首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 410 毫秒
1.
本文用免疫组化双标法观察了神经生长因子受体(NGF-R)及胆碱乙酰转移酶(ChAT)免疫反应阳性神经元在成鼠基底前脑内的分布,结果发现嗅结节、隔内侧核、斜角带核、腹侧苍白球及基底大细胞核均有NGF-R及ChAT免疫反应阳性神经元.免疫组化双标染色发现,大部分免疫反应阳性神经元的NGF-R与ChAT共存,部分神经元呈单纯NGF-R或ChAT阳性,但这种NGF-R和ChAT的共存情况在不同区域不完全相同.在隔内侧核和斜角带核,大多数的NGF-R阳性神经元和ChAT阳性神经元共存,但在腹侧仓白球和基底大细胞核,两者共存的神经元较前两区为少.此外ChAT阳性神经元在尾壳核中分布较均匀,而NGF-R阳性神经元较少见.研究结果表明,大多数胆碱能神经元有NGF-R,提示NGF对胆碱能神经元的保护和激活作用,部分可能是通过直接与NGF受体的结合而发生作用.  相似文献   

2.
应用免疫组织化学碱性磷酸酶标A蛋白(PAAP)技术在光镜水平研究中国树鼠句伏隔核内促肾上腺皮质激素释放激素(CRF)能神经元的形态和分布特点。结果显示,该核内CRF免疫反应阳性神经元胞体多数呈多边形、圆形或卵圆形,梭形极少;直径多数为13-19um,少数<13um;胞质免疫反应强度不等。对左右侧伏隔核内CRF免疫反应阳性神经元数目、胞体大小、形态和免疫反应强度进行分析,除免疫反应强阳性神经元计数项(P<001)外,其他项都无显著意义。CRF免疫反应阳性神经元在伏隔核内分布不均,主要位于该核的前半段背侧区,核芯区较少  相似文献   

3.
了解雌激素受体α(estrogen receptor alpha, ERα)在大鼠脑的分布及大鼠下丘脑视前区雌激素受体样阳性神经元的生后发育规律.用免疫组织化学反应方法结合图像分析仪检测雌性大鼠下丘脑视前区雌激素受体样阳性神经元的数量和灰度值.ERα分布于Calleja岛、梨形核、外侧隔核、基底前脑胆碱能神经元各群、终纹床核、下丘脑内侧视前区、室周核、腹内侧核、弓状核和结节乳头核、再连合和前内侧丘脑核、杏仁核复合体、梨形皮质和穹窿下器官.相比之下,皮质和海马内仅见几个分散的 ERα样阳性神经元.而纹状体内未见ERα样阳性神经元.ERα免疫反应产物主要位于细胞核内,蓝黑色.在成年雌性大鼠下丘脑内侧视前区(medial preoptic area, MPA)神经元的胞浆和突起内可见较弱的ERα免疫反应产物.在MPA内,生后1天可见ERα表达,随着大鼠的生后发育,成年时达到高峰.与成年大鼠比较,老年雌性大鼠雌激素受体样阳性神经元数量减少10.05%,P>0.05,差异无显著性;平均灰度减少41.57%,P<0.05,差异有显著性.老年雌性大鼠下丘脑MPA内ERα表达下调,可能与卵巢功能减退而导致情感、记忆变化有关.  相似文献   

4.
本文用免疫组织化学方法和免疫电镜方法对14只树Quβ-内啡肽能神经元胞体和纤维的分布及其在细胞器的定位进行了研究。结果表明,本文首次报道在Broca斜角带观察到β-内啡肽免疫反应阳性神经元胞体,电镜观察到β-内啡肽免疫反应物质定位于大颗粒囊泡内的小颗粒上和粗面内质网上。下丘脑弓状核及其附近区域观察到β-内啡肽免疫反应阳性神经元胞体。在室周区、室旁核、第3脑室室管膜下层及室管膜上皮细胞间、内侧基底下  相似文献   

