首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Mutant mice lacking both cyclin-dependent kinase (CDK) inhibitors p18(Ink4c) and p27(Kip1) develop a tumor spectrum reminiscent of human multiple endocrine neoplasia (MEN) syndromes. To determine how p18 and p27 genetically interact with Men1, the tumor suppressor gene mutated in familial MEN1, we characterized p18-Men1 and p27-Men1 double mutant mice. Compared with their corresponding single mutant littermates, the p18(-/-); Men1(+/-) mice develop tumors at an accelerated rate and with an increased incidence in the pituitary, thyroid, parathyroid, and pancreas. In the pituitary and pancreatic islets, phosphorylation of the retinoblastoma (Rb) protein at both CDK2 and CDK4/6 sites was increased in p18(-/-) and Men1(+/-) cells and was further increased in p18(-/-); Men1(+/-) cells. The remaining wild-type Men1 allele was lost in most tumors from Men1(+/-) mice but was retained in most tumors from p18(-/-); Men1(+/-) mice. Combined mutations of p27(-/-) and Men1(+/-), in contrast, did not exhibit noticeable synergistic stimulation of Rb kinase activity, cell proliferation, and tumor growth. These results demonstrate that functional collaboration exists between p18 and Men1 and suggest that Men1 may regulate additional factor(s) that interact with p18 and p27 differently.  相似文献   

2.
The presence of two families of seven distinct mammalian cyclin-dependent kinase (CDK) inhibitor genes is thought to mediate the complexity of connecting a variety of cellular processes to the cell cycle control pathway. The distinct pattern of tissue expression of CDK inhibitor genes suggests that they may function as tumor suppressors with different tissue specificities. To test this hypothesis, we have characterized two strains of double mutant mice lacking either p18(INK4c) and p27(KIP1) or p18(INK4c) and p21(CIP1/WAF1). Loss of both p18 and p27 function resulted in the spontaneous development by 3 months of age of at least eight different types of hyperplastic tissues and/or tumors in the pituitary, adrenals, thyroid, parathyroid, testes, pancreas, duodenum, and stomach. Six of these hyperplastic tissues and tumors were in endocrine organs, and several types of tumors routinely developed within the same animal, a phenotype reminiscent of that seen in combined human multiple endocrine neoplasia syndromes. The p18-p21 double null mice, on the other hand, developed pituitary adenomas, multifocal gastric neuroendocrine hyperplasia, and lung bronchioalveolar tumors later in life. G(1) CDK2 and CDK4 kinase activities were increased in both normal and neoplastic tissues derived from mice lacking individual CDK inhibitors and were synergistically stimulated by the simultaneous loss of two CDK inhibitors. This indicates that an increase in G(1) CDK kinase activity is a critical step during but is not sufficient for tumor growth. Our results suggest that functional collaborations between distinct CDK inhibitor genes are tissue specific and confer yet another level of regulation in cell growth control and tumor suppression.  相似文献   

3.
Pituitary tumor transforming gene (Pttg) is induced in pituitary tumors and associated with increased tumor invasiveness. Pttg-null mice do not develop tumors, but exhibit pituitary hypoplasia, whereas mice heterozygous for the retinoblastoma (Rb) deletion develop pituitary tumors with high penetrance. Pttg-null mice were therefore cross-bred with Rb+/- mice to test the impact of pituitary hypoplasia on tumor development. Before tumor development, Rb+/-Pttg-/- mice have smaller pituitary glands with fewer cycling pituitary cells and exhibit induction of pituitary p21 levels. Pttg silencing in vitro with specific short hairpin interfering RNA in AtT20 mouse corticotrophs led to a marked induction of p21 mRNA and protein levels, decreased RB phosphorylation, and subsequent 24% decrease in S-phase cells. Eighty-six percent of Rb+/-Pttg+/+ mice develop pituitary adenomas by 13 months, in contrast to 30% of double-crossed Rb+/-Pttg-/- animals (P < 0.01). Pituitary hypoplasia, associated with suppressed cell proliferation, prevents the high penetrance of pituitary tumors in Rb+/- animals, and is therefore a protective determinant for pituitary tumorigenesis.  相似文献   

