首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rajpal DK  Wu X  Wang Z 《Mutation research》2000,461(2):133-143
DNA damage can lead to mutations during replication. The damage-induced mutagenesis pathway is an important mechanism that fixes DNA lesions into mutations. DNA polymerase zeta (Pol zeta), formed by Rev3 and Rev7 protein complex, and Rev1 are components of the damage-induced mutagenesis pathway. Since mutagenesis is an important factor during the initiation and progression of human cancer, we postulate that this mutagenesis pathway may provide an inhibiting target for cancer prevention and therapy. In this study, we tested if UV-induced mutagenesis can be altered by molecular modulation of Rev3 enzyme levels using the yeast Saccharomyces cerevisiae as a eukaryotic model system. Reducing the REV3 expression in yeast cells through molecular techniques was employed to mimic Pol zeta inhibition. Lower levels of Pol zeta significantly decreased UV-induced mutation frequency, thus achieving inhibition of mutagenesis. In contrast, elevating the Pol zeta level by enhanced expression of both REV3 and REV7 genes led to a approximately 3-fold increase in UV-induced mutagenesis as determined by the arg4-17 mutation reversion assays. In vivo, UV lesion bypass by Pol zeta requires the Rev1 protein. Even overexpression of Pol zeta could not alleviate the defective UV mutagenesis in the rev1 mutant cells. These observations provide evidence that the mutagenesis pathway could be used as a target for inhibiting damage-induced mutations.  相似文献   

2.
Most mutations after DNA damage in yeast Saccharomyces cerevisiae are induced by error-prone translesion DNA synthesis employing scRev1 and DNA polymerase zeta that consists of scRev3 and scRev7 proteins. Recently, the human REV1 (hREV1) and REV3 (hREV3) genes were identified, and their products were revealed to be involved in UV-induced mutagenesis, as observed for their yeast counterparts. Human REV7 (hREV7) was also cloned, and its product was found to interact with hREV3, but the biological function of hREV7 remained unknown. We report here the analyses of precise interactions in the human REV proteins. The interaction between hREV1 and hREV7 was identified by the yeast two-hybrid library screening using a bait of hREV7, which was confirmed by in vitro and in vivo binding assays. The homodimerization of hREV7 was also detected in the two-hybrid analysis. In addition, the precise domains for interaction between hREV7 and hREV1 or hREV3 and for hREV7 homodimerization were determined. Although hREV7 interacts with both hREV1 and hREV3, a stable complex formation of the three proteins was undetectable in vitro. These findings suggest the possibility that hREV7 might play an important role in regulating the enzymatic activities of hREV1 and hREV3 for mutagenesis in response to DNA damage.  相似文献   

3.
D'Souza S  Waters LS  Walker GC 《DNA Repair》2008,7(9):1455-1470
The genes encoding Rev1 and DNA polymerase zeta (Rev3/Rev7) are together required for the vast majority of DNA damage-induced mutations in eukaryotes from yeast to humans. Here, we provide insight into the critical role that the Saccharomyces cerevisiae Rev1 C-terminus plays in the process of mutagenic DNA damage tolerance. The Rev1 C-terminus was previously thought to be poorly conserved and therefore not likely to be important for mediating protein-protein interactions. However, through comprehensive alignments of the Rev1 C-terminus, we have identified novel and hitherto unrecognized conserved motifs that we show play an essential role in REV1-dependent survival and mutagenesis in S. cerevisiae, likely in its post-replicative gap-filling mode. We further show that the minimal C-terminal fragment of Rev1 containing these highly conserved motifs is sufficient to interact with Rev7.  相似文献   

