首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
虎杖(Polygonum cuspidatum)聚酮合酶(polyketide synthase 1,PcPKS1)同时具有查尔酮合酶(chalcone synthase,CHS)及苯亚甲基丙酮合酶(benzylidene acetone synthase,BAS)催化活性,能够催化生成聚酮类化合物柚皮素查尔酮和苯亚甲基丙酮,进而催化合成黄酮类或覆盆子酮等具有多种生物学活性的化合物。本研究通过分析虎杖PcPKS1与掌叶大黄(Rheum palmatum)BAS、拟南芥(Arabidopsis thaliana)CHS等家族成员的序列以及酶催化位点的构象,确定可能影响酶功能的3个氨基酸位点:Thr133、Ser134、Ser339。采用定点突变对PcPKS1进行分子修饰,成功获得2个突变体并进行相关体外酶促反应,高效液相色谱(high performance liquid chromatography,HPLC)产物分析结果表明,在pH 7.0和pH 9.0的体外酶促条件下,突变体T133LS134A和S339V维持BAS和CHS双功能活性,且BAS活性显著高于原PcPKS1。本研究为利用PcPKS1进行基因工程调节黄酮类和覆盆子酮化合物的生物合成提供理论依据。  相似文献   

2.
白藜芦醇是一种天然植保素,且具有特殊的药理和保健功能,芪合酶(Stilbene synthase,STS)是该化合物生物合成的关键酶和限速酶。白藜芦醇存在于有限几种植物且含量差异很大,虎杖中白藜芦醇含量比葡萄、花生高1 000倍以上,推测不同STS的催化能力有可能是白藜芦醇含量差异的原因之一。为验证上述推测,文中通过overlap PCR技术从葡萄叶片基因组DNA中克隆得到葡萄STS基因,连同前期工作中获得的虎杖STS基因(PcPKS5),进行了原核表达分析。诱导表达产物经过Ni2+亲和柱纯化和PD-10柱脱盐后,均得到分子量约43 kDa的可溶性纯化蛋白。酶促产物分析结果表明,两种酶催化产物均为白藜芦醇。酶动力学分析表明,虎杖STS催化效率(Kcat/Km)是葡萄STS的2.4倍。文中从植物类型Ⅲ聚酮化合物合酶(Polyketide synthase,PKS)超家族催化活性位点和保守位点角度分析了造成上述两种酶活性产生差异可能存在的原因。  相似文献   

3.
决明查尔酮合成酶基因的克隆及序列分析   总被引:3,自引:2,他引:1  
以决明(Cassia tora)为实验材料,利用RT-PCR和RACE技术,从决明嫩叶中克隆出查尔酮合成酶(Chal-one synthase,CHS)基因,其cDNA全长为1 459 bp,编码一个由390个氨基酸残基组成的多肽.氨基酸序列分析表明,决明CHS基因的氨基酸序列中含有44.61%的中性疏水氨基酸,29.74%的中性亲水氨基酸,12.56%的酸性氨基酸和13.O8%的碱性氨基酸.决明CHS基因的氨基酸序列中具有CHS家族酶系的氨基酸保守残基,包括结合底物CoA的结合残基及催化聚酮合成的催化残基,表明其可能参与聚酮化合物的合成.决明与其它植物CHS的氨基酸序列的进化分析表明,其与同为豆科决明属的翼叶决明(Cassia alata)的同源性较近,并且CHS家族可以分为CHS亚家族与非CHS亚家族.将得到的序列提交GenBank,登录号为EU430077.  相似文献   

4.
中国水仙系石蒜科水仙属多年生草本植物。其花枝多,花香浓郁,素有“凌波仙子”的美称。但水仙花色单一,影响其观赏价值。花色形成与植物体内的一类次级代谢产物类黄酮有关。查尔酮合酶(Chalcone synthase,CHS)是类黄酮合成途径中的一个关键酶,在植物体内它催化丙二酰基辅酶A的三个乙酸基和对羟苯丙烯酰辅酶A的一个乙酸基的缩合,产生柚配基查尔酮(naringenin)。此中心中  相似文献   

