首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Transforming growth factor-beta 1 (TGF-beta 1) stimulated DNA synthesis (3-fold) in BALBc/3T3 fibroblasts following 24 hours of growth factor exposure. Since ribonucleotide reductase is important for the coordination of DNA synthesis and cell proliferation, we investigated the hypothesis that cells like BALB/c 3T3, which are TGF-beta 1 responsive, would exhibit modifications in expression of the gene for ribonucleotide reductase following growth factor treatment. We observed 2.6, 4.1, and 4.8-fold increases in ribonucleotide reductase activity following TGF-beta 1 exposure for 6, 12, and 24 hours, respectively. Increased ribonucleotide reductase R2 gene expression (3, 3.7, and 4.5-fold) and R1 gene expression (2,2.5, and 2.6-fold) were observed following 6, 12, and 24 hours of TGF-beta 1 treatment, respectively. Western blots indicated 2.2, 3.1, and 4.1-fold increases in protein R2 levels at 6, 12, and 24 hours exposure to TGF-beta 1, whereas 2.6 and 3.3-fold elevations in R1 protein levels were observed at 12 and 24 hours post-TGF-beta 1 exposure. These TGF-beta 1 mediated modifications in ribonucleotide reductase gene expression occurred, in part, prior to any detectable changes in the rate of DNA synthesis, demonstrating alterations in the normal regulation of ribonucleotide reductase. Furthermore, these alterations could be markedly reduced by prolonged pretreatment with 12-O-tetradecanoylphorbol-13-acetate (R2 gene expression increased by only 1.3, 1.5 and 2.3-fold after 6, 12, and 24 hours of TGF-beta 1 treatment, respectively), suggesting a role for a protein kinase C pathway in the TGF-beta 1 regulated changes in ribonucleotide reductase gene expression. These results indicate for the first time that TGF-beta 1 can regulate the expression of the two genes for ribonucleotide reductase in BALB/c 3T3 fibroblasts, and suggest that regulation of these genes plays an important role in critical events involved in growth factor modulation of normal and transformed cell proliferation.  相似文献   

2.
ATP:AMP phosphotransferase from baker''s yeast. Purification and properties   总被引:2,自引:0,他引:2  
Synchronous cells of the green alga, Scenedesmus obliquus, cultured in a 14-h/10-h light/dark regime, contain a peak of ribonucleoside-diphosphate reductase activity and maximum deoxyribonucleoside 5'-triphosphate concentrations at the 12th hour of the cell cycle, coinciding with DNA synthesis and preceding the formation of eight daughter cells. The intracellular dTTP pool reaches 4.5 pmol and the other pools 2-3 pmol/10(6) cells. Algal reductase activity is sensitive to cycloheximide, but not to lincomycin. These correlations demonstrate the functioning of the NDP leads to dNDP leads to dNTP pathway of DNA precursor biosynthesis in plant cells. In the presence of 20 micrograms 5-fluorodeoxyuridine/ml, an inhibitor of thymidylate synthesis, the dTTP pool is rapidly depleted and DNA synthesis ceases. 5-Fluorouracil and methotrexate produce similar effects. At the same time the ribonucleotide reductase activity and also the dATP pool are greatly increased, especially when fluorodeoxyuridine treatment is combined with continued illumination of the algae. In contrast, arabinosylcytosine, an inhibitor of DNA replication, has no effect on ribonucleotide reduction. The control of de novo enzyme synthesis in the eucaryotic algae therefore appears to depend on the presence of dTTP (or a related nucleotide), but not directly coupled to DNA synthesis. This interdependence resembles the situation observed in HeLa cells, while it may differ in detail from control mechanisms of ribonucleotide reductase studied in bacteria.  相似文献   

