首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rat neonatal myocytes, a constitutively active G alpha(q) causes cellular injury and apoptosis. However, stimulation of the alpha(1)-adrenergic receptor, one of the G(q) protein-coupled receptors, with phenylephrine for 48 h causes little cellular injury and apoptosis. Expression of the G beta gamma-sequestering peptide beta ARK-ct increases the phenylephrine-induced cardiac injury, indicating that G beta gamma released from G(q) counteracts the G alpha(q)-mediated cellular injury. Stimulation with phenylephrine activates extracellular signal-regulated kinase (ERK) and Akt, and activation is significantly blunted by beta ARK-ct. Inhibition of Akt by inhibitors of phosphatidylinositol 3-kinase increases the cellular injury induced by phenylephrine stimulation. In contrast to the inhibition of Akt, inhibition of ERK does not affect the phenylephrine-induced cardiac injury. These results suggest that G beta gamma released from G(q) upon alpha(1)-adrenergic receptor stimulation activates ERK and Akt. However, activation of Akt but not ERK plays an important role in the protection against the G alpha(q)-induced cellular injury and apoptosis.  相似文献   

2.
Sphingosine 1-phosphate (S1P) is released at sites of tissue injury and effects cellular responses through activation of G protein-coupled receptors. The role of S1P in regulating cardiomyocyte survival following in vivo myocardial ischemia-reperfusion (I/R) injury was examined by using mice in which specific S1P receptor subtypes were deleted. Mice lacking either S1P(2) or S1P(3) receptors and subjected to 1-h coronary occlusion followed by 2 h of reperfusion developed infarcts equivalent to those of wild-type (WT) mice. However, in S1P(2,3) receptor double-knockout mice, infarct size following I/R was increased by >50%. I/R leads to activation of ERK, JNK, and p38 MAP kinases; however, these responses were not diminished in S1P(2,3) receptor knockout compared with WT mice. In contrast, activation of Akt in response to I/R was markedly attenuated in S1P(2,3) receptor knockout mouse hearts. Neither S1P(2) nor S1P(3) receptor deletion alone impaired I/R-induced Akt activation, which suggests redundant signaling through these receptors and is consistent with the finding that deletion of either receptor alone did not increase I/R injury. The involvement of cardiomyocytes in S1P(2) and S1P(3) receptor mediated activation of Akt was tested by using cells from WT and S1P receptor knockout hearts. Akt was activated by S1P, and this was modestly diminished in cardiomyocytes from S1P(2) or S1P(3) receptor knockout mice and completely abolished in the S1P(2,3) receptor double-knockout myocytes. Our data demonstrate that activation of S1P(2) and S1P(3) receptors plays a significant role in protecting cardiomyocytes from I/R damage in vivo and implicate the release of S1P and receptor-mediated Akt activation in this process.  相似文献   

3.
Adult mouse ventricular myocytes express S1P(1), S1P(2), and S1P(3) receptors. S1P activates Akt and ERK in adult mouse ventricular myocytes through a pertussis toxin-sensitive (G(i/o)-mediated) pathway. Akt and ERK activation by S1P are reduced approximately 30% in S1P(3) and 60% in S1P(2) receptor knock-out myocytes. With combined S1P(2,3) receptor deletion, activation of Akt is abolished and ERK activation is reduced by nearly 90%. Thus the S1P(1) receptor, while present in S1P(2,3) receptor knock-out myocytes, is unable to mediate Akt or ERK activation. In contrast, S1P induces pertussis toxin-sensitive inhibition of isoproterenol-stimulated cAMP accumulation in both WT and S1P(2,3) receptor knock-out myocytes demonstrating that the S1P(1) receptor can functionally couple to G(i). An S1P(1) receptor selective agonist, SEW2871, also decreased cAMP accumulation but failed to activate ERK or Akt. To determine whether localization of the S1P(1) receptor mediates this signaling specificity, methyl-beta-cyclodextrin (MbetaCD) treatment was used to disrupt caveolae. The S1P(1) receptor was concentrated in caveolar fractions, and associated with caveolin-3 and this localization was disrupted by MbetaCD. S1P-mediated activation of ERK or Akt was not diminished but inhibition of cAMP accumulation by S1P and SEW2871 was abolished by MbetaCD treatment. S1P inhibits the positive inotropic response to isoproterenol and this response is also mediated through the S1P(1) receptor and lost following caveolar disruption. Thus localization of S1P(1) receptors to caveolae is required for the ability of this receptor to inhibit adenylyl cyclase and contractility but compromises receptor coupling to Akt and ERK.  相似文献   

