首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Some of the important controlling events regulating eukaryotic S-phase progression are considered to occur late in the G1 stage of the cell cycle. We show here that stimulation of DNA synthesis in bone marrow-derived macrophages (BMM) by macrophage CSF-1 is preceded by G1 expression of three genes which encode proteins associated with the DNA synthesis machinery--the M1 and M2 subunits of ribonucleotide reductase and proliferating cell nuclear Ag (PCNA). Increased expression for these genes correlated well with the mitogenic response and sustained expression required de novo RNA and protein synthesis and also the presence of CSF-1 for at least most of G1. Inhibitors of BMM proliferation (LPS, TNF-alpha, IFN-gamma, and cAMP elevating agents) suppressed CSF-1-induced expression of M1, M2, and PCNA mRNA measured at 22 h. This suppression occurred even when added up to 12 h after the CSF-1, a period coinciding with the G1/S-phase boundary. The delayed kinetics of this effect parallels the ability of these agents to maximally inhibit CSF-1-induced BMM DNA synthesis when added at similar times. Decreased expression of M1, M2, and PCNA was not merely a consequence of DNA synthesis inhibition because the S-phase inhibitor, hydroxyurea, did not suppress CSF-1-induced gene expression. These results suggest that inhibition of DNA synthesis by antiproliferative agents involves inhibition of expression of several genes associated with the DNA synthesis machinery.  相似文献   

2.
The efficient replication of large DNA viruses requires dNTPs supplied by a viral ribonucleotide reductase. Viral ribonucleotide reductase is an early gene product of both vaccinia and herpes simplex virus. For productive infection, the apoprotein must scavenge iron from the endogenous, labile iron pool(s). The membrane-permeant, intracellular Fe(2+) chelator, 2,2'-bipyridine (bipyridyl, BIP), is known to sequester iron from this pool. We show here that BIP strongly inhibits the replication of both vaccinia and herpes simplex virus, type 1. In a standard plaque assay, 50 microm BIP caused a 50% reduction in plaque-forming units with either virus. Strong inhibition was observed only when BIP was added within 3 h post-infection. This time dependence was observed also in regards to inhibition of viral late protein and DNA synthesis by BIP. BIP did not inhibit the activity of vaccinia ribonucleotide reductase (RR), its synthesis, nor its stability indicating that BIP blocked the activation of the apoprotein. In parallel with its inhibition of vaccinia RR activation, BIP treatment increased the RNA binding activity of the endogenous iron-response protein, IRP1, by 1.9-fold. The data indicate that the diiron prosthetic group in vaccinia RR is assembled from iron taken from the BIP-accessible, labile iron pool that is sampled also by ferritin and the iron-regulated protein found in the cytosol of mammalian cells.  相似文献   

3.
The coordination of transferrin receptor (TfR) expression and heme synthesis was investigated in mouse erythroleukemia (MEL) cells of line 707 treated with heme synthesis inhibitors or in a variant line Fw genetically deficient in heme synthesis. Cells of line 707 were induced for differentiation by 5 mM hexamethylene bisacetamide (HMBA). TfR expression increased in the course of induction, as judged by increased TfR mRNA synthesis, increased cytoplasmic TfR mRNA level, and by the increased number of cellular 125I-Tf binding sites. Addition of 0.1 mM succinylacetone (SA) decreased cellular TfR to the level comparable with the uninduced cells. The decrease was reverted by the iron chelator desferrioxamine (DFO) but not by exogenous hemin. In short-term (1-2 hours) incubation, SA inhibited 59Fe incorporation from transferrin into heme, whereas total cellular 59Fe uptake was increased. A decrease in TfR mRNA synthesis was apparent after 2 hours of SA treatment. Conversely, glutathione peroxidase mRNA synthesis, previously shown to be inducible by iron, was increased by SA treatment. Cells of heme deficient line Fw did not increase the number of Tf binding sites after the induction of differentiation by 5 mM sodium butyrate. SA had no effect on TfR expression in Fw cells. The results suggest that the depletion of cellular non-heme iron due to the increase in heme synthesis maintains a high level of transferrin receptor expression in differentiating erythroid cells even after the cessation of cell division.  相似文献   

