首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Endocardial to mesenchymal transformation (EMT) is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC) endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1) show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.  相似文献   

2.
Accumulated evidence has suggested that BMP pathways play critical roles during mammalian cardiogenesis and impairment of BMP signaling may contribute to human congenital heart diseases (CHDs), which are the leading cause of infant morbidity and mortality. Alk3 encodes a BMP specific type I receptor expressed in mouse embryonic hearts. To reveal functions of Alk3 during atrioventricular (AV) cushion morphogenesis and to overcome the early lethality of Alk3(-/-) embryos, we applied a Cre/loxp approach to specifically inactivate Alk3 in the endothelium/endocardium. Our studies showed that endocardial depletion of Alk3 severely impairs epithelium-mesenchymal-transformation (EMT) in the atrioventricular canal (AVC) region; the number of mesenchymal cells formed in Tie1-Cre;Alk3(loxp/loxp) embryos was reduced to only approximately 20% of the normal level from both in vivo section studies and in vitro explant assays. We showed, for the first time, that in addition to its functions on mesenchyme formation, Alk3 is also required for the normal growth/survival of AV cushion mesenchymal cells. Functions of Alk3 are accomplished through regulating expression/activation/subcellular localization of multiple downstream genes including Smads and cell-cycle regulators. Taken together, our study supports the notion that Alk3-mediated BMP signaling in AV endocardial/mesenchymal cells plays a central role during cushion morphogenesis.  相似文献   

3.
4.
Heart valve malformations are one of the most common types of birth defects, illustrating the complex nature of valve development. Vascular endothelial growth factor (VEGF) signaling is one pathway implicated in valve formation, however its specific spatial and temporal roles remain poorly defined. To decipher these contributions, we use two inducible dominant negative approaches in mice to disrupt VEGF signaling at different stages of embryogenesis. At an early step in valve development, VEGF signals are required for the full transformation of endocardial cells to mesenchymal cells (EMT) at the outflow tract (OFT) but not atrioventricular canal (AVC) endocardial cushions. This role likely involves signaling mediated by VEGF receptor 1 (VEGFR1), which is highly expressed in early cushion endocardium before becoming downregulated after EMT. In contrast, VEGFR2 does not exhibit robust cushion endocardium expression until after EMT is complete. At this point, VEGF signaling acts through VEGFR2 to direct the morphogenesis of the AVC cushions into mature, elongated valve leaflets. This latter role of VEGF requires the VEGF-modulating microRNA, miR-126. Thus, VEGF roles in the developing valves are dynamic, transitioning from a differentiation role directed by VEGFR1 in the OFT to a morphogenetic role through VEGFR2 primarily in the AVC-derived valves.  相似文献   

5.
Previous studies have identified two zebrafish mutants, cloche and groom of cloche, which lack the majority of the endothelial lineage at early developmental stages. However, at later stages, these avascular mutant embryos generate rudimentary vessels, indicating that they retain the ability to generate endothelial cells despite this initial lack of endothelial progenitors. To further investigate molecular mechanisms that allow the emergence of the endothelial lineage in these avascular mutant embryos, we analyzed the gene expression profile using microarray analysis on isolated endothelial cells. We find that the expression of the genes characteristic of the mesodermal lineages are substantially elevated in the kdrl + cells isolated from avascular mutant embryos. Subsequent validation and analyses of the microarray data identifies Sox11b, a zebrafish ortholog of SRY-related HMG box 11 (SOX11), which have not previously implicated in vascular development. We further define the function sox11b during vascular development, and find that Sox11b function is essential for developmental angiogenesis in zebrafish embryos, specifically regulating sprouting angiogenesis. Taken together, our analyses illustrate a complex regulation of endothelial specification and differentiation during vertebrate development.  相似文献   

