首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Phytochrome was measured spectrophotometrically in different tissues of the upper (positively photoblastic) and lower (negatively photoblastic) seeds of the cocklebur (Xanthium pennsylvanicum Wallr.). Axial parts of the seeds, in particular parts of the radicle, contained high levels of phytochrome, while cotyledonary parts contained only low levels. These results were consistent with the distribution of the light-sensitive areas of the seeds that were associated with germination. Phytochrome levels in both types of dimorphic seeds increased gradually with increasing duration of dark imbibition for 4–8 h, then the rates of increase in levels of phytochrome accelerated. In both types of seed, some phytochrome was measurable even before imbibition. In the lower seeds, up to 20% of the phytochrome was occasionally observed as Pfr in samples imbibed in darkness for a short time (up to 12 h). A slight blue shift of the peak of PT in the difference spectrum of phytochrome was observed in the case of lower seeds imbibed for 0–2 h. These results suggest that, to some extent, the lower axes contain dehydrated Pfr or intermediate(s) in the photoconversion of phytochrome. The dark reactions of Pfr were also examined in excised axes of both types of dimorphic seed after they had been pre-imbibed for 16 h in darkness. Dark destruction of Pfr was observed in both types of seed. In addition, net increases in levels of Pr were observed in the dark controls and in the samples irradiated with red light after the level of Pfr diminished. No ‘inverse’ dark reversion from Pr to Pfr was detected. Thus, after 16 h of imbibition, there were no differences in terms of properties of phytochrome between the two types of seed, and the different responses to light of upper and lower seeds might depend mainly on a difference in the physiological state of the two types of seed rather than the properties of phytochrome.  相似文献   

2.
Summary Phytochrome photoconversions PrPfr and PfrPr can be measured by differential spectrophotometry in dry seeds (6% water content) of Pinus nigra Arn. A red light irradiation given before imbibition induces germination when the seeds are subsequently wetted and kept in darkness.In continuous darkness the phytochrome content shows a drastic increase at the beginning of moistening.The detectable pigment is entirely in the Pr form. The normal PfrPr dark reversion is observed. Pfr destruction does not take place.  相似文献   

3.
Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5.) induction in cotyledons from 96-h dark-grown Lycopersicon esculentum Mill. was studied in response to continuous light and hourly light pulses (blue, red, far red). The increases of PAL promoted by blue and red pulses are reversed completely by immediately following 758 nm irradiations. The response to continuous red light could be substituted for by hourly 6-min red light pulses. The effect of continuous red treatments is mainly due to a multiple induction effect of phytochrome. In contrast to red light, hourly light pulses with far red and blue, light can only partially substitute for continuous irradiation. The continuous blue response could be due to a combination of a multiple induction response and of a high irradiance response of phytochrome. The continuous far red response, could represent a high irradiance response of phytochrome. Dichromatic irradiations indicate that phytochrome is the photoreceptor controlling the light response (PAL) in tomato seedlings.Abbreviations Norflurazon NF-4-chloro-5-(methylamino)-2-(,,,-trifluoro-m-tolyl)-3 (2H) pyridazinone - PAL phenylalanine ammonia-lyase - phytochrome photoequilibrium Pfr/Ptot - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome: Pr+Pfr  相似文献   

4.
Che-Jun Pjon  Masaki Furuya 《Planta》1968,81(4):303-313
Summary In-vivo phytochrome determinations in totally etiolated rice seedlings with a dual-wavelength spectrophotometer showed that on a fresh weight basis phytochrome concentration was highest in the coleoptile apex (0.175 of mean) ( O.D.) g-1 (fresh weight). The age of the seedlings had little effect on the pattern of phytochrome distribution in the coleoptiles.The extent of growth inhibition observed 2 days after the irradiations was proportional to the logarithm of P fr amount in the coleoptiles at the time of initial exposure to either red or blue light. Ultraviolet irradiation, however, did not induce either reversible growth inhibition or optically detectable phytochrome changes in vivo.After the conversion of P r to P fr bya brief red irradiation, non-photochemical transformation of phytochrome was observed in intact coleoptile tissues. Most of the optically measurable P fr disappeared within 6 hours at 27°, when the total ( O.D.) decreased to about one fifth of the original level. The optical data did not agree with the fact that 50% of the initial physiological reversibility was still observed 9 hours later. No significant difference in dark transformation rate was seen between intact and excised coleoptile tissues.Abbreviations P r red light absorbing form of phytochrome - P fr far-red light absorbing form of phytochrome - ( O.D.) the change in the optical density difference reading at two wavelengths, following irradiation of the sample with actinic sources of red and far-red light - UV ultraviolet light  相似文献   