3.
Ribonucleoside diphosphate reductase (EC1.17.4.1) was previously characterized in exponentially growing mouse L cells selectively permeabilized to small molecules by treatment with dextran sulfate (Kucera and Paulus, 1982b). This characterization has now been extended to cells in specific phases of the cell cycle and in transition between cell cycle phases, with activity studied both in situ (permeabilized cells) and in cell extracts. Cells at various stages in the cell cycle were obtained by unit-gravity sedimentation employing a commercially available reorienting chamber device, by G1 arrest induced by isoleucine limitation, and by metaphase arrest induced by Colcemid. G1 cells from both cycling and noncycling populations had negligible levels of ribonucleotide reductase activity as measured by CDP reduction both in situ and in extracts. When G1 arrested cells were allowed to progress to S phase, ribonucleotide reductase activity increased in parallel with [3H]thymidine incorporation into DNA. Ribonucleotide reductase activity in extracts increased at a somewhat greater rate than in situ activity. S phase ribonucleotide reductase activity measured in situ resembled the previously characterized activity in exponentially growing cells with respect to an absolute dependence on ATP or its analogs as positive allosteric effector, sensitivity to the negative allosteric effector dATP, and low susceptibility to stimulation by NADPH, dithiothreitol, and FeCl3. Disruption of permeabilized cells caused reductase activity to become highly dependent on the presence of both dithiothreitol and FeCl3. As synchronized cultures progressed from S into G2/M phase, no significant change in ribonucleotide reductase activity was seen. On the other hand, when cells that had been arrested in metaphase by Colcemid were allowed to resume cell cycle traversal by removing the drug, in situ ribonucleotide reductase activity decreased by 75% within 2.5 h. This decrease seemed to be a late mitotic event, since it was not correlated with the percentage of cells entering G1 phase. The cause of a subsequent slight increase of in situ ribonucleotide reductase activity is not clear. Parallel measurements of ribonucleotide reductase activity in cell extracts indicated also an initial decline accompanied by increasing dependence on added dithiols and FeCl3, followed by complete activity loss. Our results suggest a cell cycle pattern of ribonucleotide reductase activity that involves negligible levels in G1 phase, a progressive increase of activity upon entry into S phase paralleling overall DNA synthesis, continued retention of significant ribonucleotide reductase activity well into the metaphase period of mitosis, and a very rapid decline in activity during the later phases of mitosis. The periods of increase and decrease of ribonucleotide reductase activity were accompanied by modulation of the properties of the enzyme as indicated by differential changes in enzyme activity measured in situ and in extracts.  相似文献   

4.
The murine adenocarcinoma cell line TA 3 synthesized nitrite from L-arginine upon stimulation with gamma-interferon (IFN-gamma) associated with tumor necrosis factor (TNF), and/or bacterial lipopolysaccharide (LPS), but not with IFN-gamma, TNF, or LPS added separately. Induction of the NO2(-)-generating activity caused an inhibition of DNA synthesis in TA 3 cells. This inhibition was prevented by the L-arginine analog N omega-nitro-L-arginine, which inhibited under the same conditions nitrite production by TA 3 cells. The TA 3 M2 subclone, selected for enhanced ribonucleotide reductase activity, was found to be less sensitive than the wild phenotype TA 3 WT to the cytostatic activity mediated by the NO2(-)-generating system. Cytosolic preparations from TA 3 M2 cells treated for 24 or 48 h with IFN-gamma, TNF, and LPS exhibited a reduced ribonucleotide reductase activity, compared to untreated control cells. No reduction in ribonucleotide reductase activity was observed when N omega-nitro-L-arginine was added to treated cells. Addition of L-arginine, NADPH, and tetrahydrobiopterin into cytosolic extracts from 24-h treated TA 3 M2 cells triggered the synthesis of metabolic products from the NO2(-)-generating pathway. This resulted in a dramatic inhibition of the residual ribonucleotide reductase activity present in the extracts. The inhibition was reversed by NG-monomethyl-L-arginine, another specific inhibitor of the NO2(-)-generating activity. No L-arginine-dependent inhibition of ribonucleotide reductase activity was observed using extracts from untreated cells that did not express NO2(-)-generating activity. These results demonstrate that, in an acellular preparation, molecules derived from the NO2(-)-generating pathway exert an inhibitory effect on the ribonucleotide reductase enzyme. This negative action might explain the inhibition of DNA synthesis induced in adenocarcinoma cells by the NO2(-)-generating pathway.  相似文献   

