首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.

Background

The ErbB receptor tyrosine kinases and nucleolin are major contributors to malignant transformation. Recently we have found that cell-surface ErbB receptors interact with nucleolin via their cytoplasmic tail. Overexpression of ErbB1 and nucleolin leads to receptor phosphorylation, dimerization and anchorage independent growth.

Methodology/Principal Findings

In the present study we explored the regions of nucleolin and ErbB responsible for their interaction. Using mutational analyses, we addressed the structure–function relationship of the interaction between ErbB1 and nucleolin. We identified the ErbB1 nuclear localization domain as nucleolin interacting region. This region is important for nucleolin-associated receptor activation. Notably, though the tyrosine kinase domain is important for nucleolin-associated receptor activation, it is not involved in nucleolin/ErbB interactions. In addition, we demonstrated that the 212 c-terminal portion of nucleolin is imperative for the interaction with ErbB1 and ErbB4. This region of nucleolin is sufficient to induce ErbB1 dimerization, phosphorylation and growth in soft agar.

Conclusions/Significance

The oncogenic potential of ErbB depends on receptor levels and activation. Nucleolin affects ErbB dimerization and activation leading to enhanced cell growth. The C-terminal region of nucleolin and the ErbB1 NLS-domain mediate this interaction. Moreover, when the C-terminal 212 amino acids region of nucleolin is expressed with ErbB1, it can enhance anchorage independent cell growth. Taken together these results offer new insight into the role of ErbB1 and nucleolin interaction in malignant cells.  相似文献   

2.

Background

In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity.

Principal Findings

To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia.

Conclusions

On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.  相似文献   

3.

Background

The Lrig genes encode a family of transmembrane proteins that have been implicated in tumorigenesis, psoriasis, neural crest development, and complex tissue morphogenesis. Whether these diverse phenotypes reflect a single underlying cellular mechanism is not known. However, Lrig proteins contain evolutionarily conserved ectodomains harboring both leucine-rich repeats and immunoglobulin domains, suggesting an ability to bind to common partners. Previous studies revealed that Lrig1 binds to and inhibits members of the ErbB family of receptor tyrosine kinases by inducing receptor internalization and degradation. In addition, other receptor tyrosine kinase binding partners have been identified for both Lrig1 and Lrig3, leaving open the question of whether defective ErbB signaling is responsible for the observed mouse phenotypes.

Methodology/Principal Findings

Here, we report that Lrig3, like Lrig1, is able to interact with ErbB receptors in vitro. We examined the in vivo significance of these interactions in the inner ear, where Lrig3 controls semicircular canal formation by determining the timing and extent of Netrin1 expression in the otic vesicle epithelium. We find that ErbB2 and ErbB3 are present in the early otic epithelium, and that Lrig3 acts cell-autonomously here, as would be predicted if Lrig3 regulates ErbB2/B3 activity. However, inhibition of ErbB activation in the chick otic vesicle has no detectable effect on Netrin gene expression or canal morphogenesis.

Conclusions/Significance

Our results suggest that although both Lrig1 and Lrig3 can interact with ErbB receptors in vitro, modulation of Neuregulin signaling is unlikely to contribute to Lrig3-dependent processes of inner ear morphogenesis. These results highlight the similar binding properties of Lrig1 and Lrig3 and underscore the need to determine how these two family members bind to and regulate different receptors to affect diverse aspects of cell behavior in vivo.  相似文献   

4.

Background

Length and intensity of signal transduction via cytokine receptors is precisely regulated. Degradation of certain cytokine receptors is mediated by the ubiquitin ligase SCF(βTrCP). In several instances, Janus kinase (Jak) family members can stabilise their cognate cytokine receptors at the cell surface.

Principal Findings

In this study we show in Hek293 cells that Jak2 binding to the growth hormone receptor prevents endocytosis in a non-catalytic manner. Following receptor activation, the detachment of phosphorylated Jak2 induces down-regulation of the growth hormone receptor by SCF(βTrCP). Using γ2A human fibroblast cells we show that both growth hormone-induced and constitutive growth hormone receptor endocytosis depend on the same factors, strongly suggesting that the modes of endocytosis are identical. Different Jak2 RNA levels in HepG2, IM9 and Hek293 cells indicate the importance of cellular concentration on growth hormone receptor function. Both Jak2 and βTrCP bind to neighbouring linear motifs in the growth hormone receptor tail without the requirement of modifications, indicating that growth hormone sensitivity is regulated by the cellular level of non-committed Jak2.