6.
Thymosin beta4 (TB4) has multiple functions in cellular response in processes as diverse as embryonic organ development and the pathogeneses of disease, especially those associated with cardiac coronary vessels. However, the specific roles played by TB4 during heart valve development in vertebrates are largely unknown. Here, we identified a novel function of TB4 in endothelialmesenchymal transformation (EMT) in cardiac valve endocardial cushions in zebrafish. The expressions of thymosin family members in developing zebrafish embryos were determined by whole mount in situ hybridization. Of the thymosin family members only zTB4 was expressed in the developing heart region. Cardiac valve development at 48 h post fertilization was defected in zebrafish TB4 (zTB4) morpholino-injected embryos (morphants). In zTB4 morphants, abnormal linear heart tube development was observed. The expressions of bone morphogenetic protein (BMP) 4, notch1b, and hyaluronic acid synthase (HAS) 2 genes were also markedly reduced in atrio-ventricular canal (AVC). Endocardial cells in the AVC region were stained with anti-Zn5 antibody reactive against Dm-grasp (an EMT marker) to observe EMT in developing cardiac valves in zTB4 morphants. EMT marker expression in valve endothelial cells was confirmed after transfection with TB4 siRNA in the presence of transforming growth factor β (TGFβ) by RT-PCR and immunofluorescent assay. Zn5-positive endocardial AVC cells were not observed in zTB4 morphants, and knockdown of TB4 suppressed TGF-β-induced EMT in ovine valve endothelial cells. Taken together, our results demonstrate that TB4 plays a pivotal role in cardiac valve formation by increasing EMT.  相似文献   

7.
8.
Wnt signaling mediated by β-catenin has been implicated in early endocardial cushion development, but its roles in later stages of heart valve maturation and homeostasis have not been identified. Multiple Wnt ligands and pathway genes are differentially expressed during heart valve development. At E12.5, Wnt2 is expressed in cushion mesenchyme, whereas Wnt4 and Wnt9b are predominant in overlying endothelial cells. At E17.5, both Wnt3a and Wnt7b are expressed in the remodeling atrioventricular (AV) and semilunar valves. In addition, the TOPGAL Wnt reporter transgene is active throughout the developing AV and semilunar valves at E16.5, with more localized expression in the stratified valve leaflets after birth. In chicken embryo aortic valves, genes characteristic of osteogenic cell lineages including periostin, osteonectin, and Id2 are expressed specifically in the collagen-rich fibrosa layer at E14. Treatment of E14 aortic valve interstitial cells (VICs) in culture with osteogenic media results in increased expression of multiple genes associated with bone formation. Treatment of VIC with Wnt3a leads to nuclear localization of β-catenin and induction of periostin and matrix gla protein but does not induce genes associated with later stages of osteogenesis. Together, these studies provide evidence for Wnt signaling as a regulator of endocardial cushion maturation as well as valve leaflet stratification, homeostasis, and pathogenesis.  相似文献   

9.
Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV) valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM) components, versican and hyaluronan (HA), and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH) stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC) aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.  相似文献   

10.
Summary : Heart valve development begins with the endothelial‐to‐mesenchymal transition (EMT) of endocardial cells. Although lineage studies have demonstrated contributions from cardiac neural crest and epicardium to semilunar and atrioventricular (AV) valve formation, respectively, most valve mesenchyme derives from the endocardial EMT. Specific Cre mouse lines for fate‐mapping analyses of valve endocardial cells are limited. Msx1 displayed expression in AV canal endocardium and cushion mesenchyme between E9.5 and E11.5, when EMT is underway. Additionally, previous studies have demonstrated that deletion of Msx1 and its paralog Msx2 results in hypoplastic AV cushions and impaired endocardial signaling. A knock‐in tamoxifen‐inducible Cre line was recently generated (Msx1CreERT2) and characterized during embryonic development and after birth, and was shown to recapitulate the endogenous Msx1 expression pattern. Here, we further analyze this knock‐in allele and track the Msx1‐expressing cells and their descendants during cardiac development with a particular focus on their contribution to the valves and their precursors. Thus, Msx1CreERT2 mice represent a useful model for lineage tracing and conditional gene manipulation of endocardial and mesenchymal cushion cells essential to understand mechanisms of valve development and remodeling. genesis 53:337–345, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
The glomerular filtration barrier is necessary for the selective passage of low molecular weight waste products and the retention of blood plasma proteins. Damage to the filter results in proteinuria. The filtration barrier is the major pathogenic site in almost all glomerular diseases and its study is therefore of clinical significance. We have taken advantage of the zebrafish pronephros as a system for studying glomerular filtration. In order to identify new regulators of filtration barrier assembly, we have performed a reverse genetic screen in the zebrafish testing a group of genes which are enriched in their expression within the mammalian glomerulus. In this novel screen, we have coupled gene knockdown using morpholinos with a physiological glomerular dye filtration assay to test for selective glomerular permeability in living zebrafish larvae. Screening 20 genes resulted in the identification of ralgps1, rapgef2, rabgef1, and crb2b. The crumbs (crb) genes encode a family of evolutionarily conserved proteins important for apical-basal polarity within epithelia. The crb2b gene is expressed in zebrafish podocytes. Electron microscopic analysis of crb2b morphants reveals a gross disorganization of podocyte foot process architecture and loss of slit diaphragms while overall polarity is maintained. Nephrin, a major component of the slit diaphragm, is apically mis-localized in podocytes from crb2b morphants suggesting that crb2b is required for the proper protein trafficking of Nephrin. This report is the first to show a role for crb function in podocyte differentiation. Furthermore, these results suggest a novel link between epithelial polarization and the maintenance of a functional filtration barrier.  相似文献   