5.
6.
7.
We investigated the effects of the iron chelator desferrioxamine on the expression of transferrin receptors (TfR) by CCRF-CEM human T-cell leukaemia and B16 mouse melanoma cells growing in tissue culture. Desferrioxamine (DFOA) enhanced TfR expression when added in the dose range of 10(-5)-10(-4) to CCRF-CEM cells, but was toxic to these cells, the lower concentrations producing a slowing of cell growth with a build up in S-phase, while higher concentrations caused cell death with a block at the G1/S-phase interface. These toxic effects are compatible with its previously reported inhibition of the non-haem iron containing (M2) subunit of ribonucleotide reductase. In marked contrast, DFOA caused the growth of B16 melanoma cells to arrest in G1, without loss of cloning efficiency, and resulted in a fall in TfR expression to approximately 50% of control values. These results suggested that the effects of DFOA on TfR expression were linked to DNA synthesis rather than to a more generalised inhibition of iron-dependent cellular processes. It was subsequently found that inhibition of the M2 subunit of ribonucleotide reductase in CCRF-CEM cells with 5 X 10(-5) M hydroxyurea, which is not an iron chelator, also enhanced TfR expression, as did thymidine and cytosine arabinoside, which have different enzyme targets. By measuring cellular DNA and RNA content simultaneously it was shown that all of these agents caused unbalanced growth, i.e., inhibited DNA synthesis more than RNA synthesis. In contrast, 6-thioguanine was more inhibitory to RNA synthesis, and treatment with this drug caused a fall in TfR expression. Thus, although CCRF-CEM cells treated with DFOA show enhanced TfR expression, similar effects are also seen with other inhibitors of DNA synthesis, provided that RNA synthesis is allowed to continue. These results provide further evidence that the regulation of TfR expression by proliferating cells is specifically linked to DNA synthesis rather than to the iron requirements of other cellular processes.  相似文献   

8.
9.
Ribonucleotide reductase catalyzes the formation of deoxyribonucleotides from ribonucleoside diphosphate precursors, and is a rate-limiting step in the synthesis of DNA. The enzyme consists of two dissimilar subunits usually called M1 and M2. The antitumor agent, hydroxyurea, is a specific inhibitor of DNA synthesis and acts by destroying the tyrosyl free radical of the M2 subunit of ribonucleotide reductase. Two highly drug resistant cell lines designated HR-15 and HR-30 were isolated by exposing a population of mouse L cells to increasing concentrations of hydroxyurea. HR-15 and HR-30 cells contained elevated levels of ribonucleotide reductase activity, and were 68 and 103 times, respectively, more resistant than wild type to the cytotoxic effects of hydroxyurea. Northern and Southern blot analysis indicated that the two drug resistant lines contained elevated levels of M2 mRNA and M2 gene copy numbers. Similar studies with M1 specific cDNA demonstrated that HR-15 and HR-30 cell lines also contained increased M1 message levels, and showed M1 gene amplification. Mutant cell lines altered in expression and copy numbers for both the M1 and M2 genes are useful for obtaining information relevant to the regulation of ribonucleotide reductase, and its role in DNA synthesis and cell proliferation.  相似文献   