5.
Summary Phytochrome was found by direct spectrophotometry to be present in whole dry seeds of cucumber. This pigment is spectroscopically different from the pigment found in etiolated plants. It shows the phenomenon of inverse reversion; in darkness, the red-absorbing form (Pr) reverts slowly to the far-red-absorbing form (Pfr). This may explain why 75% of the dry-seed phytochrome is in the Pfr form.After imbibition, total phytochrome in the seeds starts to increase. The newly-formed pigment is all in the Pr form and has properties similar to those of classical phytochrome of etiolated plants. The relationship of this newly-formed phytochrome with control of germination is presently not known. The dry-seed phytochrome remains unchanged during imbibition and appears to retain its capacity for inverse reversion. This may explain the requirement for continuous or intermittent far-red irradiation in the suppression of germination of cucumber seeds. A similar form of phytochrome may be responsible for control of germination in other seeds which are similarly affected by far-red radiation.Partially supported by National Science Foundation grant GB-7526.279th Communication.  相似文献   

6.
Arabidopsis thaliana seeds imbibed for a short duration show phytochrome B (PhyB)-specific photo-induction of germination. Using this system, the relationship was determined between the amount of PhyB in seeds and photon energy required for PhyB-specific germination in two transgenic Arabidopsis lines transformed with either the Arabidopsis PhyB cDNA (ABO) or the rice PhyB cDNA (RBO). Immunochemical detection of PhyB apoprotein (PHYB) showed that the expression level of PHYB in ABO seeds was at least two times higher than that in the wild-type seeds, but in RBO seeds the PHYB level was indistinguishable from that in wild-type seeds. The photon fluence required for induction and photoreversible inhibition of germination was examined using the Okazaki large spectrograph. At the wavelengths of 400–710 nm, the ABO seeds required significantly less photon fluence than wild-type seeds for induction of germination, whereas the RBO seeds required similar fluence to wild-type seeds. A critical threshold wavelength for either induction or inhibition of germination of ABO seeds shifted towards the longer wavelengths relative to wild-type seeds. By assuming that PhyA and PhyB are similar in their photochemical parameters, amounts of Pfr at each wavelength were calculated. The photon fluence required for 50% germination was equivalent to the fluence generating a Pfr/Ptot ratio of 0.21–0.43 in wild-type seeds, and of 0.035–0.056 in ABO seeds. These results indicate that PhyB-specific seed germination is not strictly a function of the Pfr/Ptot ratio, but is probably a function of the absolute Pfr concentration.  相似文献   

7.
The in vivo properties of Amaranthus phytochrome   总被引:1,自引:1,他引:0  
Summary Phytochrome has been measured in etiolated seedling of Amaranthus caudatus. The phytochrome content increases from the time of germination until 72 hr from sowing, after which it remains constant at 27.5x10-3 (OD) units per 200 seedlings. After a saturating dose of red light P fr decays in the dark to a form not detectable photometrically. There is no evidence for the process of dark reversion of P fr to P fr found in other dicotyledons. Even in the presence of azide, a selective inhibitor of decay, the process of dark reversion is not observed. The decay of P fr has been investigated at different temperatures and follows first order decay kinetics throughout. Over the temperature range 15–30° the Q 10 of decay remained constant at 4.3.The photostationary states of phytochrome (P fr /P total )maintained by mixed red/far-red light have been measured in both seedlings and partially purified protein extracts, with good agreement. The rate of phytochrome decay can be manipulated by changing the P fr /P total ratio. The lag period before a decay curve becomes exponential is characteristic of a particular P fr /P total ratio and represents the time for attainment of the photostationary state. The effect of energy on decay has been investigated under red and blue light. The rate of phytochrome decay is dependent on the P fr /P total ratio and only becomes energy dependent when the light intensity is so low that the photostationary state is never attained.The process of apparent phytochrome synthesis has been found in Amaranthus. After reducing the phytochrome to a low level by red light treatment a rate of apparent synthesis of 1.35×10-4 (OD) units per hr per 200 seedlings was observed, levelling off at 29% of the original phytochrome level.Under white tungsten lights of high intensity there is a deviation from the expected first order decay kinetics. The nature of this low rate of decay cannot be explained at the present time.  相似文献   