5.
查尔酮合成酶(chalcone synthase,CHS)是植物中类黄酮生物合成途径的关键酶,其催化对-香豆酰辅酶A和丙二酸单酰辅酶A发生缩合反应.本研究以苜蓿CHS的晶体为模板,利用同源建模构建决明CHS的三维模型.经过动力学优化后,决明CHS的三维模型与苜蓿CHS的结构极为相似,主要由α-螺旋和β-折叠构成,其中有13个α螺旋,占32.82%,15个β折叠,占19.23%,无规则卷曲占47.95%.模型验证结果表明决明CHS的三维模型具有合理的立体化学性质与氨基酸相容性.决明CHS含有两个重要的结构域:对-香豆酰辅酶A结合域与丙二酸单酰辅酶A结合域.决明CHS与对-香豆酰辅酶A、丙二酸单酰辅酶A的结合主要通过氢键与范德华力.决明CHS中Cys164、His303与活性中心的H2O能够形成电子传递体系,参与对-香豆酰辅酶A形成CHS-对-香豆酰基中间产物.本研究结果为利用此类CHS三维模型研究其催化机理和分子工程改造奠定基础.  相似文献   

6.
植物Ⅲ型聚酮合酶(Polyketide synthases,PKSs)催化形成一系列结构迥异、生理活性不同的聚酮类化合物的基本骨架结构,是聚酮类化合物生物合成途径的关键酶。目前已从植物中克隆和鉴定了多种功能不同的Ⅲ型PKSs。定点突变技术是研究蛋白质结构与功能之间复杂关系的重要方法。文中综述了近年来基于定点突变的植物Ⅲ型PKSs结构与功能关系的研究进展,包括利用定点突变技术修饰各种可能影响植物Ⅲ型PKSs结构的氨基酸残基,来研究其对功能的影响(如控制起始底物的特异性、缩合反应次数以及中间产物环化方式),以期为植物Ⅲ型PKSs结构与功能关系的研究提供参考。  相似文献   

7.
葡萄CHS和STS基因家族生物信息学鉴定和表达分析   总被引:1,自引:0,他引:1  
查尔酮合成酶(CHS,chalcone synthase)是植物体类黄酮类化合物合成的第1个关键酶和限速酶,它能够催化丙二酰-Co A和对香豆酸-Co A合成柚皮素查尔酮。二苯乙烯合成酶(STS,stilbene synthase)是芪类化合物合成路径的关键酶,与查尔酮合成酶有共同的作用底物,二者具有很高的相似度。为更好地了解葡萄中CHS和STS基因的种类和数量,本研究采用生物信息学方法检索获得葡萄(Vitis vinifera L.)基因组数据库中的CHS和STS基因,通过分析其染色体定位、系统进化和保守基序,发现葡萄基因组可能含有33个STS基因,9个CHS基因,这些基因集中分布在6条葡萄染色体上,部分家族基因在染色体上形成基因簇。葡萄CHS和STS基因家族蛋白长度、基因结构和蛋白基序非常保守,具有很近的进化关系。葡萄芯片数据结果表明,葡萄CHS和STS基因在葡萄果实不同发育时期的果皮和果肉中均有表达,尤其葡萄CHS GroupsⅢ亚家族基因在葡萄果皮中大量表达。葡萄STS基因家族在果实中的表达量较低,部分探针在葡萄果实成熟期的果皮中表达量急剧增加。本研究结果可为葡萄CHS和STS基因在果实发育过程中的功能研究提供参考。  相似文献   