Conclusions/Significance

As signal transduction of many cytokine receptors depends on Jak2, the study suggests an integrative role of Jak2 in cytokine responses based on its enzyme activity as well as its stabilising properties towards the receptors.  相似文献   

5.

Background

ErbB2 Receptor Tyrosine Kinase 2 (ErbB2, HER2/Neu) is amplified in breast cancer and associated with poor prognosis. Growing evidence suggests interplay between ErbB2 and insulin-like growth factor (IGF) signaling. For example, ErbB2 inhibitors can block IGF-induced signaling while, conversely, IGF1R inhibitors can inhibit ErbB2 action. ErbB receptors can bind and phosphorylate insulin receptor substrates (IRS) and this may be critical for ErbB-mediated anti-estrogen resistance in breast cancer. Herein, we examined crosstalk between ErbB2 and IRSs using cancer cell lines and transgenic mouse models.

Methods

MMTV-ErbB2 and MMTV-IRS2 transgenic mice were crossed to create hemizygous MMTV-ErbB2/MMTV-IRS2 bigenic mice. Signaling crosstalk between ErbB2 and IRSs was examined in vitro by knockdown or overexpression followed by western blot analysis for downstream signaling intermediates and growth assays.

Results

A cross between MMTV-ErbB2 and MMTV-IRS2 mice demonstrated no enhancement of ErbB2 mediated mammary tumorigenesis or metastasis by elevated IRS2. Substantiating this, overexpression or knockdown of IRS1 or IRS2 in MMTV-ErbB2 mammary cancer cell lines had little effect upon ErbB2 signaling. Similar results were obtained in human mammary epithelial cells (MCF10A) and breast cancer cell lines.

Conclusion

Despite previous evidence suggesting that ErbB receptors can bind and activate IRSs, our findings indicate that ErbB2 does not cooperate with the IRS pathway in these models to promote mammary tumorigenesis.
  相似文献   

6.

Background

Upon ligand binding, cell surface signaling receptors are internalized through a process tightly regulated by endocytic proteins and adaptor protein 2 (AP2) to orchestrate them. Although the molecular identities and roles of endocytic proteins are becoming clearer, it is still unclear what determines the receptor endocytosis kinetics which is mainly regulated by the accumulation of endocytic apparatus to the activated receptors.

Methodology/Principal Findings

Here we employed the kinetic analysis of endocytosis and adaptor recruitment to show that μ2, a subunit of AP2 interacts directly with phospholipase D (PLD)1, a receptor-associated signaling protein and this facilitates the membrane recruitment of AP2 and the endocytosis of epidermal growth factor receptor (EGFR). We also demonstrate that the PLD1-μ2 interaction requires the binding of PLD1 with phosphatidic acid, its own product.

Conclusions/Significance

These results suggest that the temporal regulation of EGFR endocytosis is achieved by auto-regulatory PLD1 which senses the receptor activation and triggers the translocation of AP2 near to the activated receptor.  相似文献   

7.
Mirza A  Mustafa M  Talevich E  Kannan N 《PloS one》2010,5(12):e14310

Background

The epidermal growth factor receptor kinases, or ErbB kinases, belong to a large sub-group of receptor tyrosine kinases (RTKs), which share a conserved catalytic core. The catalytic core of ErbB kinases have functionally diverged from other RTKs in that they are activated by a unique allosteric mechanism that involves specific interactions between the kinase core and the flanking Juxtamembrane (JM) and COOH-terminal tail (C-terminal tail). Although extensive studies on ErbB and related tyrosine kinases have provided important insights into the structural basis for ErbB kinase functional divergence, the sequence features that contribute to the unique regulation of ErbB kinases have not been systematically explored.

Methodology/Principal Findings

In this study, we use a Bayesian approach to identify the selective sequence constraints that most distinguish ErbB kinases from other receptor tyrosine kinases. We find that strong ErbB kinase-specific constraints are imposed on residues that tether the JM and C-terminal tail to key functional regions of the kinase core. A conserved RIxKExE motif in the JM-kinase linker region and a glutamine in the inter-lobe linker are identified as two of the most distinguishing features of the ErbB family. While the RIxKExE motif tethers the C-terminal tail to the N-lobe of the kinase domain, the glutamine tethers the C-terminal tail to hinge regions critical for inter-lobe movement. Comparison of the active and inactive crystal structures of ErbB kinases indicates that the identified residues are conformationally malleable and can potentially contribute to the cis regulation of the kinase core by the JM and C-terminal tail. ErbB3, and EGFR orthologs in sponges and parasitic worms, diverge from some of the canonical ErbB features, providing insights into sub-family and lineage-specific functional specialization.

