首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological diversity of leg appendages is one of the hallmarks of developmental evolution. Limbs in insects may develop either from their embryonic prototypes or from imaginal discs harbored inside the larva. Bombyx mori (B. mori), a Lepidopteran insect, develops adult wings from larval wing imaginal discs. However, it has been debated whether the adult legs of B. mori arise from imaginal discs or from the larval legs. Here we addressed how the larval legs relate to their adult counterparts. We present the morphological landmarks during early leg development. We used expression of developmental genes like Distalless and extradenticle to mark leg primordia. Finally, we employed classical excision approach to develop a fate map of the adult leg. Excision and ablation of thoracic legs along proximo-distal axis at various times during larval development resulted in the loss of corresponding adult leg segments. Our data suggest that B. mori legs develop from larval appendages rather than leg imaginal discs.  相似文献   

2.
During metamorphosis of the tobacco hornworm Manduca sexta, the simple thoracic legs of the larva are remodeled into the more complex adult legs. Most of the adult leg epidermis derives from the adult primordia, small sets of epidermal cells located in specific regions of the larval leg, which proliferate rapidly in the final larval instar. In contrast, the contribution of the epidermal cells outside the primordia is unknown. In this study we have determined their contribution to the adult leg by labeling them with 5-bromodeoxyuridine (BUdR) and following their fate. Although the labeled cells diminished drastically in number, small groups of these cells persisted into the midpupal stage suggesting that they do contribute to the adult leg epidermis. We also found that during the wandering stage the adult primordia went through active proliferation and very little cell death, while the cells outside the primordia went through extensive cell death accounting for the decrease in their number. Our results indicate that two distinct cell populations exist outside the adult primordia. Most cells belong to the first population, which is larval-specific and disappears through apoptosis early in metamorphosis. The second population consists of polymorphic cells that contribute to the larval, pupal and adult leg epidermis.Edited by D. Tautz  相似文献   

3.
During metamorphosis in the hawkmoth, Manduca sexta, the larvalthoracic legs are replaced by a new set of adult legs that includenew sensory neurons and muscles, and participate in new patternsof locomotor activity. Larval leg motoneurons persist to innervatethe new adult leg muscles, but undergo striking changes in dendriticmorphology that are regulated by the insect steroid, 20-hydroxyecdysone.In the periphery, the motor terminals regress as larval musclesdegenerate, and expand as new adult muscles form from myoblasts.Evidence obtained both in vivo and in vitro suggests that theproliferation of myoblasts during metamorphosis is dependentupon innervation.  相似文献   

4.
5.
Many moths use sex pheromones to find their mates in the dark. Their antennae are well developed with lateral branches to receive the pheromone efficiently. However, how these structures have evolved remains elusive, because the mechanism of development of these antennae has not been studied at a molecular level. To elucidate the developmental mechanism of this type of antenna, we observed morphogenesis, cell proliferation, cell death and antennal patterning gene expression in the branched antenna of the silk moth, Bombyx mori. Region-specific cell proliferation and almost ubiquitous apoptosis occur during early pupal stages and appear to shape the lateral branch cooperatively. Antennal patterning genes are expressed in a pattern largely conserved among insects with branchless antennae until the late 5th larval instar but most of them change their expression dramatically to a pattern prefiguring the lateral branch during metamorphosis. These findings imply that although antennal primordium is patterned by conserved mechanisms before metamorphosis, most of the antennal patterning genes are reused to form the lateral branch during metamorphosis. We propose that the acquisition of a new regulatory circuit of antennal patterning genes may have been an important event during evolution of the sensory antenna with lateral branches in the Lepidoptera.  相似文献   

6.
Insects can be grouped into mainly two categories, holometabolous and hemimetabolous, according to the extent of their morphological change during metamorphosis. The three thoracic legs, for example, are known to develop through two overtly different pathways: holometabolous insects make legs through their imaginal discs, while hemimetabolous legs develop from their leg buds. Thus, how the molecular mechanisms of leg development differ from each other is an intriguing question. In the holometabolous long-germ insect, these mechanisms have been extensively studied using Drosophila melanogaster. However, little is known about the mechanism in the hemimetabolous insect. Thus, we studied leg development of the hemimetabolous short-germ insect, Gryllus bimaculatus (cricket), focusing on expression patterns of the three key signaling molecules, hedgehog (hh), wingless (wg) and decapentaplegic (dpp), which are essential during leg development in Drosophila. In Gryllus embryos, expression of hh is restricted in the posterior half of each leg bud, while dpp and wg are expressed in the dorsal and ventral sides of its anteroposterior (A/P) boundary, respectively. Their expression patterns are essentially comparable with those of the three genes in Drosophila leg imaginal discs, suggesting the existence of the common mechanism for leg pattern formation. However, we found that expression pattern of dpp was significantly divergent among Gryllus, Schistocerca (grasshopper) and Drosophila embryos, while expression patterns of hh and wg are conserved. Furthermore, the divergence was found between the pro/mesothoracic and metathoracic Gryllus leg buds. These observations imply that the divergence in the dpp expression pattern may correlate with diversity of leg morphology.  相似文献   