4.
The tumor suppressor, retinoblastoma (Rb), is involved in both terminal mitosis and neuronal differentiation. We hypothesized that activation of the Rb pathway would induce cell cycle arrest in primary neural precursor cells, independent of the proposed function of cyclin-dependent kinases 4/6 (CDK4/6) to sequester the CIP/KIP CDK inhibitors (CKIs) p21 and p27 from CDK2. We expressed dominant negative adenovirus mutants of CDKs 2, 4, and 6 (dnCDK2, dnCDK4, and dnCDK6) in neural progenitor cells derived from E12.5 wild type and Rb-deficient mouse embryos. In contrast to previous studies, our results demonstrate that in addition to dnCDK2, the dnCDK4/6 mutants can induce growth arrest. Moreover, the dnCDK4/6-mediated inhibition is Rb-dependent. The dnCDK2 partially inhibited cell growth in Rb-deficient cells, suggesting that CDK2 may have additional targets. A previously proposed function of CDK4/6 is CKI sequestration, thereby preventing the resulting inhibition of CDK2, believed to be the key regulator of cell cycle. However, our immunoprecipitations revealed that the dominant negative CDK mutants could arrest cell growth despite their interaction with p21 and p27. Taken together, our results demonstrate that both CDK2 and CDK4/6 are crucial for cell cycle regulation. Furthermore, our data underscore the importance of the Rb regulatory pathway in neuronal development and cell cycle regulation, independent of CKI sequestration.  相似文献   

5.
The INK4 family of cyclin-dependent kinase (CDK) inhibitors negatively regulates cyclin D-dependent CDK4 and CDK6 and thereby retains the growth-suppressive function of Rb family proteins. Mutations in the CDK4 gene conferring INK4 resistance are associated with familial and sporadic melanoma in humans and result in a wide spectrum of tumors in mice. Whereas loss of function of other INK4 genes in mice leads to little or no tumor development, targeted deletion of p18(INK4c) causes spontaneous pituitary tumors and lymphoma late in life. Here we show that treatment of p18 null and heterozygous mice with a chemical carcinogen resulted in tumor development at an accelerated rate. The remaining wild-type allele of p18 was neither mutated nor silenced in tumors derived from heterozygotes. Hence, p18 is a haploinsufficient tumor suppressor in mice.  相似文献   

6.
7.
Tumor suppressor genes may represent an important new therapeutic modality in the treatment of human glioblastoma (GBM). p16(INK4A) is a tumor suppressor gene with mutation and/or deletion found in many human tumors, including glioblastomas, melanoma, and leukemias. RT-2 rat GBM cell line was used to investigate if the p16 gene induces dominant suppression of glioblastoma growth. Close to 100% of tumor cells were infected by high titer pCL retrovirus encoding the full-length human p16 cDNA at 5 m.o.i. Infected cells showed a 98% reduction in colony forming assay and a 60% reduction in growth curves in vitro compared to vector control. Exogenous overexpression of p16 induced hypophosphorylation of Rb protein by Western blot analysis. Intracranial injection of p16-infected tumor cells into syngeneic rats resulted in a 95% reduction in tumor volume compared to the controls. Intratumoral injection of p16 retrovirus resulted in tumor necrosis and prominent human p16 transgene expressions. Proliferation marker PCNA was not detected in these human p16-expressed RT-2 tumor cells, suggesting the cells were unable to enter into S phase after p16 expression. In addition, direct repeat intracranial injections of p16 retrovirus prolonged animal survival 3.2-fold compared to the controls (48.4 +/- 13.4 vs 15.0 +/- 2.1 days, p < 0.001). Two out of ten rats were found with dormant tumors at day 60 after p16 retrovirus injection. These results showed that p16 is effective in inhibiting GBM growth in situ. The mechanisms of tumor growth reduction and necrosis in vivo might be due to G1 arrest triggered by p16 expression.  相似文献   