Conclusion/Significance

Our analysis pinpoints key residues for mutational analysis, and provides new clues to cancer mutations that alter the canonical modes of ErbB kinase regulation.  相似文献   

8.

Background

Metastasis is an important step in tumor progression leading to a disseminated and often incurable disease. First steps of metastasis include down-regulation of cell adhesion molecules, alteration of cell polarity and reorganization of cytoskeleton, modifications associated with enhanced migratory properties and resistance of tumor cells to anoikis. Such modifications resemble Epithelial to Mesenchymal Transition (EMT). In breast cancer CD146 expression is associated with poor prognosis and enhanced motility.

Methodology/Principal Findings

On 4 different human breast cancer cell lines, we modified CD146 expression either with shRNA technology in CD146 positive cells or with stable transfection of CD146 in negative cells. Modifications in morphology, growth and migration were evaluated. Using Q-RT-PCR, we analyzed the expression of different EMT markers. We demonstrate that high levels of CD146 are associated with loss of cell-cell contacts, expression of EMT markers, increased cell motility and increased resistance to doxorubicin or docetaxel. Experimental modulation of CD146 expression induces changes consistent with the above described characteristics: morphology, motility, growth in anchorage independent conditions and Slug mRNA variations are strictly correlated with CD146 expression. These changes are associated with modifications of ER (estrogen receptor) and Erb receptors and are enhanced by simultaneous and opposite modulation of JAM-A, or exposure to heregulin, an erb-B4 ligand.

Conclusions

CD146 expression is associated with an EMT phenotype. Several molecules are affected by CD146 expression: direct or indirect signaling contributes to EMT by increasing Slug expression. CD146 may also interact with Erb signaling by modifying cell surface expression of ErbB3 and ErbB4 and increased resistance to chemotherapy. Antagonistic effects of JAM-A, a tight junction-associated protein, on CD146 promigratory effects underline the complexity of the adhesion molecules network in tumor cell migration and metastasis.  相似文献   

9.

Objective

Individuals with the neurofibromatosis type 2 (NF2) cancer predisposition syndrome develop spinal cord glial tumors (ependymomas) that likely originate from neural progenitor cells. Whereas many spinal ependymomas exhibit indolent behavior, the only treatment option for clinically symptomatic tumors is surgery. In this regard, medical therapies are unfortunately lacking due to an incomplete understanding of the critical growth control pathways that govern the function of spinal cord (SC) neural progenitor cells (NPCs).

Methods

To identify potential therapeutic targets for these tumors, we leveraged primary mouse Nf2-deficient spinal cord neural progenitor cells.

Results

We demonstrate that the Nf2 protein, merlin, negatively regulates spinal neural progenitor cell survival and glial differentiation in an ErbB2-dependent manner, and that NF2-associated spinal ependymomas exhibit increased ErbB2 activation. Moreover, we show that Nf2-deficient SC NPC ErbB2 activation results from Rac1-mediated ErbB2 retention at the plasma membrane.

Significance

Collectively, these findings establish ErbB2 as a potential rational therapeutic target for NF2-associated spinal ependymoma.  相似文献   

10.

Background

Emerging evidence shows that ErbB2 signaling has a critical role in cardiomyocyte physiology, based mainly on findings that blocking ErbB2 for cancer therapy is toxic to cardiac cells. However, consequences of high levels of ErbB2 activity in the heart have not been previously explored.

Methodology/Principal Findings

We investigated consequences of cardiac-restricted over-expression of ErbB2 in two novel lines of transgenic mice. Both lines develop striking concentric cardiac hypertrophy, without heart failure or decreased life span. ErbB2 transgenic mice display electrocardiographic characteristics similar to those found in patients with Hypertrophic Cardiomyopathy, with susceptibility to adrenergic-induced arrhythmias. The hypertrophic hearts, which are 2–3 times larger than those of control littermates, express increased atrial natriuretic peptide and β-myosin heavy chain mRNA, consistent with a hypertrophic phenotype. Cardiomyocytes in these hearts are significantly larger than wild type cardiomyocytes, with enlarged nuclei and distinctive myocardial disarray. Interestingly, the over-expression of ErbB2 induces a concurrent up-regulation of multiple proteins associated with this signaling pathway, including EGFR, ErbB3, ErbB4, PI3K subunits p110 and p85, bcl-2 and multiple protective heat shock proteins. Additionally, ErbB2 up-regulation leads to an anti-apoptotic shift in the ratio of bcl-xS/xL in the heart. Finally, ErbB2 over-expression results in increased activation of the translation machinery involving S6, 4E-BP1 and eIF4E. The dependence of this hypertrophic phenotype on ErbB family signaling is confirmed by reduction in heart mass and cardiomyocyte size, and inactivation of pro-hypertrophic signaling in transgenic animals treated with the ErbB1/2 inhibitor, lapatinib.