7.
The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late-larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis.  相似文献   

8.
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.  相似文献   

9.
10.
The prothoracic gland (PG) has essential roles in synthesizing and secreting a steroid hormone called ecdysone that is critical for molting and metamorphosis of insects. However, little is known about the genes controlling ecdysteroidogenesis in the PG. To identify genes functioning in the PG of the silkworm, Bombyx mori, we used differential display PCR and focused on a cytochrome P450 gene designated Cyp307a1. Its expression level positively correlates with a change in the hemolymph ecdysteroid titer. In addition, Drosophila Cyp307a1 is encoded in the spook locus, one of the Halloween mutant family members showing a low ecdysone titer in vivo, suggesting that Cyp307a1 is involved in ecdysone synthesis. While Drosophila Cyp307a1 is expressed in the early embryos and adult ovaries, the expression is not observed in the PGs of embryos or third instar larvae. These results suggest a difference in the ecdysone synthesis pathways during larval development in these insects.  相似文献   

11.
12.
Summary The thoracic legs of the moth Manduca sexta acquire a new form and develop a new complement of sensory organs and muscles during metamorphosis from larva to adult. Because of our interest in the reorganization of neural circuitry and the acquisition of new behaviors during metamorphosis, we are characterizing sensory elements of larval and adult legs so that we may determine the contribution of new sensory inputs to the changes in behaviors. Here we describe the sensory structures of adult legs using scanning electron microscopy to view the external sensilla and cobalt staining to examine innervation by underlying sensory neurons. We find that, in contrast to larval legs, the adult legs are covered with a diverse array of sensilla. All three pairs of thoracic legs contain scattered, singly innervated scalelike sensilla. Campaniform sensilla occur singly or in clusters near joints. Hair plates, consisting of numerous singly innervated hairs, are also present near joints. Other more specialized sensilla occur on distal leg segments. These include singly innervated spines, two additional classes of singly innervated hairs, and three classes of multiply innervated sensilla. Internal sensory organs include chordotonal organs, subgenual organs, and multipolar joint receptors.  相似文献   

13.
14.
During metamorphosis in the hawkmoth, Manduca sexta, identified larval leg motoneurons survive the degeneration of their larval targets to innervate new muscles of the adult legs. The dendrites and axon terminals of these motoneurons regress at the end of the larval stage and then regrow during adult development. Previous studies have implicated the insect steroid, 20-hydroxyecdysone (20-HE), in similar examples of dendritic reorganization during metamorphosis. The present studies were undertaken to test whether 20-HE acts directly on the leg motoneurons to regulate dendritic growth. Larval leg motoneurons were labeled with a fluorescent dye to permit their identification in culture following the dissociation of thoracic ganglia at later stages of development. Leg motoneurons isolated from early pupal stage animals (just before the normal onset of dendritic regrowth) survived in vitro and grew processes regardless of whether 20-HE was added to the culture medium. The extent of process outgrowth, however, as measured by the total length of all processes and the number of branches, was significantly greater for motoneurons maintained in the presence of 20-HE. The enhancement could be blocked by the addition of a juvenile hormone analog. By contrast, larval leg motoneurons that were isolated just before the normal period of dendritic regression did not show enhanced growth of neurites in the presence of 20-HE. The results suggest that 20-HE acts directly on the leg motoneurons to regulate the growth of processes during metamorphosis.  相似文献   

15.
16.
17.
Phenotypic plasticity is a hallmark of the caste systems of social insects, expressed in their life history and morphological traits. These are best studied in bees. In their co-evolution with angiosperm plants, the females of corbiculate bees have acquired a specialized structure on their hind legs for collecting pollen. In the highly eusocial bees (Apini and Meliponini), this structure is however only present in workers and absent in queens. By means of histological sections and cell proliferation analysis we followed the developmental dynamics of the hind legs of queens and workers in the fourth and fifth larval instars. In parallel, we generated subtractive cDNA libraries for hind leg discs of queen and worker larvae by means of a Representational Difference Analysis (RDA). From the total of 135 unique sequences we selected 19 for RT-qPCR analysis, where six of these were confirmed as differing significantly in their expression between the two castes in the larval spinning stage. The development of complex structures such as the bees’ hind legs, requires diverse patterning mechanisms and signaling modules, as indicated by the set of differentially expressed genes related with cell adhesion and signaling pathways.  相似文献   