8.
肿瘤抑制基因Rb与细胞周期调控研究新进展   总被引:10,自引:0,他引:10  
Rb与人类多种肿瘤发生关系密切,是一种重要的肿瘤抑制基因.Rb蛋白参与细胞周期调控,与p16、CDK4/6、cyclinD1等形成复杂的反馈调节网络,在G1/S关卡调控中处于中心环节,决定着细胞周期的进程.Rb又是核内信号与胞外信号相互作用的界面,受到胞内外多种因素的调控,使Rb功能与细胞生长、分化状态相适应.  相似文献   

9.
10.
PTEN deletion leads to up-regulation of a secreted growth factor pleiotrophin   总被引:13,自引:0,他引:13  
Li G  Hu Y  Huo Y  Liu M  Freeman D  Gao J  Liu X  Wu DC  Wu H 《The Journal of biological chemistry》2006,281(16):10663-10668
Tumor suppressor gene PTEN is highly mutated in a wide variety of human tumors. To identify unknown targets or signal transduction pathways that are regulated by PTEN, microarray analysis was performed to compare the gene expression profiles of Pten null mouse embryonic fibroblasts (MEFs) cell lines and their isogenic counterparts. Expression of a heparin binding growth factor, pleiotrophin (Ptn), was found to be up-regulated in Pten-/- MEFs as well as Pten null mammary tumors. Further experiments revealed that Ptn expression is regulated by the PTEN-PI3K-AKT pathway. Knocking down the expression of Ptn by small interfering RNA resulted in the reduction of Akt and GSK-3beta phosphorylation and suppression of the growth and the tumorigenicity of Pten null MEFs. Our results suggest that PTN participates in tumorigenesis caused by PTEN loss and PTN may be a potential target for anticancer therapy, especially for those tumors with PTEN deficiencies.  相似文献   

11.
Abnormal cell cycle regulation in primary human uveal melanoma cultures   总被引:2,自引:0,他引:2  
Uveal malignant melanoma is the most frequent primary intraocular tumor in adult humans. The cellular events leading to neoplasic transformation of normal uveal melanocytes are not well known when compared to other cancers. In this study, we investigated the role of G1 and G1/S regulatory proteins of the cell cycle in human uveal melanoma (UM) primary cell cultures, since these proteins are common targets in tumor development. Further, freshly established and characterized tumor cells are a better model for in vitro studies when compared to cell lines established long ago. Human primary cell cultures from eight different UM were established, as well as one primary culture from rhesus uveal normal melanocytes (UNM). Primary human UM cultures were characterized by a low establishment and growing rate. From four successful cultures, three showed a high expression of cyclin D1, cyclin E, p16NK4A, and p27KIP1 with no variations in cyclin A, cyclin-dependent kinase 2 (CDK2), and CDK4. Interestingly, in one of the cultured tumors, tumor suppressor protein retinoblastoma (Rb) did not bind E2F despite the fact that Rb was found in its hypophosphorylated form. No mutations in either RB1 or the Rb-binding pocket of E2F-1 were detected. Furthermore, we identified seven proteins co-immunoprecipitating with Rb in this tumor, including Lamin A/C and six proteins not previously reported to bind Rb: Hsc70, high mobility group protein 1 (HMG-1), hnRPN, glyceraldehyde 3 phosphate dehydrogenase (G3PDH), EF-1, and EF-2. Our results indicate that the overexpression of cyclins D1/E and CDKIs p16 and p27, together with a deregulation of the Rb/E2F pathway, may be implicated in the development of human UM.  相似文献   

12.
Pten deletion from adult mouse hematopoietic cells activates the PI3-kinase pathway, inducing hematopoietic stem cell (HSC) proliferation, HSC depletion, and leukemogenesis. Pten is also mutated in human leukemias, but rarely in early childhood leukemias. We hypothesized that this reflects developmental changes in PI3-kinase pathway regulation. Here we show that Rictor deletion prevents leukemogenesis and HSC depletion after Pten deletion in adult mice, implicating mTORC2 activation in these processes. However, Rictor deletion had little effect on the function of normal HSCs. Moreover, Pten deletion from neonatal HSCs did not activate the PI3-kinase pathway or promote HSC proliferation, HSC depletion, or leukemogenesis. Pten is therefore required in adult, but not neonatal, HSCs to negatively regulate mTORC2 signaling. This demonstrates that some critical tumor suppressor mechanisms in adult cells are not required by neonatal cells. Developmental changes in key signaling pathways therefore confer temporal changes upon stem cell self-renewal and tumor suppressor mechanisms.  相似文献   