Conclusions/Significance

These studies are the first to demonstrate that increased ErbB2 over-expression in the heart can activate protective signaling pathways and induce a phenotype consistent with Hypertrophic Cardiomyopathy. Furthermore, our work suggests that in the situation where ErbB2 signaling contributes to cardiac hypertrophy, inhibition of this pathway may reverse this process.  相似文献   

11.
12.

Background

Response to cetuximab (Erbitux®) and panitumumab (Vectibix®) varies among individuals, and even those who show response ultimately gain drug resistance. One possible etiologic factor is differential interaction between the drug and target. We describe the development of an assay based on Slow Off-rate Modified Aptamer (SOMAmer) reagents that can distinguish drug-bound from unbound epidermal growth factor receptor (EGFR).

Methods

This quantitative assay uses a SOMAmer reagent specific for EGFR extracellular domain (ECD) as a capturing reagent. Captured SOMAmer is quantitated using PCR. Linearity and accuracy (recovery) of the assay were assessed using normal sera and purified EGFR ECD.

Results

This EGFR ECD assay showed linearity between 2.5 and 600 ng/mL. Average recovery was 101%. The assay detected EGFR but showed little cross-reactivity to other ErbB proteins: 0.4% for ErbB2, 6.9% for ErbB3, and 1.3% for ErbB4. Preincubation of normal serum with either cetuximab or panitumumab resulted in a dose-dependent decrease in EGFR ECD levels measured using the SOMAmer assay; preincubation did not affect measurement with an ELISA.

Conclusions

This SOMAmer-based serum EGFR ECD assay accurately and specifically measures EGFR in serum. Detection of significant amounts of drug-unbound EGFR in patients undergoing cetuximab or panitumumab treatment could be an indicator of poor drug response. Further studies are needed to evaluate the utility of the assay as an indicator of drug efficacy or as a guide to dosing.  相似文献   

13.

Background

ErbB2 is a member of the epidermal growth factor family of tyrosine kinases that is centrally involved in the pathogenesis of prostate cancer and several studies have reported that a high expression of this protein has prognostic value. In the present study, we have investigated whether tumour ErbB2 immunoreactivity (ErbB2-IR) has clinically useful prognostic value, i.e. that it provides additional prognostic information to that provided by routine clinical tests (Gleason score, tumour stage).

Methodology/Principal Findings

ErbB2-IR was measured in a well-characterised tissue microarray of tumour and non-malignant samples obtained at diagnosis. Additionally, mRNA levels of ErbB2-IR in the prostate were determined in the rat following manipulation of circulating androgen levels. Tumour ErbB2-IR was significantly associated with the downstream signalling molecule phosphorylated-Akt and with the cell proliferation marker Ki-67. The significant association of tumour ErbB2-IR with the Gleason score at diagnosis was lost when controlled for the association of both parameters with Ki-67. In the rat prostate, mRNA for ErbB2 was inversely associated with circulating androgen levels. There was no association between ErbB2-IR and the androgen receptor (AR)-IR in the tumours, but an interaction between the two parameters was seen with respect to their association with the tumour stage. Tumour ErbB2-IR was confirmed to be a prognostic marker for disease-specific survival, but it did not provide significant additive information to the Gleason score or to Ki-67.

Conclusions/Significance

It is concluded that tumour ErbB2-IR is of limited clinical value as a prognostic marker to aid treatment decisions, but could be of pathophysiological importance in prostate cancer.  相似文献   

14.

Background

The role of estrogen and estrogen receptors in oncogenesis has been investigated in various malignancies. Recently our group identified estrogen receptor beta (ERβ) expression as an independent prognostic factor in the progression of human Malignant Pleural Mesothelioma (MMe), but the underlying mechanism by which ERβ expression in tumors determines clinical outcome remains largely unknown. This study is aimed at investigating the molecular mechanisms of ERβ action in MMe cells and disclosing the potential translational implications of these results.

