似文献   

11.
12.
13.

Background  

β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor.  相似文献   

14.
蛋白质二级结构预测是进行蛋白质三级结构研究的重要基础,氨基酸的编码方式对二级结构预测有一定的影响。本文应用了一种新的组合编码方式,即将基团编码与位置特异性打分矩阵(PSSM)进行组合的编码方式。本文中提出的基团编码是针对氨基酸的一种新的编码方式,基团编码是根据氨基酸内部组成来进行编码的,由42位属性组成。本文选取位置特异性打分矩阵(PSSM)中的Blosum62进化矩阵和新的基团编码进行组合,形成新的编码方式。然后对CB513和25pdb两组数据分别进行实验。本文中将采用贝叶斯分类器与自动编码器两种方法来对这种新的编码方式进行实验,然后比较这两种方法得到的两组数据的结果。可以很明显的发现采用自动编码器的实验结果要比使用贝叶斯分类器的结果要高出1.65%。在本文的实验中,可以提取特征的自动编码器的预测准确率更好。  相似文献   

15.
16.
DNA结合蛋白(DNA-binding proteins,DBPs)的鉴定在原核和真核生物的基因和蛋白质功能注释研究中具有十分重要的意义.本研究首次运用间隔二肽组分(gapped-dipeptide composition,Gap DPC)结合递归特征消除法(recursive feature elimination,RFE)鉴定DBPs.首先获得待测蛋白质氨基酸序列的位置特异性得分矩阵(position specific scoring matrix,PSSM),在此基础上提取蛋白质的Gap DPC特征,通过RFE法选择最优特征,然后利用支持向量机(support vector machine,SVM)作为分类器,在蛋白质序列数据集PDB396和LB1068中进行夹克刀交叉验证(jackknife cross validation test).研究结果显示,基于PDB396和LB1068数据集,DBPs预测的准确率、Matthews相关系数、敏感性和特异性分别达到93.43%、0.86、89.04%和96.00%,以及86.33%、0.73、86.49%和86.18%,明显优于文献报道中的相关方法,为DBPs的鉴定提供了新的模型.  相似文献   

17.
18.

Background

The functions of proteins are closely related to their subcellular locations. In the post-genomics era, the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular localization by computational means.

Results

This paper proposes mitigating the computation burden of alignment-based approaches to subcellular localization prediction by a cascaded fusion of cleavage site prediction and profile alignment. Specifically, the informative segments of protein sequences are identified by a cleavage site predictor using the information in their N-terminal shorting signals. Then, the sequences are truncated at the cleavage site positions, and the shortened sequences are passed to PSI-BLAST for computing their profiles. Subcellular localization are subsequently predicted by a profile-to-profile alignment support-vector-machine (SVM) classifier. To further reduce the training and recognition time of the classifier, the SVM classifier is replaced by a new kernel method based on the perturbational discriminant analysis (PDA).

Conclusions

Experimental results on a new dataset based on Swiss-Prot Release 57.5 show that the method can make use of the best property of signal- and homology-based approaches and can attain an accuracy comparable to that achieved by using full-length sequences. Analysis of profile-alignment score matrices suggest that both profile creation time and profile alignment time can be reduced without significant reduction in subcellular localization accuracy. It was found that PDA enjoys a short training time as compared to the conventional SVM. We advocate that the method will be important for biologists to conduct large-scale protein annotation or for bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.
  相似文献   

19.
MOTIVATION: A new representation for protein secondary structure prediction based on frequent amino acid patterns is described and evaluated. We discuss in detail how to identify frequent patterns in a protein sequence database using a level-wise search technique, how to define a set of features from those patterns and how to use those features in the prediction of the secondary structure of a protein sequence using support vector machines (SVMs). RESULTS: Three different sets of features based on frequent patterns are evaluated in a blind testing setup using 150 targets from the EVA contest and compared to predictions of PSI-PRED, PHD and PROFsec. Despite being trained on only 940 proteins, a simple SVM classifier based on this new representation yields results comparable to PSI-PRED and PROFsec. Finally, we show that the method contributes significant information to consensus predictions. AVAILABILITY: The method is available from the authors upon request.  相似文献   

20.
Protein structure information is very useful for the confirmation of protein function. The protein structural class can provide information for protein 3D structure analysis, causing the conformation of the protein overall folding type plays a significant part in molecular biology. In this paper, we focus on the prediction of protein structural class which was based on new feature representation. We extract features from the Chou-Fasman parameter, amino acid compositions, amino acids hydrophobicity features, polarity information and pair-coupled amino acid composition. The prediction result by the Support vector machine (SVM) classifier shows that our method is better than some others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号