首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
3.
4.
NDRG4 is a novel member of the NDRG family (N-myc downstream-regulated gene). The roles of NDRG4 in development have not previously been evaluated. We show that, during zebrafish embryonic development, ndrg4 is expressed exclusively in the embryonic heart, the central nervous system (CNS) and the sensory system. Ndrg4 knockdown in zebrafish embryos causes a marked reduction in proliferative myocytes and results in hypoplastic hearts. This growth defect is associated with cardiac phenotypes in morphogenesis and function, including abnormal heart looping, inefficient circulation and weak contractility. We reveal that ndrg4 is required for restricting the expression of versican and bmp4 to the developing atrioventricular canal. This constellation of ndrg4 cardiac defects phenocopies those seen in mutant hearts of heartstrings (hst), the tbx5 loss-of-function mutants in zebrafish. We further show that ndrg4 expression is significantly decreased in hearts with reduced tbx5 activities. Conversely, increased expression of tbx5 that is due to tbx20 knockdown leads to an increase in ndrg4 expression. Together, our studies reveal an essential role of ndrg4 in regulating proliferation and growth of cardiomyocytes, suggesting that ndrg4 may function downstream of tbx5 during heart development and growth.  相似文献   

5.
6.
We identified a novel secreted protein, fibin, in zebrafish, mice and humans. We inhibited its function in zebrafish embryos by injecting antisense fibin morpholino oligonucleotides. A knockdown of fibin function in zebrafish resulted in no pectoral fin bud initiation and abolished the expression of tbx5, which is involved in the specification of pectoral fin identification. The lack of pectoral fins in fibin-knockdown embryos was partially rescued by injection of fibin RNA. fibin was expressed in the lateral plate mesoderm of the presumptive pectoral fin bud regions. Its expression region was adjacent to that of tbx5. fibin expression temporally preceded tbx5 expression in presumptive pectoral fin bud regions, and not abolished in tbx5-knockdown presumptive fin bud regions. In contrast, fibin expression was abolished in retinoic acid signaling-inhibited or wnt2b-knockdown presumptive fin bud regions. These results indicate that fibin is a secreted signal essential for pectoral fin bud initiation in that it potentially acts downstream of retinoic acid and wnt signaling and is essential for tbx5 expression. The present findings have revealed a novel secreted lateral plate mesoderm signal essential for fin initiation in the lateral plate mesoderm.  相似文献   

7.

Background  

The tbx5 mutation in human causes Holt-Oram syndrome, an autosomal dominant condition characterized by a familial history of congenital heart defects and preaxial radial upper-limb defects. We report aberrant apoptosis and dormant cell growth over head, heart, trunk, fin, and tail of zebrafish embryos with tbx5 deficiency correspond to the dysmorphogenesis of tbx5 morphants.  相似文献   

8.
9.

Background

Tbx5 deficiency in zebrafish causes several abnormal phenotypes of the heart and pectoral fins. It has been reported that exogenous human growth hormone can enhance expression of downstream mediators in the growth hormone and insulin-like growth factor I (IGF-I) pathway and partially restore dysmorphogenesis in tbx5 morphants. This study aimed to further evaluate the effects of IGF-I on cell apoptosis and dysmorphogenesis in zebrafish embryos deficient for tbx5.

Results

Among the five studied groups of zebrafish embryos (wild-type embryos [WT], tbx5 morphants [MO], mismatched tbx5 morpholino-treated wild-type embryos [MIS], IGF-I-treated wild-type embryos [WTIGF1], and IGF-I-treated tbx5 morphants [MOIGF1]), the expression levels of the ifg1, igf1-ra, ifg-rb, erk1, and akt2 genes as well as the ERK and AKT proteins were significantly reduced in the MO group, but were partially restored in the MOIGF1 group. These expression levels remained normal in the WT, MIS, and WTIGF1 groups. Exogenous human IGF-I also reduced the incidence of phenotypic anomalies, decreased the expression levels of apoptotic genes and proteins, suppressed cell apoptosis, and improved survival of the MOIGF1 group.

Conclusions

These results suggest that IGF-I has an anti-apoptotic protective effect in zebrafish embryos with tbx5 deficiency.
  相似文献   

10.
11.
The initial step of atrioventricular (AV) valve development involves the deposition of extracellular matrix (ECM) components of the endocardial cushion and the endocardialmesenchymal transition. While the appropriately regulated expression of the major ECM components, Versican and Hyaluronan, that form the endocardial cushion is important for heart valve development, the underlying mechanism that regulates ECM gene expression remains unclear. We found that zebrafish crip2 expression is restricted to a subset of cells in the AV canal (AVC) endocardium at 55 hours post-fertilization (hpf). Knockdown of crip2 induced a heart-looping defect in zebrafish embryos, although the development of cardiac chambers appeared to be normal. In the AVC of Crip2-deficient embryos, the expression of both versican a and hyaluronan synthase 2 (has2) was highly upregulated, but the expression of bone morphogenetic protein 4 (bmp4) and T-box 2b (tbx2b) in the myocardium and of notch1b in the endocardium in the AVC did not change. Taken together, these results indicate that crip2 plays an important role in AV valve development by downregulating the expression of ECM components in the endocardial cushion.  相似文献   