4.
Treatment of bloodstream forms of Trypanosoma brucei with the iron chelator deferoxamine inhibits the proliferation of the parasites. Compared with mammalian cells, bloodstream forms of Trypanosoma brucei are 10 times more sensitive to iron depletion. The primary target of the chelator is obviously the intracellular iron as the toxicity of deferoxamine is abolished by addition of holotransferrin, the exogenous source of iron for the parasite. To identify probable target sites, the effect of deferoxamine on ribonucleotide reductase, alternative oxidase and superoxide dismutase, three iron-dependent enzymes in bloodstream-form trypanosomes, was studied. Incubation of the parasites with the chelator leads to inhibition of DNA synthesis and lowers oxygen consumption indicating that deferoxamine may affect ribonucleotide reductase and alternative oxidase. The compound does not inhibit the holoenzymes directly but probably acts by chelating cellular iron thus preventing its incorporation into the newly synthesised apoproteins. Treatment of the parasites with deferoxamine for 24 h has no effect on the activity of superoxide dismutase. The results have implications for antitrypanosomal drug development based on specific intervention with the parasite's iron metabolism.  相似文献   

5.
In most cells, transferrin receptor (TfR1)-mediated endocytosis is a major pathway for cellular iron uptake. We recently cloned the human transferrin receptor 2 (TfR2) gene, which encodes a second receptor for transferrin (Kawabata, H., Yang, R., Hirama, T., Vuong, P. T., Kawano, S., Gombart, A. F., and Koeffler, H. P. (1999) J. Biol. Chem. 274, 20826-20832). In the present study, the regulation of TfR2 expression and function was investigated. A select Chinese hamster ovary (CHO)-TRVb cell line that does not express either TfR1 or TfR2 was stably transfected with either TfR1 or TfR2-alpha cDNA. TfR2-alpha-expressing cells had considerably lower affinity for holotransferrin when compared with TfR1-expressing CHO cells. Interestingly, in contrast to TfR1, expression of TfR2 mRNA in K562 cells was not up-regulated by desferrioxamine (DFO), a cell membrane-permeable iron chelator. In MG63 cells, expression of TfR2 mRNA was regulated in the cell cycle with the highest expression in late G(1) phase and no expression in G(0)/G(1). DFO reduced cell proliferation and DNA synthesis of CHO-TRVb control cells, whereas it had little effect on TfR2-alpha-expressing CHO cells when measured by clonogenic and cell cycle analysis. In addition, CHO cells that express TfR2-alpha developed into tumors in nude mice whereas CHO control cells did not. In conclusion, TfR2 expression may be regulated by the cell cycle rather than cellular iron status and may support cell growth both in vitro and in vivo.  相似文献   

6.
Iron(II) heme-mediated activation of the peroxide bond of artemisinins is thought to generate the radical oxygen species responsible for their antimalarial activity. We analyzed the role of ferrous iron in the cytotoxicity of artemisinins toward tumor cells. Iron(II)-glycine sulfate (Ferrosanol) and transferrin increased the cytotoxicity of free artesunate, artesunate microencapsulated in maltosyl-beta-cyclodextrin, and artemisinin toward CCRF-CEM leukemia and U373 astrocytoma cells 1.5- to 10.3-fold compared with that of artemisinins applied without iron. Growth inhibition by artesunate and ferrous iron correlated with induction of apoptosis. Cell cycle perturbations by artesunate and ferrous iron were not observed. Treatment of p53 wild-type TK6 and p53 mutated WTK1 lymphoblastic cells showed that mutational status of the tumor suppressor p53 did not influence sensitivity to artesunate. The effect of ferrous iron and transferrin was reversed by monoclonal antibody RVS10 against the transferrin receptor (TfR), which competes with transferrin for binding to TfR. CCRF-CEM and U373 cells expressed TfR in 95 and 48% of the cell population, respectively, whereas TfR expression in peripheral mononuclear blood cells of four healthy donors was confined to 0.4-1.3%. This indicates that artemisinins plus ferrous iron may affect tumor cells more than normal cells. The IC(50) values for a series of eight different artemisinin derivatives in 60 cell lines of the U.S. National Cancer Institute were correlated with the microarray mRNA expression of 12 genes involved in iron uptake and metabolism by Kendall's tau test to identify iron-responsive cellular factors enhancing the activity of artemisinins. This pointed to mitochondrial aconitase and ceruloplasmin (ferroxidase).  相似文献   