10.
Mammalian cells can choose either nonhomologous end joining (NHEJ) or homologous recombination (HR) for repair of chromosome breaks. Of these two pathways, HR alone requires extensive DNA synthesis and thus abundant synthesis precursors (dNTPs). We address here if this differing requirement for dNTPs helps determine how cells choose a repair pathway. Cellular dNTP pools are regulated primarily by changes in ribonucleotide reductase activity. We show that an inhibitor of ribonucleotide reductase (hydroxyurea) hypersensitizes NHEJ-deficient cells, but not wild type or HR-deficient cells, to chromosome breaks introduced by ionizing radiation. Hydroxyurea additionally reduces the frequency of irradiated cells with a marker for an early step in HR, Rad51 foci, consistent with reduced initiation of HR under these conditions. Conversely, promotion of ribonucleotide reductase activity protects NHEJ-deficient cells from ionizing radiation. Importantly, promotion of ribonucleotide reductase activity also increases usage of HR in cells proficient in both NHEJ and HR at a targeted chromosome break. Activity of ribonucleotide reductase is thus an important factor in determining how mammalian cells repair broken chromosomes. This may explain in part why G1/G0 cells, which have reduced ribonucleotide reductase activity, rely more on NHEJ for DSB repair.  相似文献   

11.
A key rate-limiting reaction in the synthesis of DNA is catalyzed by ribonucleotide reductase, the enzyme which reduces ribonucleotides to provide the deoxyribonucleotide precursors of DNA. The antitumor agent, hydroxyurea, is a specific inhibitor of this enzyme and has been used in the selection of drug resistant mammalian cell lines altered in ribonucleotide reductase activity. An unstable hydroxyurea resistant population of mammalian cells with elevated ribonucleotide reductase activity has been used to isolate three stable subclones with varying sensitivities to hydroxyurea cytotoxicity and levels of ribonucleotide reductase activities. These subclones have been analyzed at the molecular level with cDNA probes encoding the two nonidentical subunits of ribonucleotide reductase (M1 and M2). Although no significant differences in M1 mRNA levels or gene copy numbers were detected between the three cell lines, a strong correlation between cellular resistance, enzyme activity, M2 mRNA and M2 gene copies was observed. This is the first demonstration that reversion of hydroxyurea resistance is directly linked to a decrease in M2 mRNA levels and M2 gene copy number, and strongly supports the concept that M2 gene amplification is an important mechanism for achieving resistance to this antitumor agent through elevations in ribonucleotide reductase.  相似文献   

12.
Ribonucleotide reductase is a highly regulated activity responsible for reducing ribonucleotides to deoxyribonucleotides, which are required for DNA synthesis and DNA repair. We have tested the hypothesis that malignant cell populations contain alterations in signal pathways important in controlling the expression of the two genes that code for ribonucleotide reductase, R1 and R2. A series of radiation and H-ras transformed mouse 10T1/2 cell lines with increasing malignant potential were exposed to stimulators of cAMP synthesis (forskolin and cholera toxin), an inhibitor of cAMP degradation (3-isobutyl-1-methylxanthine) and a biologically stable analogue of cAMP (8-bromo-cAMP). Dramatic elevations in the expression of the R1 and R2 genes at the message and protein levels were observed in malignant metastatic populations, which were not detected in the normal parental cell line or in cells capable of benign tumor formation. These changes in ribonucleotide reductase gene expression occurred without any detectable modifications in the rates of DNA synthesis, showing that they were regulated by a novel mechanism independent of the S phase of the cell cycle. Furthermore, studies with forskolin (a stimulator of the protein kinase A signal pathway) and the tumor promoter 12–0-tetradecanoylphorbol-13-acetate (a stimulator of the protein kinase C signal pathway), alone or in combination, indicated that their effects on R1 and R2 gene expression in a highly malignant cell line were greater than when they were tested individually, suggesting that the two pathways modulating R1 and R2 gene expression can cooperate to regulate ribonucleotide reduction, and interestingly this can occur in a synergistic fashion. Also, a direct relationship between H-ras expression and ribonucleotide reductase gene expression was observed; analysis of forskolin mediated elevations in R1 and R2 message levels closely correlated with the levels of H-ras expression in the various cell lines. In total, these studies demonstrate that ribonucleotide reductase expression is controlled by a complex process, and malignant ras transformed cells contain alterations in the regulation of signal transduction pathways that lead to novel modifications in ribonucleotide reductase gene expression. This signal mechanism, which is aberrantly regulated in malignant cells, may be related to regulatory pathways involved in determining ribonucleotide reductase expression in a S phase independent manner during periods of DNA repair. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Like Lactobacillus leichmanii, Rhizobium meliloti, and Euglena gracilis, P. freudenreichii implicates cobalamin in DNA anabolism via adenosylcobalamin-dependent ribonucleotide reductase. However, in the absence of corrinoids, P. freudenreichii is able to synthesize DNA with the involvement of an alternative ribonucleotide reductase, which is independent of adenosylcobalamin. This enzyme is localized in both the cytoplasm (80% of activity) and the cytoplasmic membrane (20% of activity), being loosely bound to the latter. Experiments with crude ribonucleotide reductase isolated from extracts of corrinoid-deficient cells showed that manganese specifically stimulates this enzyme and that it is composed of two protein subunits, a feature that is typical of all metal-containing reductases activated by molecular oxygen. Low concentrations of manganese ions enhanced DNA synthesis in corrinoid-deficient manganese-limited cells. This effect was prevented by the addition of 80 mM hydroxyurea, a specific inhibitor of metal-containing aerobic ribonucleotide reductases. It was concluded that, in adenosylcobalamin-deficient P. freudenreichii cells, DNA synthesis is provided with deoxyribosyl precursors through the functioning of manganese-dependent aerobic ribonucleotide reductase composed of two subunits.  相似文献   