4.
The yeast REV3 gene encodes the catalytic subunit of DNA polymerase zeta (pol zeta), a B family polymerase that performs mutagenic DNA synthesis in cells. To probe pol zeta mutagenic functions, we generated six mutator alleles of REV3 with amino acid replacements for Leu979, a highly conserved residue inferred to be at the pol zeta active site. Replacing Leu979 with Gly, Val, Asn, Lys, Met or Phe resulted in yeast strains with elevated UV-induced mutant frequencies. While four of these strains had reduced survival following UV irradiation, the rev3-L979F and rev3-L979M strains had normal survival, suggesting retention of pol zeta catalytic activity. UV mutagenesis in the rev3-L979F background was increased when photoproduct bypass by pol eta was eliminated by deletion of RAD30. The rev3-L979F mutation had little to no effect on mutagenesis in an ogg1Delta background, which cannot repair 8-oxo-guanine in DNA. UV-induced can1 mutants from rev3-L979F and rad30Deltarev3-L979F strains primarily contained base substitutions and complex mutations, suggesting error-prone bypass of UV photoproducts by L979F pol zeta. Spontaneous mutation rates in rev3-L979F and rev3-L979M strains are elevated by about two-fold overall and by two- to eight-fold for C to G transversions and complex mutations, both of which are known to be generated by wild-type pol zetain vitro. These results indicate that Rev3p-Leu979 replacements reduce the fidelity of DNA synthesis by yeast pol zetain vivo. In conjunction with earlier studies, the data establish that the conserved amino acid at the active site location occupied by Leu979 is critical for the fidelity of all four yeast B family polymerases. Reduced fidelity with retention of robust polymerase activity suggests that the homologous rev3-L979F allele may be useful for analyzing pol zeta functions in mammals, where REV3 deletion is lethal.  相似文献   

5.
6.
W Lin  H Xin  Y Zhang  X Wu  F Yuan    Z Wang 《Nucleic acids research》1999,27(22):4468-4475
DNA is frequently damaged by various physical and chemical agents. DNA damage can lead to mutations during replication. In the yeast Saccharomyces cerevisiae, the damage-induced mutagenesis pathway requires the Rev1 protein. We have isolated a human cDNA homologous to the yeast REV1 gene. The human REV1 cDNA consists of 4255 bp and codes for a protein of 1251 amino acid residues with a calculated molecular weight of 138 248 Da. The human REV1 gene is localized between 2q11.1 and 2q11.2. We show that the human REV1 protein is a dCMP transferase that specifically inserts a dCMP residue opposite a DNA template G. In addition, the human REV1 transferase is able to efficiently and specifically insert a dCMP opposite a DNA template apurinic/apyrimidinic (AP) site or a uracil residue. These results suggest that the REV1 transferase may play a critical role during mutagenic translesion DNA synthesis bypassing a template AP site in human cells. Consistent with its role as a fundamental mutagenic protein, the REV1 gene is ubiquitously expressed in various human tissues.  相似文献   

7.
We have investigated the relative roles in vivo of Saccharomyces cerevisiae DNA polymerase eta, DNA polymerase zeta, Rev1 protein, and the DNA polymerase delta subunit, Pol32, in the bypass of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer, by transforming strains deleted for RAD30, REV3, REV1, or POL32 with duplex plasmids carrying one of these DNA lesions located within a 28-nucleotide single-stranded region. DNA polymerase eta was found to be involved only rarely in the bypass of the T-T (6-4) photoadduct or the abasic sites in the sequence context used, although, as expected, it was solely responsible for the bypass of the T-T dimer. We argue that DNA polymerase zeta, rather than DNA polymerase delta as previously suggested, is responsible for insertion in bypass events other than those in which polymerase eta performs this function. However, DNA polymerase delta is involved indirectly in mutagenesis, since the strain lacking its Pol32 subunit, known to be deficient in mutagenesis, shows as little bypass of the T-T (6-4) photoadduct or the abasic sites as those deficient in Pol zeta or Rev1. In contrast, bypass of the T-T dimer in the pol32delta strain occurs at the wild-type frequency.  相似文献   

8.
DNA polymerase zeta (pol zeta), which is required for DNA damage-induced mutagenesis, functions in the error-prone replication of a wide range of DNA lesions. During this process, pol zeta extends from nucleotides incorporated opposite template lesions by other polymerases. Unlike classical polymerases, pol zeta efficiently extends from primer-terminal base pairs containing mismatches or lesions, and it synthesizes DNA with moderate fidelity. Here we describe genetic and biochemical studies of three yeast pol zeta mutant proteins containing substitutions of highly conserved amino acid residues that contact the triphosphate moiety of the incoming nucleotide. The R1057A and K1086A proteins do not complement the rev3Delta mutation, and these proteins have significantly reduced polymerase activity relative to the wild-type protein. In contrast, the K1061A protein partially complements the rev3Delta mutation and has nearly normal polymerase activity. Interestingly, the K1061A protein has increased fidelity relative to wild-type pol zeta and is somewhat less efficient at extending from mismatched primer-terminal base pairs. These findings have important implications both for the evolutionary divergence of pol zeta from classical polymerases and for the mechanism by which this enzyme accommodates distortions in the DNA caused by mismatches and lesions.  相似文献   