7.
The anti-malarial artesunate also exerts profound anti-cancer activity. The susceptibility of tumor cells to artesunate can be enhanced by ferrous iron. The transferrin receptor (TfR) is involved in iron uptake by internalization of transferrin and is over-expressed in rapidly growing tumors. The ATP-binding cassette (ABC) transporters ABCB6 and ABCB7 are also involved in iron homeostasis. To investigate whether these proteins play a role for sensitivity towards artesunate, Oncotest's 36 cell line panel was treated with artesunate or artesunate plus iron(II) glycine sulfate (Ferrosanol). The majority of cell lines showed increased inhibition rates, for the combination of artesunate plus iron(II) glycine sulfate compared to artesunate alone. However, in 11 out of the 36 cell lines the combination treatment was not superior. Cell lines with high TfR expression significantly correlated with high degrees of modulation indicating that high TfR expressing tumor cells would be more efficiently inhibited by this combination treatment than low TfR expressing ones. Furthermore, we found a significant relationship between cellular response to artesunate and TfR expression in 55 cell lines of the National Cancer Institute (NCI), USA. A significant correlation was also found for ABCB6, but not for ABCB7 in the NCI panel. Artesunate treatment of human CCRF-CEM leukemia and MCF7 breast cancer cells induced ABCB6 expression but repressed ABCB7 expression. Finally, artesunate inhibited proliferation and differentiation of mouse erythroleukemia (MEL) cells. Down-regulation of ABCB6 by antisense oligonucleotides inhibited differentiation of MEL cells indicating that artesunate and ABCB6 may cooperate. In conclusion, our results indicate that ferrous iron improves the activity of artesunate in some but not all tumor cell lines. Several factors involved in iron homeostasis such as TfR and ABCB6 may contribute to this effect.  相似文献   

8.
The reduction of ribonucleotides to deoxyribonucleotides, a rate-limiting step in DNA synthesis, is catalyzed by ribonucleotide reductase. This enzyme is composed of two components, M1 and M2. Recent work has shown that inhibition of ribonucleotide reductase by the antitumor drug hydroxyurea leads to a destabilized iron centre in protein M2. We have examined the relationship between the levels of ferritin, the iron storage protein, and the iron-containing M2 component of ribonucleotide reductase. These studies were carried out with hydroxyurea-sensitive, -resistant, and -revertant cell lines. Hydroxyurea-resistant mouse L cells contained M2 gene amplification and elevated levels of enzyme activity, M2 message, and total cellular M2 protein concentration. Hydroxyurea-revertant cells exhibited a wild-type M2 gene copy number, and approximately wild-type levels of enzyme activity, M2 message, and M2 protein concentration. In addition, we observed that the hydroxyurea-resistant cells possessed elevated levels of L-chain ferritin message and total cellular H-chain ferritin protein when compared to wild-type cells. In contrast, the revertant cell population contained approximately wild-type levels of ferritin mRNA and protein. In keeping with these observations, obtained with mouse L cells, was the finding that hydroxyurea-resistant Chinese hamster ovary cells with increased ribonucleotide reductase activity exhibited elevated expression of both ferritin and M2 genes, which declined in drug-sensitive revertant hamster cell lines with decreased levels of ribonucleotide reductase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Sodium ascorbate (vitamin C) has a reputation for inconsistent effects upon malignant tumor cells, which vary from growth stimulation to apoptosis induction. Melanoma cells were found to be more susceptible to vitamin C toxicity than any other tumor cells. The present study has shown that sodium ascorbate decreases cellular iron uptake by melanoma cells in a dose- and time-dependent fashion, indicating that intracellular iron levels may be a critical factor in sodium ascorbate-induced apoptosis. Indeed, sodium ascorbate-induced apoptosis is enhanced by the iron chelator, desferrioxamine (DFO) while it is inhibited by the iron donor, ferric ammonium citrate (FAC). Moreover, the inhibitory effects of sodium ascorbate on intracellular iron levels are blocked by addition of transferrin, suggesting that transferrin receptor (TfR) dependent pathway of iron uptake may be regulated by sodium ascorbate. Cells exposed to sodium ascorbate demonstrated down-regulation of TfR expression and this precedes sodium ascorbate-induced apoptosis. Taken together, sodium ascorbate-mediated apoptosis appears to be initiated by a reduction of TfR expression, resulting in a down-regulation of iron uptake followed by an induction of apoptosis. This study demonstrates the specific mechanism of sodium ascorbate-induced apoptosis and these findings support future clinical trial of sodium ascorbate in the prevention of human melanoma relapse.  相似文献   