8.
4-羟基-6-甲基-2-吡喃酮(2-吡喃酮)及其衍生物是一类重要的植物次生代谢产物,具有抗虫、抗真菌等功能,在工业上可用于生产可再生化学平台间苯三酚和1,3,5-三氨基-2,4,6-三硝基苯. 2-吡喃酮合酶(2PS),一种Ⅲ型聚酮合酶(PKSs),是合成2-吡喃酮的关键酶.本研究以中药材虎杖(Polygonum cuspidatum Sieb. et Zucc)为材料,从中分离鉴定了一种新的2-吡喃酮合酶(Pc2PS). Pc2PS与已知的几种2PSs的氨基酸序列相似性为54%~56%.通过体外酶促反应鉴定功能发现,Pc2PS可以催化1分子乙酰-CoA与2分子丙二酰-CoA,缩合生成4-羟基-6-甲基-2-吡喃酮;也可以只利用3分子丙二酰-CoA,以相同的效率缩合生成2-吡喃酮.由此可以看出,乙酰-CoA存在与否并不影响该酶的催化效率.随后,我们测定了Pc2PS以丙二酰-CoA为单一底物时的酶动力学参数.虽然之前报道的2PSs也可以只利用丙二酰-CoA生成2-吡喃酮,但与Pc2PS不同的是,乙酰-CoA的缺失会大大降低催化效率.另外,对Pc2PS基因的组织表达特异性检测结果表明,该基因主要在虎杖根中表达,在叶中的表达量很低.本研究丰富了2PS的种类,并为2-吡喃酮的生物合成提供了基因资源.  相似文献   

9.
从水母雪莲Saussurea medusa Maxim. cDNA文库中得到一段查尔酮合酶基因 (SmCHS) 片段,然后通过RT-PCR得到完整的查尔酮合酶基因cDNA。序列分析表明SmCHS全长1 313 bp,其开放阅读框为1 170 bp,编码389个氨基酸,预测表达蛋白的分子量为43 kDa。构建原核表达质粒pET28a(+)-SmCHS,重组质粒转化大肠杆菌BL21(DE3),获得表达菌株。经IPTG诱导表达后,对表达产物进行SDS-PAGE分析,结果显示,表达的融合蛋白以部分可溶的形式存在。用Ni-NTA预装柱对融合蛋白进行亲和纯化,对纯化蛋白进行酶活检测,结果表明融合蛋白具有查尔酮合酶活性,可催化底物4-香豆酰辅酶A和丙二酰辅酶A缩合生成产物柚皮素查尔酮。  相似文献   

10.
纳他霉素(natamycin)是一种高效、广谱、安全的抗真菌剂,广泛应用于食品防腐与医药领域。纳他霉素可由多种链霉菌发酵产生。它是以乙酰辅酶A、丙二酰辅酶A及甲基丙二酰辅酶A为前体经Ⅰ型聚酮合酶(polyketide synthase,PKS)催化合成的多烯大环内酯类化合物。本研究以纳他霉素产生菌——褐黄孢链霉菌为研究材料,分别对不同前体分子供给途径中的关键酶进行过表达,并确定影响纳他霉素产量的关键前体供给途径。研究结果发现:通过过表达乙酰辅酶A合成酶(acetyl-CoA synthase,ACS)加强乙酰辅酶A合成途径,以及通过过表达甲基丙二酰辅酶A变位酶(methylmalonyl-CoA mutase,MCM)加强甲基丙二酰辅酶A合成途径,重组菌株纳他霉素产量分别比野生型菌株提高了44.19%和20.51%。共过表达ACS和MCM,重组菌株纳他霉素产量获得进一步提升(达1123.34mg/L),比野生型菌株提高了66.29%。上述发现为通过前体代谢工程的策略构建纳他霉素工业高产菌株提供了参考,也为其他聚酮类天然产物高产工程菌株的构建提供了借鉴。  相似文献   

11.
In our recent work (Ma et al., in Planta 229(3):457–469, 2009a and 229(4):1077–1086, 2009b), two three-intron type III PKS genes, PcPKS1 and PcPKS2, were isolated from Polygonum cuspidatum Sieb. et Zucc. Phylogenetic and functional analyses revealed PcPKS1 is a three-intron chalcone synthase (CHS) gene, and PcPKS2 is found to be a three-intron benzalacetone synthase (BAS) gene. The regular CHS encoded by a single intron gene have not been isolated and characterized from P. cuspidatum. In this work a further CHS with one intron (PcPKS3) and a stilbene synthase (STS) gene with three-intron (PcPKS5) were isolated and characterized by functional and phylogenetic analyses. In comparison with PcPKS1, a bifunctional enzyme with both CHS and BAS activity, the enzymatic product of recombinant PcPKS3 was naringenin, bis-noryangonin (BNY) and 4-coumaroyltriacetic acid lactone (CTAL) occurred as side products. The PcPKS5 synthesized resveratrol and a trace amount of naringenin from p-coumaroyl-CoA. To our knowledge, PcPKS5 is the first reported three-intron STS gene in flowering plants. In this work, we speculated that this involved a possible evolutionary route of plant-specific type III PKS superfamily in P. cuspidatum.  相似文献   