4.
Our previous studies on cardiac myocytes showed that positive inotropic concentrations of the digitalis drug ouabain activated signaling pathways linked to Na(+)-K(+)-ATPase through Src and epidermal growth factor receptor (EGFR) and led to myocyte hypertrophy. In view of the known involvement of phosphatidylinositol 3-kinase (PI3K)-Akt pathways in cardiac hypertrophy, the aim of the present study was to determine whether these pathways are also linked to cardiac Na(+)-K(+)-ATPase and, if so, to assess their role in ouabain-induced myocyte growth. In a dose- and time-dependent manner, ouabain activated Akt and phosphorylation of its substrates mammalian target of rapamycin and glycogen synthase kinase in neonatal rat cardiac myocytes. Akt activation by ouabain was sensitive to PI3K inhibitors and was also noted in adult myocytes and isolated hearts. Ouabain caused a transient increase of phosphatidylinositol 3,4,5-trisphosphate content of neonatal myocytes, activated class IA, but not class IB, PI3K, and increased coimmunoprecipitation of the alpha-subunit of Na(+)-K(+)-ATPase with the p85 subunit of class IA PI3K. Ouabain-induced activation of ERK1/2 was prevented by Src, EGFR, and MEK inhibitors, but not by PI3K inhibitors. Activation of Akt by ouabain, however, was sensitive to inhibitors of PI3K and Src, but not to inhibitors of EGFR and MEK. Similarly, ouabain-induced myocyte hypertrophy was prevented by PI3K and Src inhibitors, but not by an EGFR inhibitor. These findings 1) establish the linkage of the class IA PI3K-Akt pathway to Na(+)-K(+)-ATPase and the essential role of this linkage to ouabain-induced myocyte hypertrophy and 2) suggest cross talk between these PI3K-Akt pathways and the signaling cascades previously identified to be associated with cardiac Na(+)-K(+)-ATPase.  相似文献   

5.
Cardiotrophin-1 protects cardiac myocytes from ischaemic re-oxygenation (IR) injury. CT-1 activates MEK1/2,p42/44MAPK as well as the phosphatidylinositol (PI) 3-OH kinase (PI3) protein kinase B (PKB/Akt) pathway. In this study we investigate the signalling pathways that mediate the anti-apoptotic cell survival effect of CT-1 in IR. Dominant negative gene based inhibitors of MEK1/2, PI3-kinase and Akt inhibited CT-1 mediated cardioprotection in re-oxygenation as did chemical inhibitors of the PI3-kinase pathway. Hence the PI3-kinase/Akt pathway is required in addition to MEK1/2 to mediate CT-1 cardioprotection in IR.  相似文献   

6.
We investigated whether plasma long-chain sphingoid base (LCSB) concentrations are altered by transient cardiac ischemia during percutaneous coronary intervention (PCI) in humans and examined the signaling through the sphingosine-1-phosphate (S1P) cascade as a mechanism underlying the S1P cardioprotective effect in cardiac myocytes. Venous samples were collected from either the coronary sinus (n = 7) or femoral vein (n = 24) of 31 patients at 1 and 5 min and 12 h, following induction of transient myocardial ischemia during elective PCI. Coronary sinus levels of LCSB were increased by 1,072% at 1 min and 941% at 5 min (n = 7), while peripheral blood levels of LCSB were increased by 579% at 1 min, 617% at 5 min, and 436% at 12 h (n = 24). In cultured cardiac myocytes, S1P, sphingosine (SPH), and FTY720, a sphingolipid drug candidate, showed protective effects against CoCl induced hypoxia/ischemic cell injury by reducing lactate dehydrogenase activity. Twenty-five nanomolars of FTY720 significantly increased phospho-Pak1 and phospho-Akt levels by 56 and 65.6% in cells treated with this drug for 15 min. Further experiments demonstrated that FTY720 triggered nitric oxide release from cardiac myocytes is through pertussis toxin-sensitive phosphatidylinositol 3-kinase/Akt/endothelial nitric oxide synthase signaling. In ex vivo hearts, ischemic preconditioning was cardioprotective in wild-type control mice (Pak1(f/f)), but this protection appeared to be ineffective in cardiomyocyte-specific Pak1 knockout (Pak1(cko)) hearts. The present study provides the first direct evidence of the behavior of plasma sphingolipids following transient cardiac ischemia with dramatic and early increases in LCSB in humans. We also demonstrated that S1P, SPH, and FTY720 have protective effects against hypoxic/ischemic cell injury, likely a Pak1/Akt1 signaling cascade and nitric oxide release. Further study on a mouse model of cardiac specific deletion of Pak1 demonstrates a crucial role of Pak1 in cardiac protection against ischemia/reperfusion injury.  相似文献   