9.
Widespread alteration of the genomic DNA is a hallmark of tumors, and alteration of genes involved in DNA maintenance have been shown to contribute to the tumorigenic process. The DNA polymerase zeta of Saccharomyces cerevisiae is required for error-prone repair following DNA damage and consists of a complex between three proteins, scRev1, scRev3, and scRev7. Here we describe a candidate human homolog of S. cerevisiae Rev7 (hREV7), which was identified in a yeast two-hybrid screen using the human homolog of S. cerevisiae Rev3 (hREV3). The hREV7 gene product displays 23% identity and 53% similarity with scREV7, as well as 23% identity and 54% similarity with the human mitotic checkpoint protein hMAD2. hREV7 is located on human chromosome 1p36 in a region of high loss of heterozygosity in human tumors, although no alterations of hREV3 or hREV7 were found in primary human tumors or human tumor cell lines. The interaction domain between hREV3 and hREV7 was determined and suggests that hREV7 probably functions with hREV3 in the human DNA polymerase zeta complex. In addition, we have identified an interaction between hREV7 and hMAD2 but not hMAD1. While overexpression of hREV7 does not lead to cell cycle arrest, we entertain the possibility that it may act as an adapter between DNA repair and the spindle assembly checkpoint.  相似文献   

10.
The REV3 gene encodes the catalytic subunit of DNA polymerase (pol) zeta, which can replicate past certain types of DNA lesions [1]. Saccharomyces cerevisiae rev3 mutants are viable and have lower rates of spontaneous and DNA-damage-induced mutagenesis [2]. Reduction in the level of Rev31, the presumed catalytic subunit of mammalian pol zeta, decreased damage-induced mutagenesis in human cell lines [3]. To study the function of mammalian Rev31, we inactivated the gene in mice. Two exons containing conserved DNA polymerase motifs were replaced by a cassette encoding G418 resistance and beta-galactosidase, under the control of the Rev3l promoter. Surprisingly, disruption of Rev3l caused mid-gestation embryonic lethality, with the frequency of Rev3l(-/-) embryos declining markedly between 9.5 and 12.5 days post coitum (dpc). Rev3l(-/-) embryos were smaller than their heterozygous littermates and showed retarded development. Tissues in many areas were disorganised, with significantly reduced cell density. Rev3l expression, traced by beta-galactosidase staining, was first detected during early somitogenesis and gradually expanded to other tissues of mesodermal origin, including extraembryonic membranes. Embryonic death coincided with the period of more widely distributed Rev3l expression. The data demonstrate an essential function for murine Rev31 and suggest that bypass of specific types of DNAlesions by pol zeta is essential for cell viability during embryonic development in mammals.  相似文献   

11.
DNA polymerase zeta (Pol zeta), a heterodimer of Rev3 and Rev7, is essential for DNA damage provoked mutagenesis in eukaryotes. DNA polymerases that function in a processive complex with the replication clamp proliferating cell nuclear antigen (PCNA) have been shown to possess a close match to the consensus PCNA-binding motif QxxLxxFF. This consensus motif is lacking in either subunit of Pol zeta, yet its activity is stimulated by PCNA. In particular, translesion synthesis of UV damage-containing DNA is dramatically stimulated by PCNA such that translesion synthesis rates are comparable with replication rates by Pol zeta on undamaged DNA. PCNA also stimulated translesion synthesis of a model abasic site by Pol zeta. Efficient PCNA stimulation required that PCNA was prevented from sliding off the damage-containing model oligonucleotide template-primer through the use of biotin-streptavidin bumpers or other blocks. Under those experimental conditions, facile bypass of the abasic site was also detected by DNA polymerase delta or eta (Rad30). The yeast DNA damage checkpoint clamp, consisting of Rad17, Mec3, and Ddc1, and an ortholog of human 9-1-1, has been implicated in damage-induced mutagenesis. However, this checkpoint clamp did not stimulate translesion synthesis by Pol zeta or by DNA polymerase delta.  相似文献   