10.
5,10-Dideazatetrahydrofolate (DDATHF) is a new antimetabolite designed as an inhibitor of folate metabolism at sites other than dihydrofolate reductase. DDATHF was found to inhibit the growth of L1210 and CCRF-CEM cells in culture at concentrations in the range of 10-30 nM. The inhibitory effect of DDATHF on the growth of L1210 and CCRF-CEM cells was reversed by either hypoxanthine or aminoimidazole carboxamide. Growth inhibition by DDATHF was prevented by addition of both thymidine and hypoxanthine, but not by thymidine alone. 5-Formyltetrahydrofolate reversed the effects of DDATHF in a dose-dependent manner. DDATHF had no appreciable inhibitory activity against either dihydrofolate reductase or thymidylate synthase in vitro, but was found to be an excellent substrate for folylpolyglutamate synthetase. DDATHF had little or no effect on incorporation of either deoxyuridine or thymidine into DNA, in distinct contrast to the effects of the classical dihydrofolate reductase inhibitor, methotrexate. DDATHF was found to deplete cellular ATP and GTP over the same concentrations as those inhibitory to leukemic cell growth, suggesting that the locus of DDATHF action was in the de novo purine biosynthesis pathway. The synthesis of formylglycinamide ribonucleotide in intact L1210 cells was inhibited by DDATHF with the same concentration dependence as inhibition of growth. This suggested that DDATHF inhibited glycinamide ribonucleotide transformylase, the first folate-dependent enzyme of de novo purine synthesis. DDATHF is a potent folate analog which suppresses purine synthesis through direct or indirect inhibition of glycinamide ribonucleotide transformylase.  相似文献   

11.
The murine adenocarcinoma cell line TA 3 synthesized nitrite from L-arginine upon stimulation with gamma-interferon (IFN-gamma) associated with tumor necrosis factor (TNF), and/or bacterial lipopolysaccharide (LPS), but not with IFN-gamma, TNF, or LPS added separately. Induction of the NO2(-)-generating activity caused an inhibition of DNA synthesis in TA 3 cells. This inhibition was prevented by the L-arginine analog N omega-nitro-L-arginine, which inhibited under the same conditions nitrite production by TA 3 cells. The TA 3 M2 subclone, selected for enhanced ribonucleotide reductase activity, was found to be less sensitive than the wild phenotype TA 3 WT to the cytostatic activity mediated by the NO2(-)-generating system. Cytosolic preparations from TA 3 M2 cells treated for 24 or 48 h with IFN-gamma, TNF, and LPS exhibited a reduced ribonucleotide reductase activity, compared to untreated control cells. No reduction in ribonucleotide reductase activity was observed when N omega-nitro-L-arginine was added to treated cells. Addition of L-arginine, NADPH, and tetrahydrobiopterin into cytosolic extracts from 24-h treated TA 3 M2 cells triggered the synthesis of metabolic products from the NO2(-)-generating pathway. This resulted in a dramatic inhibition of the residual ribonucleotide reductase activity present in the extracts. The inhibition was reversed by NG-monomethyl-L-arginine, another specific inhibitor of the NO2(-)-generating activity. No L-arginine-dependent inhibition of ribonucleotide reductase activity was observed using extracts from untreated cells that did not express NO2(-)-generating activity. These results demonstrate that, in an acellular preparation, molecules derived from the NO2(-)-generating pathway exert an inhibitory effect on the ribonucleotide reductase enzyme. This negative action might explain the inhibition of DNA synthesis induced in adenocarcinoma cells by the NO2(-)-generating pathway.  相似文献   