12.
The goldfish (Carassius auratus) Tgf2 transposon is a vertebrate DNA transposon that belongs to the hAT transposon family. In this study, we constructed plasmids containing either the full-length Tgf2 transposon (pTgf2 plasmid) or a partially-deleted Tgf2 transposon (ΔpTgf2 plasmid), and microinjected these plasmids into fertilized zebrafish (Danio rerio) eggs at the one- to two-cell stage. DNA extracted from the embryos was analyzed by PCR to assess transient excision, if any, of the exogenous plasmid and to verify whether Tgf2 is an autonomous transposon. The results showed that excision-specific bands were not detected in embryos injected with the ΔpTgf2 plasmid, while bands of 300–500 bp were detected in embryos injected with pTgf2, which indicated that the full-length Tgf2-containing plasmid could undergo autonomous excision in zebrafish embryos. DNA cloned from 24 embryos injected with pTgf2 was sequenced, and the results suggested that Tgf2 underwent self-excision in zebrafish embryos. Cloning and PCR analysis of DNA extracted from embryos co-injected with ΔpTgf2 and in vitro-transcribed transposase mRNA indicated that partially-deleted-Tgf2-containing ΔpTgf2 plasmid also underwent excision, in the presence of functional transposase mRNA. DNA cloned from 25 embryos co-injected with ΔpTgf2 and transposase mRNA was sequenced, and the results suggested that partially-deleted Tgf2 transposons plasmids were excised. These results demonstrated that excisions of Tgf2 transposons were mediated by the Tgf2 transposase, which in turn confirmed that Tgf2 is an autonomous transposon.  相似文献   

13.
The atrioventricular canal (AVC) physically separates the atrial and ventricular chambers of the heart and plays a crucial role in the development of the valves and septa. Defects in AVC development result in aberrant heart morphogenesis and are a significant cause of congenital heart malformations. We have used a forward genetic screen in zebrafish to identify novel regulators of cardiac morphogenesis. We isolated a mutant, named wickham (wkm), that was indistinguishable from siblings at the linear heart tube stage but exhibited a specific loss of cardiac looping at later developmental stages. Positional cloning revealed that the wkm locus encodes transmembrane protein 2 (Tmem2), a single-pass transmembrane protein of previously unknown function. Expression analysis demonstrated myocardial and endocardial expression of tmem2 in zebrafish and conserved expression in the endocardium of mouse embryos. Detailed phenotypic analysis of the wkm mutant identified an expansion of expression of known myocardial and endocardial AVC markers, including bmp4 and has2. By contrast, a reduction in the expression of spp1, a marker of the maturing valvular primordia, was observed, suggesting that an expansion of immature AVC is detrimental to later valve maturation. Finally, we show that immature AVC expansion in wkm mutants is rescued by depleting Bmp4, indicating that Tmem2 restricts bmp4 expression to delimit the AVC primordium during cardiac development.  相似文献   