7.
The activation of phosphatidylinositol (PI) 3-kinase and Akt/protein kinase B (PKB) by tumor necrosis factor (TNF)-alpha and their roles on stimulation of protein synthesis were investigated in cultured neonatal rat cardiac myocytes. Treatment of cells with TNF-alpha resulted in enlargement of cell surface area and stimulation of protein synthesis without affecting myocyte viability. TNF-alpha induced marked activation of PI3-kinase and Akt/PKB, and the activation of PI3-kinase and Akt/PKB was rapid (maximal at 10 and 15 min, respectively) and concentration dependent. Akt/PKB activation by TNF-alpha was inhibited by a PI3-kinase-specific inhibitor LY-294002 and adenovirus-mediated expression of a dominant negative mutant of PI3-kinase, indicating that TNF-alpha activates Akt/PKB through PI3-kinase activation. Furthermore, TNF-alpha-induced protein synthesis was inhibited by pretreatment with LY-294002 and expression of a dominant negative mutant of PI3-kinase or Akt/PKB. These results indicate that activation of the PI3-kinase-Akt/PKB pathway plays an essential role in protein synthesis induced by TNF-alpha in cardiac myocytes.  相似文献   

8.
Neuregulin (NRG)-1beta has a prosurvival effect on cardiac myocytes via the phosphatidylinositol-3-kinase/Akt pathway, but the physiological regulators of this system in the intact heart are unknown. In this study, we tested the hypothesis that reactive oxygen species regulate NRG/erbB signaling. We used isolated adult rat ventricular myocytes (ARVMs) or cardiac microvascular endothelial cells (CMECs) in monoculture, or together in coculture. H2O2 induced NRG-1beta release from CMECs in a concentration-dependent manner, and conditioned medium from H2O2-treated CMEC activated ARVM erbB4. NRG-1beta release occurred via proteolytic cleavage of 115-kDa transmembrane NRG-1beta and was inhibited by the metalloproteinase inhibitor 1,10-phenanthroline. In myocyte monoculture, H2O2 induced erbB4-dependent, but NRG-independent, activation of Akt. To elucidate the bioactivity of CMEC-derived NRG-1beta on ARVMs, we examined H2O2-induced myocyte apoptosis in co-culture using an antibody to NRG-1beta. The percentages of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were significantly higher in the anti-NRG-1beta group than in the control group. The change in apoptosis induced by anti-NRG-1beta in co-culture was similar in magnitude to the protection of myocytes by addition of recombinant NRG-1beta to ARVM monocultures. Activation of NRG/erbB paracrine signaling was also seen in the intact heart subjected to oxidative stress by ischemia-reperfusion injury. Isolated perfused mouse hearts subjected to 15 min of ischemia, followed by 30 min of reperfusion, showed complete proteolytic cleavage of 115-kDa NRG-1beta, with concomitant erbB4 phosphorylation. These results demonstrate that reactive oxygen species activate NRG-1beta/erbB4 paracrine signaling in the heart and suggest that this system is involved in cardiac adaptation to oxidative stress.  相似文献   