5.
应用包埋前免疫电镜双标技术对大鼠下丘脑室旁核的神经肽Y(NPY)和胆囊收缩素(CCK)神经元的相互关系进行了研究。用Norgren法进行免疫电镜双标染色。结果在电镜下观察到:在室旁核内侧部,NPY样免疫反应产物呈电子密度高的颗粒状或絮状,弥漫分布于胞浆;CCK样免疫反应产物则呈电子密度高的针状或块状,散在分布于胞浆,偶见于核内。有时,在一个神经末梢内既有浓重的颗粒状DAB反应产物,又有典型的针状TMB反应产物。在室旁核内,NPY和CCK神经元胞体互相混杂、交错存在,两者均为中等大细胞。在超微结构水平,NPY和CCK神经元的树突和轴突可由非NPY、非CCK神经末梢接受传入突触联系;CCK神经元的树突还可接受其他CCK神经末梢的传入性自调节突触;CCK神经元胞体可接受NPY神经末梢的传入性突触,后者的突触前成分内可能有CCK与NPY共存。  相似文献   

6.
本实验采用HRP逆行示踪结合免疫组织化学方法,对大鼠杏仁底基底外侧核腹侧部向中央杏仁核的纤维投射特征及其化学特性进行了研究。一侧杏仁中央核(Ce)内注射HRP后,于双侧杏仁基底外侧核腹侧部(BLV)观察到大量HRP标记神经元,以对侧为主;在杏仁基底外侧核前(BLA)、后(BLP)部及梨状皮质内侧部(PCM)第Ⅱ、Ⅲ层仅观察到少量HRP标记神经元。当注射范围局限于杏仁中央核内侧部(CeM),BLV的标记神经元相对多.当注射范围局限于杏仁中央核外侧部(CeL),BLV的标记神经元相对少。将有HRP标记神经元的切片分别与生长抑素(SOM)、脑啡呔(ENK)、P物质(SP)抗血清按ABC法完成免疫组织化学反应,结果在BLV、PCM第Ⅱ、Ⅲ层观察到HRP-SOM免疫阳性双标记神经元,但未发现HRP-SP、HRP-ENK免疫阳性双标记神经元;在BLA和BLP未发现HRP-SOM、HRP-ENK、HRP-SP免疫阳性双标记神经元。本文着重讨论了BLV与内脏功能活动的关系,认为BLV不同于BLA与BLP,它参与“内脏环路”。此外,还分析了PCM投射到Ce的神经元的功能学意义。  相似文献   

7.
本文用免疫组织化学方法和免疫电镜方法对14只树脑β-内啡肽能神经元胞体和纤维的分布及其在细胞器的定位进行了研究。结果表明,本文首次报道在Broca斜角带观察到β-内啡肽免疫反应阳性神经元胞体,电镜观察到β-内啡肽免疫反应物质定位于大颗粒囊泡内的小颗粒上和粗面内质网上。下丘脑弓状核及其附近区域观察到β-内啡肽免疫反应阳性神经元胞体。在室周区、室旁核、第3脑室室管膜下层及室管膜上皮细胞间、内侧基底下丘脑及其外侧区、正中隆起内带和外带部可见到β-内啡肽免疫反应阳性纤维和串珠状的膨体。对β-内啡肽的释放途径及其调节因素作了探讨。  相似文献   

8.
本实验收集22例9周至28周龄人胎儿,用免疫组织化学PAP法研究了下丘脑结节区神经核团内生长抑素神经元的个体发生。结果表明。生长抑素免疫反应阳性神经元最早见于16周人胚的弓状校及腹内侧核,以后随胎龄增长数目逐渐增加。在22周时,腹内侧核内生长抑素免疫反应阳性神经元的数目达到高峰,弓状核内的该神经元在24周达到高峰。24周后阳性神经元数目呈递减趋向,免疫反应逐渐减弱。背内侧核及结节核内未见生长抑素免疫反应阳性神经元。生长抑素免疫反应阳性神经元形态多样,体积较小,其突起数目在发育过程中有较大变化。  相似文献   