12.
Regulation of K562 cell transferrin receptors by exogenous iron   总被引:1,自引:0,他引:1  
Single-cell analysis of K562 human erythroleukemia cells by flow cytometry was used to demonstrate the specific role of iron in regulating transferrin receptors (TfRs) and to establish that TfR expression does not necessarily correlate with growth rate. Exogenous iron concentration in culture was manipulated by supplementing the medium with sera having different iron concentrations over the range 0.6 to 5.4 micrograms/ml, by the addition of iron in the form of FeCl3, iron-saturated serum, or diferric transferrin, and by the addition of the iron chelator Desferal (desferrioxamine). TfR expression was negatively correlated with exogenous iron content: any treatment that reduced exogenous iron supply by at least 15% resulted in as much as a 1.8-fold increase in external receptors, detected as binding by both transferrin and monoclonal anti-TfR antibodies, and a 1.5-fold increase in the pool of internal receptors, as detected by anti-TfR antibody binding. None of these treatments altered growth rate, total cellular protein content, protein synthetic rate, cell cycle distribution or cell size. The rapid (12 hr) and reversible induction of internal and external receptors by Desferal was inhibited by cycloheximide and therefore may have resulted from de novo synthesis and not just mobilization of internal receptor pool to the cell surface. The correlation between growth rate and TfR expression previously observed in these and other cells must be secondary to cellular mechanisms that maintain intracellular iron pools by regulating synthesis, recycling, and cell surface expression of TfRs.  相似文献   

13.
The effects of the iron-chelator, desferrioxamine, and monoclonal antibodies against transferrin receptors of DNA synthesis and ribonucleotide reductase activity were examined in human leukemia K562 cells. Treatment of the cells with desferrioxamine resulted in decreases of ribonucleotide reductase activity, DNA synthesis, and cell growth. Exposure of the cells to anti-transferrin receptor antibody, 42/6, which blocks iron supplement into cells caused decreases of ribonucleotide reductase activity and DNA synthesis, in a parallel fashion. Decreases of ribonucleotide reductase activity and DNA synthesis by 42/6 were restored by the addition of ferric nitriloacetate. These results indicate that ribonucleotide reductase activity is dependent on the iron-supply and also regulates cell proliferation.  相似文献   

14.
In order to elucidate whether data about the fast regulation of DNA replication in dependence on oxygen supply and on a functioning protein synthesis, previously elaborated with Ehrlich ascites cells, are valid for human cells too, we repeated key experiments with CCRF-CEM and HeLa cells. The most important techniques employed were DNA fibre autoradiography and alkaline sedimentation analyses of growing (pulse-labeled) daughter strand DNA. It was found that CCRF-CEM and HeLa cells responded to transient hypoxia and to transient inhibition of protein synthesis in an almost identical fashion. Scheduled replicon initiations were reversibly suppressed and the progress rates of replication forks, which were already active before the respective inhibitory conditions were established, were reversibly slowed down. The inclusion of the fork progress rate in the response differs from Ehrlich ascites cells, which respond only by suppressing initiation. Further circumstances of the fast oxygen dependent response, concerning the behaviour of ribonucleotide reductase and of the dNTP pools, revealed no significant differences among the three cell lines. The striking identity of the response of each of the cell lines to hypoxia and to inhibited protein synthesis prompts the suspicion that converging fast regulatory pathways act on the cellular replication machinery. The phenomena as such seem to be rather widespread among mammalian cells.  相似文献   