9.
Hepatic myofibroblasts (hMFs) are central in the development of liver fibrosis during chronic liver diseases, and their removal by apoptosis contributes to the resolution of liver fibrosis. We previously identified Edg receptors for sphingosine 1-phosphate (S1P) in human hMFs. Here, we investigated the effects of S1P on hMF apoptosis. S1P reduced viability of serum-deprived hMFs by an apoptotic process that was unrelated to the conversion of S1P into sphingosine and ceramide. The apoptotic effects of S1P were receptor-independent because dihydro-S1P, an Edg agonist, had no effect. S1P also stimulated a receptor-dependent survival pathway, revealed by enhanced activation of caspase-3 by S1P in the presence of pertussis toxin. Cell survival relied on two pertussis toxin-sensitive events, activation of ERK and activation of phosphatidylinositol 3-kinase (PI3K)/Akt by S1P. Both pathways were also activated by dihydro-S1P. Blunting either ERK or PI3K enhanced caspase-3 stimulation by S1P, and simultaneous inhibition of both pathways resulted in additive effects on caspase-3 activation. In conclusion, S1P induces apoptosis of human hMFs via a receptor-independent mechanism and stimulates a survival pathway following activation of Edg receptors. The survival pathway arises from the sequential activation of G(i)/G(o) proteins and independent stimulations of ERK and PI3K/Akt. Therefore, blocking Edg receptors may sensitize hepatic myofibroblasts to apoptosis by S1P.  相似文献   

10.
Endothelial dysfunction plays a vital role during the initial stage of atherosclerosis. Oxidized low-density lipoprotein (ox-LDL) induces vascular endothelial injury and vessel wall inflammation. Sphingosine-1-phosphate (S1P) exerts numerous vasoprotective effects by binding to diverse S1P receptors (S1PRs; S1PR1-5). A number of studies have shown that in endothelial cells (ECs), S1PR2 acts as a pro-atherosclerotic mediator by stimulating vessel wall inflammation through the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Scavenger receptor class B member I (SR-BI), a high-affinity receptor for apolipoprotein A-I (apoA-I)/high-density lipoprotein (HDL), inhibits nuclear factor-κB (NF-κB) translocation and decreases the plasma levels of inflammatory mediators via the PI3K/Akt pathway. We hypothesized that the inflammatory effects of S1P/S1PR2 on ECs may be regulated by apoA-I/SR-BI. The results showed that ox-LDL, a pro-inflammatory factor, augmented the S1PR2 level in human umbilical vein endothelial cells (HUVECs) in a dose- and time-dependent manner. In addition, S1P/S1PR2 signaling influenced the levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-10, aggravating inflammation in HUVECs. Moreover, the pro-inflammatory effects induced by S1P/S1PR2 were attenuated by SR-BI overexpression and enhanced by an SR-BI inhibitor, BLT-1. Further experiments showed that the PI3K/Akt signaling pathway was involved in this process. Taken together, these results demonstrate that apoA-I/SR-BI negatively regulates S1P/S1PR2-mediated inflammation in HUVECs by activating the PI3K/Akt signaling pathway.  相似文献   

11.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.  相似文献   

12.
Extracellular (ex) HSP60 is increasingly recognized as an agent of cell injury. Previously, we reported that low endotoxin exHSP60 causes cardiac myocyte apoptosis. Our findings supported a role for Toll-like receptor (TLR) 4 in HSP60 mediated apoptosis. To further investigate the involvement of TLR4 in cardiac injury, we studied adult cardiac myocytes from C3H/HeJ (HeJ) mice, which have a mutant, nonfunctional TLR4, and compared the results with parallel studies using wild-type (WT) mice. Nuclear factor κB (NFκB) activation is an early step downstream of TLR4. NFκB was activated 1 h after treatment with HSP60 in WT, but not HeJ mouse myocytes. ExHSP60 caused apoptosis in cardiac myocytes from WT mice, but not in myocytes from the HeJ mutants. To further elucidate the importance of exHSP60 in cardiac myocyte injury, both WT and HeJ mutant isolated mouse adult cardiac myocytes were exposed to hypoxia/reoxygenation. Anti-HSP60 antibody treatment reduced apoptosis in the WT group, but had no effect on the HeJ mutant myocytes. Unexpectedly, necrosis was also decreased in the HeJ mutants. Necrosis after hypoxia/reoxygenation in WT cardiac myocytes was mediated in part by TLR2 and TLR4 through rapid activation of PKCα, followed by increased expression of Nox2, and this was ameliorated by blocking antibodies to TLR2/4. These studies provide further evidence that TLR4 mediates exHSP60-associated apoptosis and that exHSP60 has an important role in cardiac myocyte injury, both apoptotic and necrotic.  相似文献   