9.
杏仁内侧核注射AVP和AVPMcAb对家兔ET性发热效应的影响   总被引:2,自引:0,他引:2  
目的和方法:在大脑杏仁内侧核微量注射精氨酸加压素(AVP)和精氨酸加压素单克隆抗体(AVPMcAb),观察其对家兔内毒素(ET)性发热效应以及视前区一下丘脑前部(POAH)温敏神经元放电活动的影响。结果:①杏仁内侧核微量注射AVP能明显抑制家兔ET性发热效应,注射AVPMcAb能明显易化家兔ET性发热效应;②杏仁外侧核分别注射AVP和AVPMcAb则对家兔ET性发热效应无明显影响;③杏仁内侧核分别注射AVP和AVPMcAb后POAH热敏神经元和冷敏神经元放电活动均无明显变化。结论:家兔杏仁内侧核也是AVP抗热效应的一个重要的作用部位,杏仁内侧核注射AVP的抗热作用途径与隔区注射AVP的抗热途径可能不同  相似文献   

10.
应用PAP-PAAP双重免疫组化染色程序在同一切片上进行两种肽能物质的定位,观察了中国树鼩下丘脑视上核和室旁核内VP能和OT能神经元的比较解剖学分布,发现:视上核被视束分成主部和交叉后部。在视上核主部,其头侧部几乎仅含OT能神经元胞体,中间部VP能胞体出现并逐渐增多,尾侧部VP能胞体数目明显超过OT能胞体。在明显含有两种胞体的中间部和尾侧部,OT能胞体多位于背内侧,VP能胞体多位于腹外侧;在视上核交叉后部,其头侧部以VP能胞体为主,且多位于背外侧,OT能胞体多位于腹内侧。中间部OT能胞体多位于内侧,VP能胞体多位于外侧。尾侧部OT能胞体多位于背、腹两侧,VP能胞体则多位于中间;在室旁核,其头侧部几乎全由OT能胞体构成。中间部,VP能胞体出现并逐渐增多,OT和VP能胞体分别主要位于内、外侧。尾侧部两种神经元胞体较明显地分为内、外两群,内侧群主要为OT能胞体,外侧群几乎全为VP能胞体,该群的头侧半又可分为背腹两个亚群,至尾侧半,此二亚群渐合并。本文讨论了OT和VP能神经元在中国树鼩和大鼠视上核和室旁核内的比较分布。  相似文献   

11.
The cholinergic impairment is an early marker in Alzheimer's disease (AD), while the mechanisms are not fully understood. We investigated here the effects of glycogen synthase kinse‐3 (GSK‐3) activation on the cholinergic homoeostasis in nucleus basalis of Meynert (NBM) and frontal cortex, the cholinergic enriched regions. We activated GSK‐3 by lateral ventricular infusion of wortmannin (WT) and GF‐109203X (GFX), the inhibitors of phosphoinositol‐3 kinase (PI3‐K) and protein kinase C (PKC), respectively, and significantly decreased the acetylcholine (ACh) level via inhibiting choline acetyl transferase (ChAT) rather than regulating acetylcholinesterase (AChE). Neuronal axonal transport was disrupted and ChAT accumulation occurred in NBM and frontal cortex accompanied with hyperphosphorylation of tau and neurofilaments. Moreover, ChAT expression decreased in NBM attributing to cleavage of nuclear factor‐κB/p100 into p52 for translocation into nucleus to lower ChAT mRNA level. The cholinergic dysfunction could be mimicked by overexpression of GSK‐3 and rescued by simultaneous administration of LiCl or SB216763, inhibitors of GSK‐3. Our data reveal the molecular mechanism that may underlie the cholinergic impairments in AD patients.  相似文献   