12.
13.
14.
Benzalacetone synthase (BSA) is a novel plant-specific polyketide synthase that catalyzes a one step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 skeleton of phenylbutanoids in higher plants. A cDNA encoding BAS was for the first time cloned and sequenced from rhubarb (Rheum palmatum), a medicinal plant rich in phenylbutanoids including pharmaceutically important phenylbutanone glucoside, lindleyin. The cDNA encoded a 42-kDa protein that shares 60-75% amino-acid sequence identity with other members of the CHS-superfamily enzymes. Interestingly, R. palmatum BAS lacks the active-site Phe215 residue (numbering in CHS) which has been proposed to help orient substrates and intermediates during the sequential condensation of 4-coumaroyl-CoA with malonyl-CoA in CHS. On the other hand, the catalytic cysteine-histidine dyad (Cys164-His303) in CHS is well conserved in BAS. A recombinant enzyme expressed in Escherichia coli efficiently afforded benzalacetone as a single product from 4-coumaroyl-CoA and malonyl-CoA. Further, in contrast with CHS that showed broad substrate specificity toward aliphatic CoA esters, BAS did not accept hexanoyl-CoA, isobutyryl-CoA, isovaleryl-CoA, and acetyl-CoA as a substrate. Finally, besides the phenylbutanones in rhubarb, BAS has been proposed to play a crucial role for the construction of the C6-C4 moiety of a variety of natural products such as medicinally important gingerols in ginger plant.  相似文献   

15.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs) that share approximately 70% amino acid sequence identity. BAS catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce a diketide benzalacetone, whereas CHS performs sequential condensations with three malonyl-CoA to generate a tetraketide chalcone. A homology model suggested that BAS has the same overall fold as CHS with cavity volume almost as large as that of CHS. One of the most characteristic features is that Rheum palmatum BAS lacks active site Phe-215; the residues 214LF conserved in type III PKSs are uniquely replaced by IL. Our observation that the BAS I214L/L215F mutant exhibited chalcone-forming activity in a pH-dependent manner supported a hypothesis that the absence of Phe-215 in BAS accounts for the interruption of the polyketide chain elongation at the diketide stage. On the other hand, Phe-215 mutants of Scutellaria baicalensis CHS (L214I/F215L, F215W, F215Y, F215S, F215A, F215H, and F215C) afforded increased levels of truncated products; however, none of them generated benzalacetone. These results confirmed the critical role of Phe-215 in the polyketide formation reactions and provided structural basis for understanding the structure-function relationship of the plant type III PKSs.  相似文献   

16.
Raspberry ketone accounts for the characteristic aroma of the raspberry fruit. A bifunctional enzyme with both chalcone synthase (CHS) and benzalacetone synthase (BAS) activity is thought to play a crucial role in the synthesis of p-hydroxybenzalacetone, yet the in vitro enzymatic properties and reaction products of the CHS/BAS recombinant enzyme from raspberry have not been characterized. In this work, a type III polyketide synthase (PKS) gene (RinPKS1) and its corresponding cDNA were isolated from raspberry. Sequence and phylogenetic analyses demonstrated that RinPKS1 is a CHS. However, functional and enzymatic analyses showed that recombinant RinPKS1 is a bifunctional enzyme with both CHS and BAS activity. RinPKS1 showed some interesting characteristics: (1) no traces of bis-noryangonin and 4-coumaroyltriacetic acid lactone could be detected in the enzyme reaction mixture at different pH values; and (2) recombinant RinPKS1 overexpressed in Escherichia coli effectively yielded p-hydroxybenzalacetone as a dominant product at high pH; however, it effectively yielded naringenin as a dominant product at low pH. Furthermore, 4-coumaroyl-CoA and feruloyl-CoA were the only cinnamoyl-CoA derivatives accepted as starter substrates. RinPKS1 did not accept isobutyryl-CoA, isovaleryl-CoA or acetyl-CoA as substrates.  相似文献   