13.
PDK1, the master regulator of AGC kinase signal transduction   总被引:2,自引:0,他引:2  
The interaction of insulin and growth factors with their receptors on the outside surface of a cell, leads to the activation of phosphatidylinositol 3-kinase (PI 3-kinase) and generation of the phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) second messenger at the inner surface of the cell membrane. One of the most studied signalling events controlled by PtdIns(3,4,5)P3, comprises the activation of a group of AGC family protein kinases, including isoforms of protein kinase B (PKB)/Akt, p70 ribosomal S6 kinase (S6K), serum- and glucocorticoid-induced protein kinase (SGK) and protein kinase C (PKC), which play crucial roles in regulating physiological processes relevant to metabolism, growth, proliferation and survival. Here, we review recent biochemical, genetic and structural studies on the 3-phosphoinositide-dependent protein kinase-1 (PDK1), which phosphorylates and activates the AGC kinase members regulated by PI 3-kinase. We also discuss whether inhibitors of PDK1 might have chemotherapeutic potential in the treatment of cancers in which the PDK1-regulated AGC kinases are constitutively activated.  相似文献   

14.
In preliminary experiments it was established that the hypertrophic and hyperplastic responses of neonatal cardiac myocytes in culture were associated with enhanced expression of IGF-1 and IGF-1 receptors in these cells. Therefore, to determine the role of IGF-1 receptors on myocyte growth, cells were exposed to antisense oligodeoxynucleotides to IGF-1 receptor mRNA and the effects of this intervention on DNA synthesis, nuclear mitotic division, and changes in the number of myocytes were measured. Moreover, the influence of this procedure on ANF induction and myocyte cell volume was examined. Inhibition of the formation of IGF-1 receptors on myocytes suppressed DNA replication, mitosis, and cell proliferation. In contrast, the antisense treatment did not alter the expression of ANF in myocytes or cellular hypertrophy. Finally, IGF-1 stimulated DNA synthesis in myocytes cultured in serum-free medium, without inducing cellular hypertrophy. In conclusion, ligand activation of IGF-1 receptors on myocytes appears to be coupled with cell proliferation, whereas myocyte cellular hypertrophy seems to be independent from this effector pathway.  相似文献   

15.
Objective To investigate the effect of siRNA against PTP-1B on neonatal rat cardiac myocyte apoptosis induced by hypoxia-reoxygenation (H/R) and its molecular mechanisms. Methods Isolated neonatal and adult rat cardiac myocytes were cultured for 24 h after PTP-1B siRNA transfection, and with 2, 4 and 6 h of hypoxia followed by 6 h of reoxygenation (H/R). The cardiac myocyte apoptosis induced by the treatments was assessed by TUNEL staining. Levels of PTP-1B and phospho-Akt were determined by Western blot, colorimetric assay kits were used to measure activities of caspase-3 and 8, and co-immunoprecipitation was used to check the amount of PTP-1B bound to FasR. Sodium orthovanadate, a general pharmacological phosphatase blocker and LY294002, an inhibitor of PI3-kinase/Akt pathway, were respectively used to inhibit PTP-1B and Akt activity. Results H/R resulted in severe injury in cultured rat cardiomyocytes and upregulated PTP-1B expression. However, siRNA against PTP-1B significantly decreased the number of apoptotic cardiomyocytes induced by 4H/6R as compared with cells without siRNA treatment (Apoptotic index: 12.1 ± 1.4% vs. 23.2 ± 1.6%, P < 0.05), along with greater phosphorylation of Akt, reduced activities of caspase-3 and 8, and the lower association of PTP-1B with FasR. Vanadate and LY294002 also partly reduced apoptosis of cardiomyocytes induced by 4H/6R. Conclusions PTP-1B is a key regulator of apoptosis of cardiomyocytes induced by H/R, and siRNA against PTP-1B effectively protects cardiomyocytes against H/R injury, the mechanisms of which might be associated with Akt activation, the reduction of both caspase-3 and 8 activities, and the lower amount of PTP-1B bound to FasR.  相似文献   