12.
A number of immunocytochemical studies have indicated the presence of cholinergic neurons in the cerebral cortex of various species of mammals. Whether such cholinergic neurons in the human cerebral cortex are exclusively of subcortical origin is still debated. In this immunocytochemical study, the existence of cortical cholinergic neurons was investigated on surgical samples of human parietal association neocortex using a highly specific monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine biosynthesising enzyme. ChAT immunoreactivity was detected in a subpopulation of neurons located in layers II and III. These were small or medium-sized pyramidal neurons which showed cytoplasmic immunoreactivity in the perikarya and processes, often in close association to blood microvessels. This study, providing demonstration of ChAT neurons in the human parietal neocortex, strongly supports the existence of intrinsic cholinergic innervation of the human neocortex. It is likely that these neurons contribute to the cholinergic innervation of the intracortical microvessels.  相似文献   

13.
The effects of a traditional Japanese herbal medicine, Kami-Untan-To (KUT), on brain choline (Ch) and Acetylcholine (ACh) levels in aged mice were examined. Further, the expression of choline acetyltransferase (ChAT) in the medial septum (MS), the vertical limbs of the diagonal band of Broca (VDB), and the nucleus basalis Meynert (NBM) was examined by immunohistochemistry. Following an oral administration of KUT to the aged mice for 3 months, ACh levels in the cortex, striatum and hippocampus were increased significantly. The density of ChAT-immunoreactive cells located in MS, VDB, and NBM in the KUT-treated group was increased significantly as compared to the non-treatment group. The survival rate of aged mice was significantly higher in the KUT-treated group as compared to that in the nontreated group. Our results suggest that KUT potentiates the brain acetylcholinergic system, and may become a possible anti-dementia drug.  相似文献   

14.
Summary We report here on cholinergic neurons in the rat hippocampal formation that were identified by immunocytochemistry employing a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine-synthesizing enzyme. In general, ChAT-immunoreactive cells were rare, but were observed in all layers of the hippocampus proper and fascia dentata with a preponderance in zones adjacent to the hippocampal fissure and in the part of CA1 bordering the subiculum. All immunoreactive cells found were non-pyramidal neurons. They were relatively small with round or ovoid perikarya, which gave rise to thin spine-free dendrites. These hippocampal neurons were very similar to ChAT-immunoreactive cells in the neocortex of the same animals but were quite different from cholinergic neurons in the basal forebrain, medial septal nucleus, and neostriatum, which were larger and more intensely immunostained.Electron-microscopic analysis of ChAT-immunoreactive cells in the hippocampus and fascia dentata revealed synaptic contacts, mainly of the asymmetric type, on cell bodies and smooth proximal dendrites. The nuclei of the immunoreactive cells exhibited deep indentations, which are characteristic for non-pyramidal neurons.Our results provide evidence for an intrinsic source of the hippocampal cholinergic innervation in addition to the well-established septo-hippocampal cholinergic projection.Dr. C. Léránth is on leave of absence from the First Department of Anatomy, Semmelweis University Medical School, H-1450 Budapest, Hungary  相似文献   

15.
The synthesis and neurotoxic effects of several structural analogs of hemicholinium were studied. All compounds were injected unilaterally into the lateral ventricle (4 nmol) and the effects of the hemicholinium derivatives on choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) activity were compared with those of AF64A in an equimolar concentration. Structures of the newly synthesized compounds were confirmed by i.r., NMR and u.v. spectrometry and elemental analysis. The most specific cholinotoxic effects were observed with a,a-bis[di(2-chloroethyl)amino]4,4-biacetophenone (toxin 7). This compound causes specific decrease of ChAT activity in the brain structures (hippocampus and cortex) containing cholinergic terminals deriving from septum and the nucleus basalis magnocellularis (NBM), respectively. Large ChAT-positive magnocellular neurons in the NBM became paler and lost their processes following treatment with toxin 7 after 1 week.  相似文献   