13.
14.
The mutation and/or deletion of tumor suppressor genes have been postulated to play a major role in the genesis and the progression of gliomas. In this study, the functional expression and efficacy in tumor suppression of 3 tumor suppressor genes (p53, p21, and p16) were tested and compared in a rat GBM cell line (RT-2) after retrovirus mediated gene delivery in vitro and in vivo. Significant reductions in tumor cell growth rate were found in p16 and p21 infected cells (60 +/- 12% vs 66 +/- 15%) compared to p53 (35 +/- 9%). In vitro colony formation assay also showed significant reductions after p16 and p21 gene delivery (98 +/- 5% vs 91 +/- 10%) compared to p53 (50 +/- 18%). In addition, the tumor suppression efficacy were investigated and compared in vivo. Retroviral mediated p16 and p21 gene deliveries in glioblastomas resulted in more than 90% reductions in tumor growth (92 +/- 26% vs 90 +/- 22%) compared to p53 (62 +/- 18%). Tumor suppressor gene insertions in situ further prolonged animal survival. Overall p16 and p21 genes showed more powerful tumor suppressor effects than p53. The results were not surprising, as p16 and p21 are more downstream in the cell cycle regulatory pathway compared to p53. Moreover, the mechanism involved in each of their suppressor effects is different. This study demonstrates the feasibility of using tumor suppressor genes in regulating the growth of glioma in vitro and in situ.  相似文献   

15.
Cheung P  Dennis JW 《Glycobiology》2007,17(7):767-773
Phosphatase and tensin homolog (Pten) phosphatase opposes intracellular phosphoinositide 3-kinase (PI3K)/Akt signaling and is a potent tumor suppressor, while Golgi beta1,6 N-acetylglucosaminyltransferase V (Mgat5) is positively associated with cancer progression and metastasis. beta1,6GlcNAc-branched N-glycans on receptor glycoproteins promote their surface residency and sensitizes cells to growth factor signaling. Here we demonstrate that the Pten heterozygosity in mouse embryonic fibroblasts enhances cell adhesion-dependent PI3K/Akt signaling, cell spreading, and proliferation, while Pten/Mgat5 double mutant cells are normalized. However, planar asymmetry typical of fibroblasts and invasive carcinomas is not fully rescued, suggesting that Mgat5 and Pten function together to regulate the membrane dynamics of PI3K/Akt signaling typical of motile cells. Pten heterozygosity was associated with increased surface beta1,6GlcNAc-branched N-glycans, suggesting positive feedback from PI3K signaling to N-glycan branching. In vivo, Mgat5(-/-) Pten(+/-) and Mgat5(+/-)Pten(+/-)mutant mice showed a small but significant increase in longevity compared with Pten(+/-) mice. Taken together, our results reveal that Mgat5 and Pten interact in an opposing manner to regulate cellular sensitivities to extracelluar growth cues.  相似文献   

16.
Prostate cancer is the most commonly diagnosed neoplasm in men. LNCaP cells continue to possess many of the molecular characteristics of in situ prostate cancer. These cells lack ras mutations, and mitogen-activated protein kinase (MAPK) is not extensively phosphorylated in these cells. To determine the effects of ras/raf/MAPK pathway activation in these cells, we transfected LNCaP cells with an activatable form of c-raf-1(deltaRaf-1:ER). Activation of deltaRaf-1:ER, with resultant MAPK activation, reduced plating efficiency and soft agarose cloning efficiency 30-fold in LNCaP cells. Cell cycle distribution showed an accumulation of cells in G1 and was associated with the induction of CDK inhibitor p21WAF1/CIP1 at the protein and mRNA levels. p21WAF1/CIP1 mRNA stability was increased after deltaRaf-1:ER activation. In addition, activated deltaRaf-1:ER induced the senescence associated-beta-galactosidase in LNCaP cells. These data demonstrate that raf activation can activate growth inhibitory pathways leading to growth suppression in prostate carcinoma cells and also suggest that raf/MEK/MAPK pathway activation, rather than inhibition, may be a therapeutic target for some human prostate cancer cells.  相似文献   