14.
15.
Although Amiodarone, a class III antiarrhythmic drug, inhibits zebrafish cardiac valve formation, the detailed molecular pathway is still unclear. Here, we proved that Amiodarone acts as an upstream regulator, stimulating similar to versican b (s-vcanb) overexpression at zebrafish embryonic heart and promoting cdh-5 overexpression by inhibiting snail1b at atrioventricular canal (AVC), thus blocking invagination of endocardial cells and, as a result, preventing the formation of cardiac valves. A closer investigation showed that an intricate set of signaling events ultimately caused the up-regulation of cdh5. In particular, we investigated the role of EGFR signaling and the activity of Gsk3b. It was found that knockdown of EGFR signaling resulted in phenotypes similar to those of Amiodarone-treated embryos. Since the reduced phosphorylation of EGFR was rescued by knockdown of s-vcanb, it was concluded that the inhibition of EGFR activity by Amiodarone is s-vcanb-dependent. Moreover, the activity of Gsk3b, a downstream effector of EGFR, was greatly increased in both Amiodarone-treated embryos and EGFR-inhibited embryos. Therefore, it was concluded that reduced EGFR signaling induced by Amiodarone treatment results in the inhibition of Snail functions through increased Gsk3b activity, which, in turn, reduces snail1b expression, leading to the up-regulation the cdh5 at the AVC, finally resulting in defective formation of valves. This signaling cascade implicates the EGFR/Gsk3b/Snail axis as the molecular basis for the inhibition of cardiac valve formation by Amiodarone.  相似文献   

16.
17.
During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells.  相似文献   

18.
19.
Congenital diseases caused by abnormal development of the cranial neural crest usually present craniofacial malformations and heart defects while the precise mechanism is not fully understood. Here, we show that the zebrafish eif3ba mutant caused by pseudo-typed retrovirus insertion exhibited a similar phenotype due to the hypogenesis of cranial neural crest cells (NCCs). The derivatives of cranial NCCs, including the NCC-derived cell population of pharyngeal arches, craniofacial cartilage, pigment cells and the myocardium derived from cardiac NCCs, were affected in this mutant. The expression of several neural crest marker genes, including crestin, dlx2a and nrp2b, was specifically reduced in the cranial regions of the eif3ba mutant. Through fluorescence-tracing of the cranial NCC migration marker nrp2b, we observed reduced intensity of NCC-derived cells in the heart. In addition, p53 was markedly up-regulated in the eif3ba mutant embryos, which correlated with pronounced apoptosis in the cranial area as shown by TUNEL staining. These findings suggest a novel function of eif3ba during embryonic development and a novel level of regulation in the process of cranial NCC development, in addition to providing a potential animal model to mimic congenital diseases due to cranial NCC defects. Furthermore, we report the identification of a novel transgenic fish line Et(gata2a:EGFP)pku418 to trace the migration of cranial NCCs (including cardiac NCCs); this may serve as an invaluable tool for investigating the development and dynamics of cranial NCCs during zebrafish embryogenesis.  相似文献   

20.
LIM domain-containing proteins mediate protein–protein interactions and play regulatory roles in various physiopathological processes. The mRNA of Crip2, a LIM-only gene, has been detected abundantly in developing and adult hearts but its cell-type specific expression profile has not been well characterized. In this study, we showed that Crip2 is highly expressed in the myocardium, moderately expressed in the endocardium and absent from the epicardium of the developing mouse heart. Interestingly, Crip2 expression is present in the endocardial cells that line both endocardial cushions, whereas it is markedly reduced in the cushion mesenchymes during valve leaflet formation. In the developing vascular system, Crip2 is detected in the endothelial cells of both blood and lymphatic vessels. Consistent with the expression pattern observed in embryos, Crip2 is also highly expressed in the myocardium, endocardium and coronary vascular endothelial cells of the adult heart. In the cardiomyocytes, Crip2 is colocalized with cardiac troponin T in the thin-filaments of sarcomeres. Nonetheless, experimental studies revealed that the expression level of Crip2 is not altered in the isoproterenol (ISO) induced hypertrophic heart. Moreover, Crip2 is detected in endothelial cells of the neovasculature during wound healing and tumor growth. The persistence of Crip2 expression in cardiovascular tissues implies that Crip2 might exert an important impact on the cardiovascular development, maintenance and homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号