18.
All insect legs are structurally similar, characterized by five primary segments. However, this final form is achieved in different ways. Primitively, the legs developed as direct outgrowths of the body wall, a condition retained in most insect species. In some groups, including the lineage containing the genus Drosophila, legs develop indirectly from imaginal discs. Our understanding of the molecular mechanisms regulating leg development is based largely on analysis of this derived mode of leg development in the species D. melanogaster. The current model for Drosophila leg development is divided into two phases, embryonic allocation and imaginal disc patterning, which are distinguished by interactions among the genes wingless (wg), decapentaplegic (dpp) and distalless (dll). In the allocation phase, dll is activated by wg but repressed by dpp. During imaginal disc patterning, dpp and wg cooperatively activate dll and also indirectly inhibit the nuclear localization of Extradenticle (Exd), which divide the leg into distal and proximal domains. In the grasshopper Schistocerca americana, the early expression pattern of dpp differs radically from the Drosophila pattern, suggesting that the genetic interactions that allocate the leg differ between the two species. Despite early differences in dpp expression, wg, Dll and Exd are expressed in similar patterns throughout the development of grasshopper and fly legs, suggesting that some aspects of proximodistal (P/D) patterning are evolutionarily conserved. We also detect differences in later dpp expression, which suggests that dpp likely plays a role in limb segmentation in Schistocerca, but not in Drosophila. The divergence in dpp expression is surprising given that all other comparative data on gene expression during insect leg development indicate that the molecular pathways regulating this process are conserved. However, it is consistent with the early divergence in developmental mode between fly and grasshopper limbs.  相似文献   

19.
The genetic and developmental bases for trait expression and variation in adults are largely unknown. One system in which genes and cell behaviors underlying adult traits can be elucidated is the larval-to-adult transformation of zebrafish, Danio rerio. Metamorphosis in this and many other teleost fishes resembles amphibian metamorphosis, as a variety of larval traits (e.g., fins, skin, digestive tract, sensory systems) are remodeled in a coordinated manner to generate the adult form. Among these traits is the pigment pattern, which comprises several neural crest-derived pigment cell classes, including black melanophores, yellow xanthophores, and iridescent iridophores. D. rerio embryos and early larvae exhibit a relatively simple pattern of melanophore stripes, but this pattern is transformed during metamorphosis into the more complex pattern of the adult, consisting of alternating dark (melanophore, iridophore) and light (xanthophore, iridophore) horizontal stripes. While it is clear that some pigment cells differentiate de novo during pigment pattern metamorphosis, the extent to which larval and adult pigment patterns are developmentally independent has not been known. In this study, we show that a subset of embryonic/early larval melanophores persists into adult stages in wild-type fish; thus, larval and adult pigment patterns are not completely independent in this species. We also analyze puma mutant zebrafish, derived from a forward genetic screen to isolate mutations affecting postembryonic development. In puma mutants, a wild-type embryonic/early larval pigment pattern forms, but supernumerary early larval melanophores persist in ectopic locations through juvenile and adult stages. We then show that, although puma mutants undergo a somatic metamorphosis at the same time as wild-type fish, metamorphic melanophores that normally appear during these stages are absent. The puma mutation thus decouples metamorphosis of the pigment pattern from the metamorphosis of many other traits. Nevertheless, puma mutants ultimately recover large numbers of melanophores and exhibit extensive pattern regulation during juvenile development, when the wild-type pigment pattern already would be completed. Finally, we demonstrate that the puma mutant is both temperature-sensitive and growth-sensitive: extremely severe pigment pattern defects result at a high temperature, a high growth rate, or both; whereas a wild-type pigment pattern can be rescued at a low temperature and a low growth rate. Taken together, these results provide new insights into zebrafish pigment pattern metamorphosis and the capacity for pattern regulation when normal patterning mechanisms go awry.  相似文献   

20.
The genes Distal-less, dachshund, extradenticle, and homothorax have been shown in Drosophila to be among the earliest genes that define positional values along the proximal-distal (PD) axis of the developing legs. In order to study PD axis formation in the appendages of the pill millipede Glomeris marginata, we have isolated homologues of these four genes and have studied their expression patterns. In the trunk legs, there are several differences to Drosophila, but the patterns are nevertheless compatible with a conserved role in defining positional values along the PD axis. However, their role in the head appendages is apparently more complex. Distal-less in the mandible and maxilla is expressed in the forming sensory organs and, thus, does not seem to be involved in PD axis patterning. We could not identify in the mouthparts components that are homologous to the distal parts of the trunk legs and antennnae. Interestingly, there is also a transient premorphogenetic expression of Distal-less in the second antennal and second maxillary segment, although no appendages are eventually formed in these segments. The dachshund gene is apparently involved both in PD patterning as well as in sensory organ development in the antenna, maxilla, and mandible. Strong dachshund expression is specifically correlated with the tooth-like part of the mandible, a feature that is shared with other mandibulate arthropods. homothorax is expressed in the proximal and medial parts of the legs, while extradenticle RNA is only seen in the proximal region. This overlap of expression corresponds to the functional overlap between extradenticle and homothorax in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号