17.
Benzalacetone synthase (BAS) and chalcone synthase (CHS) are plant-specific type III polyketide synthases (PKSs), sharing 70% amino acid sequence identity and highly homologous overall protein structures. BAS catalyzes the decarboxylative coupling of 4-coumaroyl-CoA with malonyl-CoA to produce the diketide benzalacetone, whereas CHS produces the tetraketide chalcone by iterative condensations with three molecules of malonyl-CoA, and folding the resulting intermediate into a new aromatic ring system. Recent crystallographic analyses of Rheum palmatum BAS revealed that the characteristic substitution of Thr132 (numbering of Medicago sativa CHS2), a conserved CHS residue lining the active-site cavity, with Leu causes steric contraction of the BAS active-site to produce the diketide, instead of the tetraketide. To test this hypothesis, we constructed a set of R. palmatum BAS site-directed mutants (L132G, L132A, L132S, L132C, L132T, L132F, L132Y, L132W and L132P), and investigated the mechanistic consequences of the point mutations. As a result, the single amino acid substitution L132T restored the chalcone-forming activity in BAS, whereas the Ala, Ser, and Cys substitutions expanded the product chain length to produce 4-coumaroyltriacetic acid lactone (CTAL) after three condensations with malonyl-CoA, but without the formation of the aromatic ring system. Homology modeling suggested that this is probably caused by the restoration of the ‘coumaroyl binding pocket’ in the active-site cavity. These findings provide further insights into the structural details of the catalytic mechanism of the type III PKS enzymes.  相似文献   

18.
Benzalacetone synthase (BAS) is a plant-specific chalcone synthase (CHS) superfamily type III polyketide synthase (PKS) that catalyzes a one-step decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA. The diketide forming activity of Rheum palmatum BAS is attributed to the characteristic substitution of the conserved active-site Phe215 with Leu (numbering in Medicago sativa CHS). To further understand the structure and function of R. palmatum BAS, four site-directed mutants (C197T, C197G, G256L, and S338V) were newly constructed. All the mutants did not change the product pattern, however, the activity was 2-fold increased in S338V, while reduced to half in G256L mutant. On the other hand, the C197 mutants were functionally almost identical to wild-type BAS, excluding the possibility that the second active-site Cys is involved in the enzyme reaction. Instead, homology modeling suggested a possibility that, unlike the case of CHS, BAS utilizes an alternative pocket to lock the coumaroyl moiety for the diketide formation reaction.  相似文献   

19.
In plants, chalcones are precursors for a large number of flavonoid-derived plant natural products and are converted to flavanones by chalcone isomerase or nonenzymatically. Chalcones are synthesized from tyrosine and phenylalanine via the phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL), and chalcone synthase (CHS). For the purpose of production of flavanones in Escherichia coli, three sets of an artificial gene cluster which contained three genes of heterologous origins--PAL from the yeast Rhodotorula rubra, 4CL from the actinomycete Streptomyces coelicolor A3(2), and CHS from the licorice plant Glycyrrhiza echinata--were constructed. The constructions of the three sets were done as follows: (i) PAL, 4CL, and CHS were placed in that order under the control of the T7 promoter (P(T7)) and the ribosome-binding sequence (RBS) in the pET vector, where the initiation codons of 4CL and CHS were overlapped with the termination codons of the preceding genes; (ii) the three genes were transcribed by a single P(T7) in front of PAL, and each of the three contained the RBS at appropriate positions; and (iii) all three genes contained both P(T7) and the RBS. These pathways bypassed C4H, a cytochrome P-450 hydroxylase, because the bacterial 4CL enzyme ligated coenzyme A to both cinnamic acid and 4-coumaric acid. E. coli cells containing the gene clusters produced two flavanones, pinocembrin from phenylalanine and naringenin from tyrosine, in addition to their precursors, cinnamic acid and 4-coumaric acid. Of the three sets, the third gene cluster conferred on the host the highest ability to produce the flavanones. This is a new metabolic engineering technique for the production in bacteria of a variety of compounds of plant and animal origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号