14.
JB3-B is a Chinese hamster ovary cell mutant previously shown to be temperature sensitive for DNA replication (J. J. Dermody, B. E. Wojcik, H. Du, and H. L. Ozer, Mol. Cell. Biol. 6:4594-4601, 1986). It was chosen for detailed study because of its novel property of inhibiting both polyomavirus and adenovirus DNA synthesis in a temperature-dependent manner. Pulse-labeling studies demonstrated a defect in the rate of adenovirus DNA synthesis. Measurement of deoxyribonucleoside triphosphate (dNTP) pools as a function of time after shift of uninfected cultures from 33 to 39 degrees C revealed that all four dNTP pools declined at similar rates in extracts prepared either from whole cells or from rapidly isolated nuclei. Ribonucleoside triphosphate pools were unaffected by a temperature shift, ruling out the possibility that the mutation affects nucleoside diphosphokinase. However, ribonucleotide reductase activity, as measured in extracts, declined after cell cultures underwent a temperature shift, in parallel with the decline in dNTP pool sizes. Moreover, the activity of cell extracts was thermolabile in vitro, consistent with the model that the JB3-B mutation affects the structural gene for one of the ribonucleotide reductase subunits. The kinetics of dNTP pool size changes after temperature shift are quite distinct from those reported after inhibition of ribonucleotide reductase with hydroxyurea. An indirect effect on ribonucleotide reductase activity in JB3-B has not been excluded since human sequences other than those encoding the enzyme subunits can correct the temperature-sensitive growth defect in the mutant.  相似文献   

15.
Regulation of ribonucleotide reductase activity in mammalian cells   总被引:1,自引:0,他引:1  
Mammalian ribonucleotide reductase catalyzes the rate-limiting for the de novo synthesis 2'-deoxyribonucleoside 5'-triphosphates. There is some suggestion that this step may also be the rate-limiting step of DNA synthesis. It is apparent that the level of the enzyme, ribonucleotide reductase, varies through the cell cycle and is highest in those tissues with the greatest proliferation rate. This increase in activity is associated with increased protein synthesis. The purified enzyme has been shown to be subject to strict allosteric regulation by the various nucleoside triphosphates and it has been proposed that allosteric regulation plays an important role in the level of ribonucleotide reductase activity which is expressed. All experimental data relating to this point, however, do not support the role of deoxyribonucleoside triphosphates as a major factor in determining cellular reductase activity during normal cell division. Several naturally occurring factors have been isolated from cells which lower ribonucleotide reductase activity in vitro. These factors have been found in tissues of low growth fraction and appear to be absent or low in tissues or high growth fraction such as tumor, regenerating liver and embryonic tissues. The expression of intracellular ribonucleotide reductase activity is therefore controlled at various levels and by various factors and the prevailing mode of regulation may vary throughout the cell cycle transverse and also in the various types of cells.  相似文献   