16.
Sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF) elicit numerous biological responses including cell survival, growth, migration, and differentiation in endothelial cells mediated by the endothelial differentiation gene, a family of G-protein-coupled receptors, and fetal liver kinase-1/kinase-insert domain-containing receptor (Flk-1/KDR), one of VEGF receptors, respectively. Recently, it was reported that S1P or VEGF treatment of endothelial cells leads to phosphorylation at Ser-1179 in bovine endothelial nitric oxide synthase (eNOS), and this phosphorylation is critical for eNOS activation. S1P stimulation of eNOS phosphorylation was shown to involve G(i) protein, phosphoinositide 3-kinase, and Akt. VEGF also activates eNOS through Flk-1/KDR, phosphoinositide 3-kinase, and Akt, which suggested that S1P and VEGF may share upstream signaling mediators. We now report that S1P treatment of bovine aortic endothelial cells acutely increases the tyrosine phosphorylation of Flk-1/KDR, similar to VEGF treatment. S1P-mediated phosphorylation of Flk-1/KDR, Akt, and eNOS were all inhibited by VEGF receptor tyrosine kinase inhibitors and by antisense Flk-1/KDR oligonucleotides. Our study suggests that S1P activation of eNOS involves G(i), calcium, and Src family kinase-dependent transactivation of Flk-1/KDR. These data are the first to establish a critical role of Flk-1/KDR in S1P-stimulated eNOS phosphorylation and activation.  相似文献   

17.
Phospholipase D (PLD), phosphatidylinositol 3-kinase (PI3K), and Akt are known to be involved in cellular signaling related to proliferation and cell survival. In this report, we provide evidence that PLD links sphingosine 1-phosphate (S1P)-induced activation of the G protein-coupled EDG3 receptor to stimulation of PI3K and its downstream effector Akt in Chinese hamster ovary (CHO) cells. S1P stimulation of EDG3-overexpressing CHO cells but not vector-transfected cells induced activation of PLD, PI3K, and Akt in a time- and dose-dependent manner. Akt phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002 (2-(4-monrpholinyl)-8-phenyl-4H-1-benzopyran-4-one), indicating that Akt activation was dependent on PI3K. S1P-induced activation of PI3K and Akt was abrogated by 1-butanol, which inhibited S1P-induced accumulation of phosphatidic acid by serving as a phosphatidyl group acceptor in the transphosphatidylation reaction catalyzed by PLD, whereas both PI3K and Akt activation were not inhibited by 2-butanol without such reaction. Co-expression of wild-type PLD2 with myc-Akt resulted in increased Akt activation in response to S1P. In contrast, co-expression of a catalytically inactive mutant of PLD2 eliminated the S1P-induced Akt activation. The treatment of EDG3-expressing CHO cells with exogenous Streptomyces chromofuscus PLD, which caused an accumulation of phosphatidic acid, resulted in increases in PI3K activity and the phosphorylation of Akt, the latter of which was completely abolished by LY294002. Furthermore, S1P-induced membrane ruffling, which was dependent on PI3K and Rac, was inhibited by 1-butanol, but not by 2-butanol. These results demonstrate that PLD participates in the activation of PI3K and Akt stimulation of EDG3 receptor.  相似文献   