12.
REV1 protein is a eukaryotic member of the Y family of DNA polymerases involved in the tolerance of DNA damage by replicative bypass. The precise role(s) of REV1 in this process is not known. Here we show, by using the yeast two-hybrid assay and the glutathione S-transferase pull-down assay, that mouse REV1 can physically interact with ubiquitin. The association of REV1 with ubiquitin requires the ubiquitin-binding motifs (UBMs) located at the C terminus of REV1. The UBMs also mediate the enhanced association between monoubiquitylated PCNA and REV1. In cells exposed to UV radiation, the association of REV1 with replication foci is dependent on functional UBMs. The UBMs of REV1 are shown to contribute to DNA damage tolerance and damage-induced mutagenesis in vivo.  相似文献   

13.
The REV3 gene of budding yeast encodes the catalytic subunit of DNA polymerase zeta that carries out translesion DNA synthesis. While REV3-null yeast mutants are viable and exhibit normal growth, Rev3-deficient mice die around midgestation of embryogenesis, which is accompanied by massive apoptosis of cells within the embryo proper. We have investigated whether REV3 is required for the survival of mouse cells and whether the embryonic lethality caused by REV3 deficiency can be rescued by introduction of a Rev3 transgene or by inactivation of p53, the cellular gatekeeper that regulates DNA damage-induced apoptosis. We show that Rev3(-/-) blastocysts were unable to survive and grow in culture but expression of a Rev3 transgene restored their outgrowth. Moreover, Rev3 transgene expression suppressed the apoptosis in E7.5 Rev3(-/-) embryos. The Rev3(-/-) embryonic lethality, however, was not rescued by either Rev3 transgene expression or p53 deficiency. These results reveal an essential role for REV3 in the survival and growth of mammalian cells and suggest that Rev3(-/-) embryonic death occurs in a p53-independent pathway.  相似文献   

14.
Pessoa-Brandão L  Sclafani RA 《Genetics》2004,167(4):1597-1610
CDC7 and DBF4 encode the essential Cdc7-Dbf4 protein kinase required for DNA replication in eukaryotes from yeast to human. Cdc7-Dbf4 is also required for DNA damage-induced mutagenesis, one of several postreplicational DNA damage tolerance mechanisms mediated by the RAD6 epistasis group. Several genes have been determined to function in separate branches within this group, including RAD5, REV3/REV7 (Pol zeta), RAD30 (Pol eta), and POL30 (PCNA). An extensive genetic analysis of the interactions between CDC7 and REV3, RAD30, RAD5, or POL30 in response to DNA damage was done to determine its role in the RAD6 pathway. CDC7, RAD5, POL30, and RAD30 were found to constitute four separate branches of the RAD6 epistasis group in response to UV and MMS exposure. CDC7 is also shown to function separately from REV3 in response to MMS. However, they belong in the same pathway in response to UV. We propose that the Cdc7-Dbf4 kinase associates with components of the translesion synthesis pathway and that this interaction is dependent upon the type of DNA damage. Finally, activation of the DNA damage checkpoint and the resulting cell cycle delay is intact in cdc7Delta mcm5-bob1 cells, suggesting a direct role for CDC7 in DNA repair/damage tolerance.  相似文献   

15.
16.
The Saccharomyces cerevisiae REV3/7-encoded polymerase zeta and Rev1 are central to the replicative bypass of DNA lesions, a process called translesion synthesis (TLS). While yeast polymerase zeta extends from distorted DNA structures, Rev1 predominantly incorporates C residues from across a template G and a variety of DNA lesions. Intriguingly, Rev1 catalytic activity does not appear to be required for TLS. Instead, yeast Rev1 is thought to participate in TLS by facilitating protein-protein interactions via an N-terminal BRCT motif. In addition, higher eukaryotic homologs of Rev1 possess a C terminus that interacts with other TLS polymerases. Due to a lack of sequence similarity, the yeast Rev1 C-terminal region, located after the polymerase domain, had initially been thought not to play a role in TLS. Here, we report that elevated levels of the yeast Rev1 C terminus confer a strong dominant-negative effect on viability and induced mutagenesis after DNA damage, highlighting the crucial role that the C terminus plays in DNA damage tolerance. We show that this phenotype requires REV7 and, using immunoprecipitations from crude extracts, demonstrate that, in addition to the polymerase-associated domain, the extreme Rev1 C terminus and the BRCT region of Rev1 mediate interactions with Rev7.  相似文献   