16.
Although it is well known that motor neuron survival following axotomy is enhanced with maturation, the ability of surviving neurons to express the cholinergic enzyme choline acetyltransferase (ChAT) following axotomy has not been closely examined. Moreover, the utility of the facial nucleus in studies of motoneuron response to injury and to trophic factors, coupled with the increasing importance of the mouse in gene targeting, compelled us to investigate the age dependence of neuronal survival and ChAT expression in the mouse facial nucleus following axotomy. We cut the facial nerve at postnatal day (P)4, 7, 14, 21, and 28 or in the adult and used Nissl staining and ChAT immunocytochemistry to quantitate survival and ChAT expression, respectively, following 1, 2, or 3 weeks' survival at each age. We confirm in this model that the rate and extent of motor neuron death following axotomy is reduced with increasing maturity. The surviving neurons maintain a high ChAT content through P21; however, axotomy from P28 through adulthood results in a striking reduction in ChAT immunoreactivity. That is, although axotomy at P21 results in 61% motor neuron survival, with virtually all of the surviving neurons being ChAT positive, axotomy in the adult results in 72% survival but only 9% of the neurons are ChAT positive. Thus, surviving motor neurons in the adult animals are only weakly cholinergic. These results indicate that a change in the regulation of ChAT expression occurs following P21 so that cell survival and enzyme levels are uncoupled. We suggest that the putative factor or factors that enhances motor neuron survival in maturity is not capable of maintaining ChAT expression. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
1. In situ hybridization histochemical techniques in combination with immunocytochemistry and acetylcholinesterase (AChE) histochemistry were used to study the colocalization of messenger RNA (mRNA) encoding the neuropeptide substance P (SP) in cholinergic cells of the laterodorsal tegmental nucleus (LDT) of the rat pontine brain stem. 2. Alternate serial sections were hybridized with a 48-base, 35S-labeled synthetic oligonucleotide probe encoding SP using in situ hybridization histochemistry and processed either histochemically for AChE or immunocytochemically for choline acetyltransferase (ChAT). 3. In addition, serial section analysis was used to demonstrate the correlation between SP and SP mRNA in the same cells of the LDT. 4. These studies reveal that the cholinergic neurons of the LDT synthesize SP.  相似文献   

18.
Fibroblast growth factor-1 (FGF1), a member of the FGF family of growth factors, is localized in cholinergic neurons where it has trophic activity. We recently reported that cholinergic neurons in the dorsal motor nucleus of the vagus (DMNV) contain little FGF1, raising the possibility that FGF1 is not localized to parasympathetic preganglionic cholinergic neurons. To clarify this issue, we investigated the co-localization of FGF1 with cholinergic neuron markers in the Edinger-Westphal nucleus (EWN), salivatory nucleus, DMNV, and sacral parasympathetic nucleus by double immunofluorescence using antibodies to FGF1 and choline acetyltransferase (ChAT). The neurons in the EWN were devoid of FGF1. In the salivatory nucleus, 13% of ChAT-positive neurons were also positive for FGF1. In the DMNV, only 8% of ChAT-positive neurons contained FGF1, and in the sacral parasympathetic nucleus, 18% of ChAT-positive neurons were FGF1-positive. We also confirmed that a large number of ChAT-positive motor neurons in the oculomotor nucleus, facial nucleus, hypoglossal nucleus, and spinal motor neurons contained FGF1. The results confirmed that parasympathetic preganglionic neurons are largely devoid of FGF1, which is a unique feature among cholinergic neurons.  相似文献   

19.
Both nerve growth factor (NGF) and pituitary adenylate cyclase activating polypeptide (PACAP) have neurotrophic effects on basal forebrain cholinergic neurons. They promote differentiation, maturation, and survival of these cholinergic neurons in vivo and in vitro. Here we report on the cooperative effects of NGF and PACAP on postnatal, but not embryonic, cholinergic neurons cultured from rat basal forebrain. Combined treatment with NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4), and PACAP induced an additive increase in choline acetyltransferase (ChAT) activity. There were no cooperative effects on the number of cholinergic neurons, suggesting that ChAT mRNA expression had been induced in each cholinergic neuron. Further analysis revealed that NGF and PACAP led to complementary induction of different ChAT mRNA species, thus enhancing total ChAT mRNA expression. These results explain the cooperative neurotrophic action of NGF and PACAP on postnatal cholinergic neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号