18.
Cardiac myocyte apoptosis underlies the pathophysiology of cardiomyopathy, and plays a critical role in the transition from myocardial hypertrophy to heart failure. Angiotensin II (Ang II) induces cardiac myocyte apoptosis and hypertrophy which contribute to heart failure possibly through enhanced oxidative stress; however, the mechanisms underlying the activation of both pathways and their interactions remain unclear. In the present study, we have investigated whether overexpression of the antioxidant protein heme oxygenase-1 (HO-1) protects against apoptosis and hypertrophy in cultured rat cardiac myocytes treated with Ang II. Our findings demonstrate that Ang II (100 nM, 24 h) alone upregulates HO-1 expression and induces both myocyte hypertrophy and apoptosis, assessed by measuring terminal deoxynucleotidyltransferase dUTP nick-end labelling (TUNEL) staining, caspase-3 activity and mitochondrial membrane potential. Ang II elicited apoptosis was augmented in the presence of tin protoporphyrin, an inhibitor of HO activity, while HO-1 gene transfer to myocytes attenuated Ang II-mediated apoptosis but not hypertrophy. Adenoviral overexpression of HO-1 was accompanied by a significant increase in Ang II induced phosphorylation of Akt, however, Ang II-mediated p38 mitogen activated protein kinase (MAPK) phosphorylation was attenuated. Inhibition of phosphotidylinositol-3-kinase enhanced myocyte apoptosis elicited by Ang II, however, p38MAPK inhibition had no effect, suggesting that overexpression of HO-1 protects myocytes via augmented Akt activation and not through modulation of p38MAPK activation. Our findings identify the signalling pathways by which HO-1 gene transfer protects against apoptosis and suggest that overexpression of HO-1 in cardiomyopathies may delay the transition from myocyte hypertrophy to heart failure.  相似文献   

19.
Sphingosine 1-phosphate (S1P) stimulates expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in human umbilical vein endothelial cells. S1P-induced actions were associated with nuclear factor kappa-B activation and inhibited by pertussis toxin as well as by antisense oligonucleotides specific to S1P receptors, especially, S1P(3). S1P also stimulated endothelial nitric oxide synthase (eNOS) and its activation was markedly inhibited by the antisense oligonucleotide for the S1P(1) receptor rather than that for the S1P(3) receptor. The dose-response curve of S1P to stimulate adhesion molecule expression was shifted to the left in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin and the NOS inhibitor Nomega-nitro-l-arginine methyl ester. NO donor S-nitroso-N-acetylpenicillamine inhibited S1P-induced adhesion molecule expression. Moreover, tumor necrosis factor-alpha-induced adhesion molecule expression was markedly inhibited by S1P in a manner sensitive to inhibitors for PI3-K and NOS. These results suggest that S1P receptors are coupled to both stimulatory and inhibitory pathways for adhesion molecule expression. The stimulatory pathway involves nuclear factor kappa-B and inhibitory one does phosphatidylinositol 3-kinase and NOS.  相似文献   

20.
Chronic treatment with insulin-like growth factor I (IGF-I) improves contractile function in congestive heart failure and ischemic cardiomyopathy. The present study investigated the effect of chronic treatment with IGF-I on intrinsic myocyte function and the role of the phosphatidylinositol (PI)3-kinase-Akt-sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a signaling cascade in these responses. Myocytes were isolated from 23 adult rats and cultured with and without IGF-I (10(-6) M). After 48 h of treatment, myocyte function was evaluated. IGF-I increased contractile function (percent contraction, 7.7 +/- 0.3% vs. 4.5 +/- 0.3%; P < 0.01) and accelerated relaxation time (time for 70% relengthening, 81 +/- 4 vs. 106 +/- 5 ms; P < 0.05) compared with untreated myocytes [control (Con)]. The enhanced function was associated with an increase in Ca(2+) transients assessed by fura-2 (340/380 nm; IGF-I, 0.42 +/- 0.02 vs. Con, 0.25 +/- 0.01; P < 0.01). The PI3-kinase inhibitor LY-249002 (10(-9) M) abolished the enhanced function caused by IGF-I. IGF-I increased both Akt and SERCA2a protein levels 2.5- and 4.8-fold, respectively, compared with those of Con (P < 0.01); neither phospholamban nor calsequestrin was affected. To evaluate whether the SERCA2a protein was directly mediated by Akt-SERCA2a signaling, IGF-I-induced changes in the SERCA2a protein were compared in myocytes transfected with adenovirus harboring either constitutively active Akt [multiplicity of infection (MOI), 15] or dominant negative Akt (dnAkt; MOI, 15). The ability of IGF-I to upregulate the SERCA2a protein in myocytes transfected with active Akt was absent in dnAkt myocytes. Taken together, our findings indicate that chronic treatment with IGF-I enhances intrinsic myocyte function and that this effect is due to an enhancement in intracellular Ca(2+) handling, secondary to the activation of the PI3-kinase-Akt-SERCA2a signaling cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号