8.
K. Malhotra  H. Oelze-Karow  H. Mohr 《Planta》1982,154(4):361-370
We have performed a comprehensive study on the mechanism of regulation of carotenogenesis by light in the shoot of Sorghum vulgare. Our work shows that carotenoid accumulation is simultaneously controlled by phytochrome (Pfr) and by the availability of chlorophyll. Throughout plastidogenesis light dependent chlorophyll and carotenoid accumulation are interdependent processes: Accumulation of chlorophyll in natural light requires the presence of carotenoids; likewise, accumulation of considerable amount of carotenoids depends on the availability of chlorophyll. However, in both cases the efficiency of the biosynthetic pathway, the potential biosynthetic rates (capacities) are determined by phytochrome. A push and pull model of carotenogenesis advanced previously (Frosch and Mohr 1980, Planta 148, 279) to explain carotenogenesis in the mustard (Sinapis alba) seedling also applies to the monocotyledonous milo (Sorghum vulgare) seedling. Therefore, we suggest that the model applies to carotenogenesis in higher plants in general.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR High irradiance response (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - P red absorbing physiologically inactive form of phytochrome - Ptot total phytochrome - i.e. [Pr]+[Pfr] =[Pfr]+[Ptot], wavelength dependent photoequilibrium of the phytochrome system - RL red light - FR far-red light  相似文献   

9.
Merten Jabben 《Planta》1980,149(1):91-96
The phytochrome system is analyzed in light-grown maize (Zea mays L.) plants, which were prevented from greening by application of the herbicide SAN 9789. The dark kinetics of phytochrome are not different in the first, second or third leaf. It is concluded that in light-grown maize plants phytochrome levels are regulated by Pr formation and Pfr and Pr destruction, rather than by PfrPr dark reversion. Pr undergoes destruction after it has been cycled through Pfr. The consequences of this Pr destruction on the phytochrome system are discussed.Abbreviations SAN 9789 4-chloro-5-(methylamino)-2-(,,-trifluoro-m-tolyl)-3(2H) pyridazinone - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot Pfr+Pr  相似文献   

10.
Coaction of three factors controlling chlorophyll and anthocyanin synthesis   总被引:1,自引:0,他引:1  
Helga Kasemir  Hans Mohr 《Planta》1982,156(3):282-288
In a three-factor analysis the rate of chlorophyll a (Chl) accumulation in excised mustard cotyledons was studied as a function of kinetin, light (operating through phytochrome, P fr) and an excision factor. It was found that the three factors operate additively provided that the P fr level is high enough. When the P fr level is below approximately 1 per cent (<0.01) the effectiveness of the excision factor decreases while the effect of kinetin remains additive. The observed additivity is explained by a model where the three factors operate independently through a common intermediate (presumably 5-aminolevulinate) in the biosynthetic chain leading to Chl. With regard to the coaction of the excision factor and phytochrome it is concluded that the production of the excision factor requires the operation of phytochrome (even though saturated at a low P fr level) while the action of the excision factor is independent of phytochrome. This conclusion was confirmed by experiments in which the rate of light-mediated anthocyanin synthesis was measured in excised mustard cotyledons. The effect of excision in the case of anthocyanin formation differs kinetically from the effect of excision on Chl formation.Abbreviations Chl chlorophyll(ide) a - P fr far-red absorbing form of phytochrome - P fr/P tot ratio at photoequilibrium - RL red light - FR far-red light - GL green light - RG9 light long wavelength far-red light - WL white light  相似文献   