17.
DNA polymerase zeta (pol ζ) in higher eukaryotes   总被引:1,自引:0,他引:1  
Most current knowledge about DNA polymerase zeta (pol ζ) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where pol ζ consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Revl. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already apparent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genome instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair of interstrand DNA crosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent developments in these areas.  相似文献   

18.
We have cloned the REV3 gene of Saccharomyces cerevisiae by complementation of the rev3 defect in UV-induced mutagenesis. The nucleotide sequence of this gene encodes a predicted protein of Mr 172,956 showing significant sequence similarity to Epstein-Barr virus DNA polymerase and to other members of a class of DNA polymerases including human DNA polymerase alpha and yeast DNA polymerase I. REV3 protein shows less sequence identity, and presumably a more distant evolutionary relationship, to the latter two enzymes than they do to each other. Haploids carrying a complete deletion of REV3 are viable. We suggest that induced mutagenesis in S. cerevisiae depends on a specialized DNA polymerase that is not required for other replicative processes. REV3 is located 2.8 centimorgans from CDC60, on chromosome XVI.  相似文献   

19.
DNA polymerase zeta (Pol zeta) and Rev1p carry out translesion replication in budding yeast, Saccharomyces cerevisiae, and are jointly responsible for almost all base pair substitution and frameshift mutations induced by DNA damage in this organism. In addition, Pol zeta is responsible for the majority of spontaneous mutations in yeast and has been proposed as the enzyme responsible for somatic hypermutability. Pol zeta, a non-processive enzyme that lacks a 3' to 5' exonuclease proofreading activity, is composed of Rev3p, the catalytic subunit, and a second subunit encoded by REV7. In keeping with its role, extension by Pol zeta is relatively tolerant of abnormal DNA structure at the primer terminus and is much more capable of extension from terminal mismatches than yeast DNA polymerase alpha (Pol alpha). Rev1p is a bifunctional enzyme that possesses a deoxycytidyl transferase activity that incorporates deoxycytidyl opposite abasic sites in the template and a second, at present poorly defined, activity that is required for the bypass of a variety of lesions as well as abasic sites. Human homologues of the yeast REV1 and REV3 have been identified and, based on the phenotype of cells producing antisense RNA to one or other of these genes, their products appear also to be employed in translation replication and spontaneous mutagenesis. We suggest that Pol zeta is best regarded as a replication enzyme, albeit one that is used only intermittently, that promotes extension at forks the progress of which is blocked for any reason, whether the presence of an unedited terminal mismatch or unrepaired DNA lesion.  相似文献   

20.
Base excision repair is an important mechanism for correcting DNA damage produced by many physical and chemical agents. We have examined the effects of the REV3 gene and the DNA polymerase genes POL1, POL2, and POL3 of Saccharomyces cerevisiae on DNA repair synthesis is nuclear extracts. Deletional inactivation of REV3 did not affect repair synthesis in the base excision repair pathway. Repair synthesis in nuclear extracts of pol1, pol2, and pol3 temperature-sensitive mutants was normal at permissive temperatures. However, repair synthesis in pol2 nuclear extracts was defective at the restrictive temperature of 37 degrees C and could be complemented by the addition of purified yeast DNA polymerase epsilon. Repair synthesis in pol1 nuclear extracts was proficient at the restrictive temperature unless DNA polymerase alpha was inactivated prior to the initiation of DNA repair. Thermal inactivation of DNA polymerase delta in pol3 nuclear extracts enhanced DNA repair synthesis approximately 2-fold, an effect which could be specifically reversed by the addition of purified yeast DNA polymerase delta to the extract. These results demonstrate that DNA repair synthesis in the yeast base excision repair pathway is catalyzed by DNA polymerase epsilon but is apparently modulated by the presence of DNA polymerases alpha and delta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号