17.
Restitution of lost tumor-suppressor activities may be a promising strategy to target specifically cancer cells. However, the action of ectopically expressed tumor-suppressor genes depends on genetic background of tumoral cells. Ectopic expression of p16(INK4a) induces either cell cycle arrest or apoptosis in different pancreatic cancer cell lines. We examined the molecular mechanisms mediating these two different cellular responses to p16 overexpression. Ectopic expression of p16 leads to G1 arrest in NP-9 cells by redistributing p21/p27 CKIs and inhibiting cyclin-dependent kinase CDK2 activity. In contrast, in NP-18 cells cyclin E (CycE)/CDK2 activity is significantly higher and is not downregulated by p16-mediated redistribution of p21/p27. Moreover, inhibition of CDK4 activity with fascaplysine, which does not affect CycE/CDK2 activity, reduces pocket protein phosphorylation in both cell lines, but fails to induce growth arrest. Like overexpression of p16, fascaplysine induces apoptosis in NP-18 cells, suggesting that inhibition of D-type cyclin/CDK activity in cells with high levels of CycE/CDK2 activity activates an apoptotic pathway. Inhibition of CycE/CDK2 activity via ectopic expression of p21 in NP-18 cells overexpressing p16 induces growth arrest and prevents p16-mediated apoptosis. Accordingly, silencing of p21 expression by using small interfering RNA switches the fate of p16-expressing NP-9 cells from cell cycle arrest to apoptosis. Our data suggest that, after CDK4/6 inactivation, the fate of pancreatic tumor cells depends on the ability to modulate CDK2 activity.  相似文献   

18.
19.
APC/Cdh1 is a major cell cycle regulator and its function has been implicated in DNA damage repair; however, its exact role remains unclear. Using affinity purification coupled with mass spectrometry, we identified Claspin as a novel Cdh1-interacting protein and further demonstrated that Claspin is a novel Cdh1 ubiquitin substrate. As a result, inactivation of Cdh1 leads to activation of the Claspin/Chk1 pathway. Previously, we demonstrated that Rb interacts with Cdh1 to influence its ability to degrade Skp2. Here, we report that Cdh1 reciprocally regulates the Rb pathway through competing with E2F1 to bind the hypophosphorylated form of Rb. Although inactivation of Cdh1 in HeLa cells, with defective p53/Rb pathways, led to premature S phase entry, acute depletion of Cdh1 in primary human fibroblasts resulted in premature senescence. Acute loss of many other major tumor suppressors, including PTEN and VHL, also induces premature senescence in a p53- or Rb-dependent manner. Similarly, we showed that inactivation of the p53/Rb pathways by overexpression of SV40 LT-antigen partially reversed Cdh1 depletion–induced growth arrest. Therefore, loss of Cdh1 is only beneficial to cells with abnormal p53 and Rb pathways, which helps explain why Cdh1 loss is not frequently found in many tumors.  相似文献   

20.
Rb(+/+):Rb(-/-) chimeric mice are healthy until early in adulthood when they develop lethal pituitary tumors composed solely of Rb(-/-) cells. In an effort to delineate the minimal structures of the retinoblastoma protein necessary for RB tumor suppression function, chimeric animals derived from stably transfected RB(-/-) embryonic stem (ES) cells were generated. One such ES cell transfectant expressed a human RB allele encoding a stable, truncated nuclear derivative lacking residues 1 to 378 (Delta 1-378). Others encoded either wild-type human RB or an internally deleted derivative of the Delta 1-378 mutant. All gave rise to viable chimeric animals with comparable degrees of chimerism. However, unlike control mice derived, in part, from naive Rb(-/-) ES cells or from ES cells transformed by the double RB mutant, Delta 1-378/Delta exon22, animals derived from either wild-type RB- or Delta 1-378 RB-producing ES cells failed to develop pituitary tumors. Thus, in this setting, a substantial fraction of the RB sequence is unnecessary for RB-mediated tumor suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号