11.
Photoinduction and photoinhibition of germination in seed from a homozygous tobacco (Nicotiana tabacum L.) line containing an introduced oat phyA cDNA (encoding phytochrome A) is compared with that of isogenic wild-type (WT) tobacco. Under continuous irradiation by a light source with a low redfar-red (RFR) ratio the transgenic tobacco seed appeared to be less susceptible to photoinhibition of germination compared with WT seed. However, induction of germination following a short pulse by R (666 nm) was not enhanced in the genotype transformed by oat phyA cDNA compared with the WT; neither did germination of the transgenic tobacco seed show an increased sensitivity to saturating pulses of light of longer wavelengths (666–730 nm). In seeds of transgenic Arabidopsis thaliana (L.) Heynh. which contained an introduced phytochrome-B-encoding cDNA, levels of dark germination were enhanced, consistent with mediation of response by phytochrome B-Pfr. The germination behaviour of Arabidopsis genotypes wich contained an introduced cDNA encoding phytochrome A, however, did not significantly differ from that of the WT.Abbreviations ABO seed transformed with Arabidopsis phyB - cDNA; CaMV cauliflower mosaic virus - FR far-red light - Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Pfr/Ptot phytochrome photoequilibrium - R red light - RBO seed transformed with rice phyB cDNA - RFR quantum ratio of red and far-red light - WL white light - WL + FR whitelight supplemented with far-red light - WT wild type The authors wish to thank R.D. Vierstra (Department of Horticulture, University of Wisconsin-Madison, USA) for providing the transgenic tobacco line, and M.T. Boylan, D. Wagner and P.H. Quail (U.C. Berkeley/USDA Plant Gene Expression Center, Albany, Calif. USA) for providing the transgenic Arabidopsis lines. The work presented in this paper was funded by grants from the Agricultural and Food Research Council (H.S., A.C.M., G.C.W.).  相似文献   

12.
A. Wildermann  H. Drumm  E. Schäfer  H. Mohr 《Planta》1978,141(2):211-216
After sowing, mustard (Sinapis alba L.) seedlings were grown for 48 h in white light (25°C). These fully de-etiolated, green seedlings were used as experimental material between 48 and 72 (84) h after sowing. The question researched was to what extent control by light of hypocotyl elongation is due to phytochrome in these seedlings. It was found that the light effect on hypocotyl growth is very probably exerted through phytochrome only. In particular, we found no indication for the involvement of a specific blue light photoreceptor pigment.Abbreviations HIR high irradiance reaction - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pot total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Ptot] - red red light - fr far-red light - wl white light - bl blue light - di dichromatic irradiation - l hypocotyl length  相似文献   

13.
S. Frosch  H. Mohr 《Planta》1980,148(3):279-286
Carotenoid accumulation in the cotyledons of the mustard seedling (Sinapis alba L.) is controlled by light. Besides the stimulatory function of phytochrome in carotenogenesis the experiments reveal the significance of chlorophyll accumulation for the accumulation of larger amounts of acrotenoids. A specific blue light effect was not found. The data suggest that light exerts its control over carotenoid biogenesis through two separate mechanisms: A phytochrome regulation of enzyme levels before a postulated pool of free carotenoids, and a regulation by chlorophyll draining the pool by complex-formation.Abbreviations Chl chlorophyll(s) - PChl protochlorophyll(ide) - HIR high irradiance reaction (of phytochrome) - Pfr far-red absorbing, physiologically active form of phytochrome - Pr red absorbing, physiologically inactive form of phytochrome - Pfof total phytochrome, i.e. [Pr]+[Pfr] - [Pfr]/[Pfof], wavelength dependent photoequilibrium of the phytochrome system - red red light - fr far-red light  相似文献   

14.
Summary Germination of Amaranthus caudatus is inhibited by light, far-red being the most effective part of the spectrum. At temperatures of 25° and below there is a low final germination percentage under continuous far-red whereas above 25° there is only a delaying effect. In the presence of a saturating concentration of gibberellic acid (GA3) at 25° seeds germinate under continuous far-red although they are delayed. At 25° seeds exposed to 48 hr far-red fail to germinate when transferred to darkness. This induced dormancy can be broken by a single short exposure to red light given at any time after the far-red illumination. This effect of short red can be reversed by a subsequent short period of far-red indicating that the seeds are phytochrome controlled. Although most seeds have escaped from the reversing effect of short far-red after an intervening dark period of 5 hours, germination is greatly reduced by continuous far-red at this time. Results of exposing seeds to varying periods of far-red before and after dark imbibition are interpreted in terms of a continual production of phytochrome in its active P fr form and a requirement for P fr action over a long period of time. Effects of intermittent and continuous low intensity far-red on the inhibition of germination provides further evidence for a low energy photoreaction involving phytochrome. Effects on Germination Index of continuous illumination with various light sources maintaining different P fr /P total ratios have been investigated. The results suggest that the proportion of phytochrome in the P fr form is the most important factor in the regulation of germination. A scheme for the phytochrome control of germination in Amaranthus caudatus is presented and possible explanations for the dependence on P fr /P total ratio are discussed.Holder of a Science Research Council Studentship.  相似文献   