15.
We have demonstrated that iron controls hemoglobin (Hb) synthesis in erythroid differentiating K562 cells by enhancing the activity of a key enzyme of the Hb synthesis, δ-aminolevulinate synthase (ALAS). In the present study, we studied iron mobilization and the role of iron in erythroid differentiating cells by measuring the level of iron by means of high-performance liquid chromatography using electrochemical detection (HPLC–ED). After treatment of K562 cells with sodium butyrate, the expression of transferrin receptor (TfR) increased initially, followed by an increase in the levels of both total iron and Hb as well as the ALAS activity. However, no increase could be found in the levels of non-heme iron, low-molecular-mass iron (LMMFe) and ferritin. Addition of diferric transferrin (FeTf) enhanced both δ-aminolevulinic acid (ALA) and Hb synthesis. In contrast, addition of hemin elevated the levels of all iron species as well as the Hb synthesis but reduced the TfR expression and ALA contents in both butyrate treated and untreated cells. These results suggest that Hb synthesis is controlled by TfR expression, and that the ALA synthesis is suppressed by iron released from heme and/or Hb due to lowered expression of TfR.  相似文献   

16.
Deoxyadenosine plus deoxycoformycin (dCf) causes increased DNA breaks in lymphoid cells. This study explored the possible inhibition of repair synthesis of DNA by dAdo plus dCf as a cause of DNA breakage. It was shown that DNA breaks accumulated in a human T-lymphoblast cell line, CCRF-CEM, following incubation with dAdo plus dCf and were not fully repaired 20 h after their removal. Analysis of the density distribution of radiolabeled DNA on alkaline CsCl gradient showed that incubation of CCRF-CEM cells with dAdo plus dCf caused inhibition of semiconservative, but not repair synthesis of DNA. Semiconservative synthesis of DNA was also inhibited in CCRF-CEM nuclei isolated from cells pretreated with dAdo and dCf, suggesting damage to DNA replicative machinery. However, no such inhibition was observed in the nuclei of a similarly treated CCRF-CEM mutant that was deficient in adenosine kinase and deoxycytidine kinase. This suggests that dAdo must be phosphorylated in intact cells to exert its effect. Using [3H]dTTP incorporation in isolated CCRF-CEM nuclei to measure DNA synthesis, it was found that a high concentration (greater than 100 microM) of dATP inhibits semiconservative but not repair synthesis of DNA. The present studies thus indicate that accumulation of DNA strand breaks induced by dAdo plus dCf is not the consequence of inhibition of repair DNA synthesis. This implies the mechanism may involve perturbation of DNA ligation or activation of a certain process which causes DNA strand breaks. In addition, dATP may interfere with some steps of semiconservative DNA synthesis, but not the repair synthesis of DNA.  相似文献   

17.
Purine nucleoside phosphorylase (PNP; EC 2.4.2.1) deficiency is thought to cause T-lymphocyte depletion by accumulation of dG and dGTP, resulting in feedback inhibition of ribonucleotide reductase (RR; EC 1.17.4.1) and hence DNA synthesis. To test for additional toxic mechanisms of dG, we selected a double mutant of the mouse T-lymphoma S-49 cell line, dGuo-L, which is deficient in PNP and partially resistant to dGTP feedback inhibition of RR. The effects of dG on dGuo-L cells (concn. causing 50% inhibition, IC50 = 150 microM) were compared with those on the wild-type cells (IC50 = 30 microM) and the NSU-1 mutant with PNP deficiency only (IC50 = 15 microM). Fluorescence flow cytometry showed that equitoxic dG concentrations arrested wild-type and NSU-1 cells at the G1-S interface while allowing continued DNA synthesis in the S-phase, whereas the double mutant dGuo-L cells progressed through the cell cycle normally. dGuo-L cells accumulated high levels of dGTP in G1-phase, but not in S-phase cells, because of the utilization of dGTP for DNA synthesis and limited capacity to synthesize dGTP from dG. These results support the hypothesis that dG/dGTP toxicity occurs in the G1-phase or at the G1-S interface. Failure of dG to arrest the double mutant dGuo-L cells at the G1-S interface allows these cells to escape into S-phase, with an accompanying drop in dGTP levels. Thus the partial resistance of dGuo-L cells to dG toxicity may result from their shorter residence time in G1, allowing them to sustain higher dGTP levels. Hence RR inhibition by dGuo may not be the primary toxic mechanism in S-49 cells; rather, it may serve as an accessory event in dG toxicity by keeping the cells in the sensitive phase of the cell cycle. Among the possible targets of dG toxicity is RNA synthesis, which was inhibited at an early stage in dGuo-L cells.  相似文献   