16.
The reduction of ribonucleotides to deoxyribonucleotides, a rate-limiting step in DNA synthesis, is catalyzed by ribonucleotide reductase. This enzyme is composed of two components, M1 and M2. Recent work has shown that inhibition of ribonucleotide reductase by the antitumor drug hydroxyurea leads to a destabilized iron centre in protein M2. We have examined the relationship between the levels of ferritin, the iron storage protein, and the iron-containing M2 component of ribonucleotide reductase. These studies were carried out with hydroxyurea-sensitive, -resistant, and -revertant cell lines. Hydroxyurea-resistant mouse L cells contained M2 gene amplification and elevated levels of enzyme activity, M2 message, and total cellular M2 protein concentration. Hydroxyurea-revertant cells exhibited a wild-type M2 gene copy number, and approximately wild-type levels of enzyme activity, M2 message, and M2 protein concentration. In addition, we observed that the hydroxyurea-resistant cells possessed elevated levels of L-chain ferritin message and total cellular H-chain ferritin protein when compared to wild-type cells. In contrast, the revertant cell population contained approximately wild-type levels of ferritin mRNA and protein. In keeping with these observations, obtained with mouse L cells, was the finding that hydroxyurea-resistant Chinese hamster ovary cells with increased ribonucleotide reductase activity exhibited elevated expression of both ferritin and M2 genes, which declined in drug-sensitive revertant hamster cell lines with decreased levels of ribonucleotide reductase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Hydroxyurea is a specific inhibitor of ribonucleotide reductase, which is a rate-limiting enzyme activity in DNA synthesis. Cells selected for resistance to hydroxyurea contain alterations in ribonucleotide reductase activity. An unstable hydroxyurea resistant population of hamster cells has been used to isolate a stable drug resistant cell line, and two stable revertant lines with different sensitivities to hydroxyurea cytotoxicity and different ribonucleotide reductase activity levels. We show for the first time that a decrease in hydroxyurea resistance is accompanied by a parallel decline in gene copies for the M2 component of ribonucleotide reductase, ornithine decarboxylase and a gene of unknown function called p5-8, indicating that the co-amplification of the three genes is associated with drug resistance, and supporting the concept that M2, ornithine decarboxylase and p5-8 are closely linked, and form part of a single amplicon in hamster cells.  相似文献   

18.
Pool sizes of deoxyribonucleoside triphosphates (dNTPs) in cultured cells are tightly regulated by i.al., the allosteric control of ribonucleotide reductase. We now determine the in situ activity of this enzyme from the turnover of the deoxycytidine triphosphate (dCTP) pool in rapidly growing 3T6 mouse fibroblasts, as well as in cells whose DNA replication was inhibited by aphidicolin or amethopterin, by following under steady state conditions the path of isotope from [5-3H]cytidine into nucleotides, DNA, and deoxynucleosides excreted into the medium. In normal cells as much as 28% of the dCDP synthesized was excreted as deoxynucleoside (mostly deoxyuridine), leading to an accumulation of deoxyuridine in the medium. Inhibition with amethopterin slightly increased ribonucleotide reductase activity, while aphidicolin halved the activity of this enzyme (and thymidylate synthase). In both instances all dCDP synthesized was degraded and excreted as nucleosides. This continued synthesis and turnover in the absence of DNA synthesis is in contrast to the earlier found inhibition of dCTP (and dTTP) turnover when hydroxyurea, an inhibitor of ribonucleotide reductase, was used to block DNA synthesis. To explain our results, we propose that substrate cycles between deoxyribonucleosides and their monophosphates, involving the activities of kinases and phosphatases, participate in the regulation of pool sizes. Within the cycles, a block of the reductase activates net phosphorylation, while inhibition of DNA polymerase stimulates degradation.  相似文献   