15.
R. Grill  C. J. P. Spruit 《Planta》1972,108(3):203-213
Summary Addition of water to dry seeds of Pinus spp. increased the detectable phytochrome immediately and the level reached after 2 h in darkness was retained for at least 20 h at 20° C. The in-vivo difference spectra of phytochrome in Pinus seeds showed absorption maxima at approximately 656 nm and at 710 nm to 715 nm. An isosbestic point was observed at about 680 nm. Shifts towards longer wavebands were obtained especially with tissue containing substantial amounts of chlorophyll and are, therefore, not due to diverse types of phytochrome. Embryo tissue of Ginkgo biloba showed also a maximum in R at 655 nm but the peak in FR occurred at a longer wavelength, 725 nm. This was confirmed by determining action spectra for the phototransformations PrPfr.The dark reactions of phytochrome in Pinus differed from those in Ginkgo. Following a short exposure to R light, the total quantity of photoreversible pigment in Pinus seeds remained constant for several hours in darkness at room temperature. Dark reversion of Pfr occurred extremely rapidly and tPfr 50 was only 0.3 h. In Ginkgo embryos total phytochrome in darkness following a brief exposure to R light was not completely stable. Reversion of Pfr was much slower and tPfr 50 was slightly less than 2 h.It is concluded that, at least as regards the spectral qualities, the phytochrome in Gymnospermae differs from that of Angiospermae and is apparently also not identical in Coniferae and Ginkgoinae. Abbreviations. R = red; FR = far-red; R/FR ratio = (A) red max./(A) far-red max. of difference spectrum. The peak positions and the isosbestic point are estimated from the difference spectra and are approximate only. Pr = red-absorbing form of phytochrome, Pfr = far-red absorbing formThis work was carried out with financial support from the Netherlands Organisation for Pure Scientific Research (Z.W.O.).312th Communication.  相似文献   

16.
H. Gehring  H. Kasemir  H. Mohr 《Planta》1977,133(3):295-302
Within the temporal pattern of primary differentiation the capacity of chlorophyll — a biosynthesis in the cotyledons ofSinapis alba L. seedlings is controlled by phytochrome (in continuous light) or by releasing the circadian rhythm either with lightdark cycles or by a lightdark transition. The sensor pigment for this process is phytochrome. It is very probable that in continuous light as well as under conditions under which the circadian rhythm plays the major part, the capacity of chlorophyll a biosynthesis is limited by the capacity of the biosynthetic step which produces 5-aminolaevulinate.Abbreviations Chl chlorophyll(ide) a - ALA 5-aminolaevulinate - LA laevulinate - PChl protochlorophyll(ide) - ALAD aminolaevulinate dehydratase (EC4.2.1.24) - [Pfr]/[P10c], photoequilibrium of the phytochrome system at the wavelength - whereby [P10c] [Pr]+[Pfr]. Pfr is the physiologically active, far-red absorbing form of the phytochrome system  相似文献   