18.
Excess capacity of the iron regulatory protein system   总被引:4,自引:0,他引:4  
Iron regulatory proteins (IRP1 and IRP2) are master regulators of cellular iron metabolism. IRPs bind to iron-responsive elements (IREs) present in the untranslated regions of mRNAs encoding proteins of iron storage, uptake, transport, and export. Because simultaneous knockout of IRP1 and IRP2 is embryonically lethal, it has not been possible to use dual knockouts to explore the consequences of loss of both IRP1 and IRP2 in mammalian cells. In this report, we describe the use of small interfering RNA to assess the relative contributions of IRP1 and IRP2 in epithelial cells. Stable cell lines were created in which either IRP1, IRP2, or both were knocked down. Knockdown of IRP1 decreased IRE binding activity but did not affect ferritin H and transferrin receptor 1 (TfR1) expression, whereas knockdown of IRP2 marginally affected IRE binding activity but caused an increase in ferritin H and a decrease in TfR1. Knockdown of both IRPs resulted in a greater reduction of IRE binding activity and more severe perturbation of ferritin H and TfR1 expression compared with single IRP knockdown. Even though the knockdown of IRP-1, IRP-2, or both was efficient, resulting in nondetectable protein and under 5% of wild type levels of mRNA, all stable knockdowns retained an ability to modulate ferritin H and TfR1 appropriately in response to iron challenge. However, further knockdown of IRPs accomplished by transient transfection of small interfering RNA in stable knockdown cells completely abolished the response of ferritin H and TfR1 to iron challenge, demonstrating an extensive excess capacity of the IRP system.  相似文献   

19.
The cellular uptake and storage of iron have to be tightly regulated in order to provide iron for essential cellular functions while preventing the iron-catalysed generation of reactive oxygen species (ROS). In contrast to cells in other organs, little is known about the regulation of iron metabolism in brain cells, particularly in astrocytes. To investigate the regulation of iron metabolism in astrocytes we have used primary astrocyte cultures from the brains of newborn rats. After application of ferric ammonium citrate (FAC), cultured astrocytes accumulated iron in a time- (0-48 h) and concentration-dependent (0.01-1 mm) manner. This accumulation was prevented if FAC was applied in combination with the iron-chelator deferoxamine (DFX). Application of FAC to astrocyte cultures caused a strong increase in the cellular content of the iron storage protein ferritin and a decrease in the amount of transferrin receptor (TfR), which is involved in the transferrin-mediated uptake of iron into cells. In contrast, application of DFX strongly increased the level of TfR. Both up-regulation of ferritin content by iron application and up-regulation of TfR content by DFX were prevented by the protein synthesis inhibitor cycloheximide (CHX). During incubation of astrocytes with FAC, a mild and transient increase in the extracellular activity of the cytosolic enzyme lactate dehydrogenase and in the concentration of intracellular ROS was observed. In contrast, prevention of protein synthesis by CHX during incubation with FAC resulted in significantly more cell loss and a persistent and intense increase in the production of intracellular ROS. These results demonstrate that both iron accumulation and deprivation modulate the synthesis of ferritin and TfR in astrocytes and that protein synthesis is required to prevent iron-mediated toxicity in astrocytes.  相似文献   

20.
Desferri-exochelins are siderophores secreted by Mycobacterium tuberculosis that are both lipid- and water-soluble and have a high binding affinity for iron. Desferri-exochelin 772SM inhibits DNA replication and ribonucleotide reductase activity at 10-fold less concentration than the lipid-insoluble iron chelator deferoxamine, which is currently in clinical use. Neither chelator can extract iron directly from ribonucleotide reductase. However, because of its lipid-solubility and high binding affinity, desferri-exochelin is able to enter cells rapidly and access intracellular iron, while deferoxamine has limited capacity to cross the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号