Methods

We modulated ERβ expression in REN and MSTO-211H MMe cell lines and evaluated cell proliferation and EGF receptor (EGFR) activation.

Results

Our data indicate that ERβ knockdown in ER positive cells confers a more invasive phenotype, increases anchorage independent proliferation and elevates the constitutive activation of EGFR-coupled signal transduction pathways. Conversely, re-expression of ERβ in ER negative cells confers a more epithelioid phenotype, decreases their capacity for anchorage independent growth and down-modulates proliferative signal transduction pathways. We identify a physical interaction between ERβ, EGFR and caveolin 1 that results in an altered internalization and in a selective reduced activation of EGFR-coupled signaling, when ERβ is over-expressed. We also demonstrate that differential expression of ERβ influences MMe tumor cell responsiveness to the therapeutic agent: Gefitinib.

Conclusions

This study describes a role for ERβ in the modulation of cell proliferation and EGFR activation and provides a rationale to facilitate the targeting of a subgroup of MMe patients who would benefit most from therapy with Gefitinib alone or in combination with Akt inhibitors.  相似文献   

15.

Background

Inappropriate signaling through the epidermal growth factor receptor family (EGFR1/ERBB1, ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4) of receptor tyrosine kinases leads to unregulated activation of multiple downstream signaling pathways that are linked to cancer formation and progression. In particular, ERBB3 plays a critical role in linking ERBB signaling to the phosphoinositide 3-kinase and Akt signaling pathway and increased levels of ERBB3-dependent signaling is also increasingly recognized as a mechanism for acquired resistance to ERBB-targeted therapies.

Methods

We had previously reported the isolation of a panel of anti-ERBB3 single-chain Fv antibodies through use of phage-display technology. In the current study scFv specific for domain I (F4) and domain III (A5) were converted into human IgG1 formats and analyzed for efficacy.

Results

Treatment of cells with an oligoclonal mixture of the A5/F4 IgGs appeared more effective at blocking both ligand-induced and ligand-independent signaling through ERBB3 than either single IgG alone. This correlated with improved ability to inhibit the cell growth both as a single agent and in combination with other ERBB-targeted therapies. Treatment of NCI-N87 tumor xenografts with the A5/F4 oligoclonal led to a statistically significant decrease in tumor growth rate that was further enhanced in combination with trastuzumab.

Conclusion

These results suggest that an oligoclonal antibody mixture may be a more effective approach to downregulate ERBB3-dependent signaling.  相似文献   

16.
17.
18.
19.

Rationale

Previous in vitro research demonstrated that ascorbate enhances potency and duration of activity of agonists binding to alpha 1 adrenergic and histamine receptors.

Objectives

Extending this work to beta 2 adrenergic systems in vitro and in vivo.

Methods

Ultraviolet spectroscopy was used to study ascorbate binding to adrenergic receptor preparations and peptides. Force transduction studies on acetylcholine-contracted trachealis preparations from pigs and guinea pigs measured the effect of ascorbate on relaxation due to submaximal doses of beta adrenergic agonists. The effect of inhaled albuterol with and without ascorbate was tested on horses with heaves and sheep with carbachol-induced bronchoconstriction.

Measurements

Binding constants for ascorbate binding to beta adrenergic receptor were derived from concentration-dependent spectral shifts. Dose- dependence curves were obtained for the relaxation of pre-contracted trachealis preparations due to beta agonists in the presence and absence of varied ascorbate. Tachyphylaxis and fade were also measured. Dose response curves were determined for the effect of albuterol plus-and-minus ascorbate on airway resistance in horses and sheep.

Main Results

Ascorbate binds to the beta 2 adrenergic receptor at physiological concentrations. The receptor recycles dehydroascorbate. Physiological and supra-physiological concentrations of ascorbate enhance submaximal epinephrine and isoproterenol relaxation of trachealis, producing a 3–10-fold increase in sensitivity, preventing tachyphylaxis, and reversing fade. In vivo, ascorbate improves albuterol''s effect on heaves and produces a 10-fold enhancement of albuterol activity in “asthmatic” sheep.

Conclusions

Ascorbate enhances beta-adrenergic activity via a novel receptor-mediated mechanism; increases potency and duration of beta adrenergic agonists effective in asthma and COPD; prevents tachyphylaxis; and reverses fade. These novel effects are probably caused by a novel mechanism involving phosphorylation of aminergic receptors and have clinical and drug-development applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号