17.
Skotodormant seeds of Lactuca sativa Grand Rapids imbibed in darkness for 10 days (10-day DS) germinated poorly upon terminal treatment with red light (R) or gibberellin A3 (GA3). Inorganic nitrogen salts in the imbibition solutions reduced seed skotodormancy. Ten-day DS seeds, imbibed in 25 mm salt solutions followed by terminal R, germinated 99% if imbibed in NH4NO3, 70% if imbibed in KNO3 or NH4Cl, and 55% if imbibed in NaNO3. Seeds imbibed in higher salt concentrations germinated fully upon terminal R treatment. Seeds imbibed in 25 mm NH4Cl or in 50 mm NH4NO3 germinated completely upon GA3 treatment. Osmotic effects of imbibition media accounted for only part of the effect, since seeds imbibed in 50 mm CaCl2 or NaCl germinated poorly following R or GA3 treatment. Seeds imbibed in 500 mm polyethylene glycol (PEG) 1000 or mannitol solutions for 10 days still exhibited skotodormancy. Treatments of R or GA3 did not stimulate germination in seeds imbibed in mannitol, but germination was complete if seeds were given 1-h acid immersion plus a water rinse before the terminal R or GA3 treatment. Seeds imbibed in 50–500 mm PEG during 10-day DS germinated significantly better in response to terminal R. Terminal GA3 significantly improved germination only in seeds imbibed at 500 mm PEG. Pfr appeared to function in mannitol-imbibed seed only after an acid treatment. Seed exposure to inorganic nitrogen salts during the 10-day DS maintained seed sensitivity to terminal R or GA3 treatment. The depth of seed skotodormancy was related to the availability of inorganic nitrogen and also involved the levels of Pfr or endogenous GA3.Abbreviations FR far red - DS dark storage - R red - GA3 gibberellin A3 - PEG polyethylene glycol - SHAM salicylhydroxamic acid - ANOVA analysis of variance - GLM general linear model - LSD least squares difference - Pfr far-red absorbing form of phytochrome  相似文献   

18.
E. Schäfer  B. Marchal  D. Marmé 《Planta》1971,101(3):265-276
Summary The in vivo phototransformation kinetics of mustard hook and cotyledon phytochrome exhibit a deviation from a single first order curve, quite similar to that for pumpkin hooks as reported in a previous paper (Boisard, Marmé and Schäfer, 1971). The P frPrkinetics can be characterized by the ratios fr, I · P fr I / fr, II · P fr, II and where P fr I and P fr II are two populations of phytochrome molecules which convert to P rwith a first order half-life of and . These ratios depend on the length of time of etiolation. The ratio fr, I · P fr I / fr, II · P fr, II is independent of the amount of total P frpresent at the beginning of the P frPrphototransformation after a non-saturating dose of red light. The half-lives of the two populations, however, depend on the concentration of total P frinitially present. P frPrphototransformation kinetics with different light intensities show that reciprocity holds.  相似文献   

19.
W. Schmidt  E. Schäfer 《Planta》1974,116(3):267-272
Summary Under conditions of continuous irradiation, the P jr destruction rate constants (k d ) of phytochrome in hooks and cotyledons of squash (Cucurbita pepo L.) seedlings do not depend on the photostationary state and are the same in both organs. On the other hand, the rate constants of the dark reversion and the first destruction step, plotted as a function of 0 , show optimum curves with maxima between 0 and 0.5. Similar results were obtained for dark reactions of mustard (Sinapis alba L.)-hook phytochrome in vivo. This indicates a cooperative behaviour of these phytochrome dark reactions.Abbreviations P r red-absorbing form of phytochrome - P fr far-red-absorbing form of phytochrome - [P tot] [P r ]+[P fr ] - [P tot] ([P fr ]/[P tot]), photostationary state - 0 at t=0, immediately after saturating irradiation  相似文献   

20.
The effects of continuous red and far-red light and of brief light pulses on the growth kinetics of the mesocotyl, coleoptile, and primary leaf of intact oat (Avena sativa L.) seedlings were investigated. Mesocotyl lengthening is strongly inhibited, even by very small amounts of Pfr, the far-red light absorbing form of phytochrome (e.g., by [Pfr]0.1% of total phytochrome, established by a 756-nm light pulse). Coleoptile growth is at first promoted by Pfr, but apparently inhibited later. This inhibition is correlated in time with the rupturing of the coleoptile tip by the primary leaf, the growth of which is also promoted by phytochrome. The growth responses of all three seedling organs are fully reversible by far-red light. The apparent lack of photoreversibility observed by some previous investigators of the mesocotyl inhibition can be explained by an extremely high sensitivity to Pfr. Experiments with different seedling parts failed to demonstrate any further obvious interorgan relationship in the light-mediated growth responses of the mesocotyl and coleoptile. The organspecific growth kinetics, don't appear to be influenced by Pfr destruction. Following an irradiation, the growth responses are quantitatively determined by the level of Pfr established at the onset of darkness rather than by the actual Pfr level present during the growth period.Abbreviation Pfr far-red light absorbing form of phytochrome  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号