12.
The Tbx20 orthologue, mab-9, is required for development of the Caenorhabditis elegans hindgut, whereas several vertebrate Tbx20 genes promote heart development. Here we show that Tbx20 orthologues also have a role in motor neuron development that is conserved between invertebrates and vertebrates. mab-9 mutants exhibit guidance defects in dorsally projecting axons from motor neurons located in the ventral nerve cord. Danio rerio (Zebrafish) tbx20 morphants show defects in the migration patterns of motor neuron soma of the facial and trigeminal motor neuron groups. Human TBX20 is expressed in motor neurons in the developing hindbrain of human embryos and we show that human TBX20 can substitute for zebrafish tbx20 in promoting cranial motor neuron migration. mab-9 is also partially able to rescue the zebrafish migration defect, whereas other vertebrate T-box genes cannot. Conversely we show that the human TBX20 T-box domain can rescue motor neuron defects in C. elegans. These data suggest the functional equivalence of Tbx20 orthologues in regulating the development of specific motor neuron groups. We also demonstrate the functional equivalence of human and C. elegans Tbx20 T-box domains for regulating male tail development in the nematode even though these genes play highly diverged roles in organogenesis.  相似文献   

13.
Zebrafish tbx5 expresses in the heart, pectoral fins and eyes of zebrafish during embryonic development. In zebrafish, injection of tbx5 morpholino antisense RNA caused changes of heart conformation, defect of heart looping, pericardium effusion, dropsy of ventral position and decreased heart rate. We suggested that cardiac myogenesis genes might be responsible for this phenomenon. Morpholino antisense RNA which against the initiation site of tbx5 gene was designed in order to knockdown the expression of tbx5, and the results were analyzed by whole-mount in situ hybridization and quantitative real-time PCR. Expression of cardiac myogenesis genes amhc, vmhc and cmlc2 were expressed constantly at the early embryonic development and reached its highest rate right before cardiac looping initiated. These cardiac myogenesis genes showed insufficient expressions within different heart defect embryos. Moreover, vmhc showed ectopic expression in addition to heart looping defect in heart defective embryos at 36 hpf. Our data suggests that the heart failure caused by the knockdown of tbx5 gene might result from the down-regulation of cardiac myogenesis genes. Jen Her Lu and Jenn Kan Lu contributed equally to this work.  相似文献   

14.
15.
16.
17.
DiGeorge syndrome (DGS) is the most common microdeletion syndrome, and is characterized by congenital cardiac, craniofacial and immune system abnormalities. The cardiac defects in DGS patients include conotruncal and ventricular septal defects. Although the etiology of DGS is critically regulated by TBX1 gene, the molecular pathways underpinning TBX1''s role in heart development are not fully understood. In this study, we characterized heart defects and downstream signaling in the zebrafish tbx1−/− mutant, which has craniofacial and immune defects similar to DGS patients. We show that tbx1−/− mutants have defective heart looping, morphology and function. Defective heart looping is accompanied by failure of cardiomyocytes to differentiate normally and failure to change shape from isotropic to anisotropic morphology in the outer curvatures of the heart. This is the first demonstration of tbx1''s role in regulating heart looping, cardiomyocyte shape and differentiation, and may explain how Tbx1 regulates conotruncal development in humans. Next we elucidated tbx1''s molecular signaling pathway guided by the cardiac phenotype of tbx1−/− mutants. We show for the first time that wnt11r (wnt11 related), a member of the non-canonical Wnt pathway, and its downstream effector gene alcama (activated leukocyte cell adhesion molecule a) regulate heart looping and differentiation similarly to tbx1. Expression of both wnt11r and alcama are downregulated in tbx1−/− mutants. In addition, both wnt11r −/− mutants and alcama morphants have heart looping and differentiation defects similar to tbx1−/− mutants. Strikingly, heart looping and differentiation in tbx1−/− mutants can be partially rescued by ectopic expression of wnt11r or alcama, supporting a model whereby heart looping and differentiation are regulated by tbx1 in a linear pathway through wnt11r and alcama. This is the first study linking tbx1 and non-canonical Wnt signaling and extends our understanding of DGS and heart development.  相似文献   

18.
19.
20.
Time-lapse imaging is a technique that allows for the direct observation of the process of morphogenesis, or the generation of shape. Due to their optical clarity and amenability to genetic manipulation, the zebrafish embryo has become a popular model organism with which to perform time-lapse analysis of morphogenesis in living embryos. Confocal imaging of a live zebrafish embryo requires that a tissue of interest is persistently labeled with a fluorescent marker, such as a transgene or injected dye. The process demands that the embryo is anesthetized and held in place in such a way that healthy development proceeds normally. Parameters for imaging must be set to account for three-dimensional growth and to balance the demands of resolving individual cells while getting quick snapshots of development. Our results demonstrate the ability to perform long-term in vivo imaging of fluorescence-labeled zebrafish embryos and to detect varied tissue behaviors in the cranial neural crest that cause craniofacial abnormalities. Developmental delays caused by anesthesia and mounting are minimal, and embryos are unharmed by the process. Time-lapse imaged embryos can be returned to liquid medium and subsequently imaged or fixed at later points in development. With an increasing abundance of transgenic zebrafish lines and well-characterized fate mapping and transplantation techniques, imaging any desired tissue is possible. As such, time-lapse in vivo imaging combines powerfully with zebrafish genetic methods, including analyses of mutant and microinjected embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号