19.
Chlamydiae are obligate intracellular bacteria that are dependent on eukaryotic host cells for ribonucleoside triphosphates but not deoxyribonucleotide triphosphates. Ribonucleotide reductase is the only enzyme known to catalyze the direct conversion of a ribonucleotide to a deoxyribonucleotide. Hydroxyurea inhibits ribonucleotide reductase by inactivating the tyrosine free radical present in the small subunit of the enzyme. In this report, we show that Chlamydia trachomatis growth is inhibited by hydroxyurea in both wild-type mouse L cells and hydroxyurea-resistant mouse L cells. Hydroxyurea was used as a selective agent in culture to isolate, by a stepwise procedure, a series of C. trachomatis isolates with increasing levels of resistance to the cytotoxic effects of the drug. One of the drug-resistant C. trachomatis isolates (L2HR-10.0) was studied in more detail. L2HR-10.0 retained its drug resistance phenotype even after passage in the absence of hydroxyurea for 10 growth cycles. In addition, L2HR-10.0 was cross resistant to guanazole, another inhibitor of ribonucleotide reductase. Results obtained from hydroxyurea inhibition studies using various host cell-parasite combinations indicated that inhibition of host cell and C. trachomatis DNA synthesis by hydroxyurea can occur but need not occur simultaneously. Crude extract prepared from highly purified C. trachomatis reticulate bodies was capable of reducing CDP to dCDP. The CDP reductase activity was not inhibited by monoclonal antibodies to the large and small subunits of mammalian ribonucleotide reductase, suggesting that the activity is chlamydia specific. The CDP reductase activity was inhibited by hydroxyurea. Crude extract prepared from drug-resistant L2HR-10.0 reticulate bodies contained an elevation in ribonucleotide reductase activity. In total, our results indicate that C. trachomatis obtains the precursors for DNA synthesis as ribonucleotides with subsequent conversion to deoxyribonucleotides catalyzed by a chlamydia-specific ribonucleotide reductase.  相似文献   

20.
Previous investigations have indicated that the suppression of proliferation by transforming growth factor (TGF) beta 1 is often lost upon cellular transformation, and that proliferation of some tumors is stimulated by TGF-beta. The present study provides the first observation of a link between TGF-beta 1 regulation of this process and alterations in the expression of ribonucleotide reductase, a highly controlled rate-limiting step in DNA synthesis. A series of radiation and T24-H-ras-transformed mouse 10T1/2 cell lines exhibiting increasing malignant potential was evaluated for TGF-beta 1 induced alterations in ribonucleotide reductase M1 and M2 gene expression. Early increases in M1 and/or M2 message and protein levels were observed only in malignant cell lines. The TGF-beta 1 induced changes in M1 and/or M2 gene expression occurred prior to any detectable changes in the rates of DNA synthesis, supporting the novel concept that ribonucleotide reductase gene expression can be elevated by TGF-beta 1 without altering the proportion of cells in S phase. T24-H-ras-transformed 10T1/2 cells were transfected with a plasmid containing the coding region of TGF-beta 1 under the control of a zinc-sensitive metallothionein promoter. When these cells were cultured in the presence of zinc, a large induction of TGF-beta 1 message was observed within 1 h. Both M1 and M2 genes were also induced, with increased mRNA levels appearing 2 h after zinc treatment, or 1 h after TGF-beta 1 message levels were clearly elevated. In total, the data suggests a mechanism of autocrine stimulation of malignant cells by TGF-beta 1, in which early alterations in the regulation of ribonucleotide reductase may play an important role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号