首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effect of surfactants on the "fluidity" of dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was studied by means of the fluorescence depolarization technique with fatty acid fluorescent probes, in which the anthroyloxy group is introduced at different positions along the acyl chain. Three types of surfactants were examined; anionic sodium alkylsulfates, cationic alkyltrimethylammonium chlorides, and non-ionic alkanoyl-N-methylglucamides (MEGA-n). Perturbing effects of the surfactants depended on both the alkyl chain-length and the type of head group. Sodium alkylsulfates with octyl- and decyl-chain and alkyltrimethylammonium chlorides with octyl-, decyl- and dodecyl-chain did not affect the membrane fluidity when incorporated in the membrane, whereas sodium dodecylsulfate and tetradecyltrimethylammonium chloride decreased the membrane fluidity at both gel and liquid crystalline states of the membrane. All the MEGA series surfactants decreased the membrane fluidity, whose perturbing potency was in the order of MEGA-8 less than MEGA-9 approximately equal to MEGA-10. The perturbation at different depths in the membrane by sodium dodecylsulfate and MEGA-9 was also examined. No significant change in the fluidity gradient across the membrane was induced by the addition of these surfactants.  相似文献   

2.
Summary. In an attempt to increase our knowledge regarding the mechanisms of surfactant membrane interaction, we studied the action of several anionic and cationic amino acid-based surfactants on membrane fluidity using fluorescence anisotropy. Anisotropy measurements demonstrated that almost all of the surfactants studied disturbed the external region of the erythrocyte membrane without affecting the core of the bilayer. How the physico-chemical properties and structure of these compounds affect dynamics of the lipid bilayer is discussed in detail.  相似文献   

3.
The possible correlation between plasma membrane fluidity changes induced by modified cultivation conditions and cell sensitivity to the killer toxin K1 of Saccharomyces cerevisiae were investigated. Cells grown under standard conditions exhibited high toxin sensitivity. Both a membrane fluidity drop and fluidity rise brought about markedly reduced sensitivity to the toxin. These results do not fit the hypothesis of physiological relevance of direct toxin-lipid interaction, suggesting that the essential event in killer toxin action is interaction with membrane protein(s) that can be negatively influenced by any changes of membrane fluidity.  相似文献   

4.
The solubilization and mineralization of (14)C-phenanthrene in soil-water systems was examined with several commercially available surface-active agents, viz., an alkyl ethoxylate C(12)E(4); two alkylphenol ethoxylate surfactants: C(8)PE(9.5) and C(9)PE(10.5); two sorbitan ethoxylate surfactants: the sorbitan monolaurate (Tween 20) and the sorbitan monooleate (Tween 80); two pairs of nonionic ethoxylate surfactant mixtures: C(12)E(4)/C(12)E(23) at a 1:1 ratio, and C(12-15)E(3)/C(12-15)E(9) at a 1:3 ratio; and two surfactants possessing relatively high critical micelle concentration (CMC) values and low aggregation numbers: CHAPS and octyglucoside. Surface tension experiments were performed to evaluate surfactant sorption onto soil and the surfactant doses required to attain the CMC in the soil-water systems. Surfactant solubilization of (14)C-phenanthrene commenced with the onset of micellization. The addition of surface-active agents was observed not to be beneficial to the microbial mineralization of phenanthrene in the soil-water systems and, for supra-CMC surfactant doses, phenanthrene mineralization was completely inhibited for all the surfactants tested. A comparison of solubilization, surface tension, and mineralization data confirms that the inhibitory effect on microbial degradation of phenanthrene is related to the CMC of the surfactant in the presence of soil. Additional tests demonstrated the recovery of mineralization upon dilution of surfactant concentration to sub-CMC levels, and a relatively high exit rate for phenanthrene from micelles. These tests suggest that the inhibitory effect is probably related to a reversible physiological surfactant micelle-bacteria interaction, possibly through partial complexing or release of membrane material with disrupting membrane lamellar structure. This study indicates that nonionic surfactant solubilization of sorbed hydrophobic organic compounds from soil may not be beneficial for the concomitant enhancement of soil bioremediation. Additional work is needed to address physicochemical processes for bioavailability enhancement, and effects of solubilizing agents on microorganisms for remediation and treatment of hydrophobic organic compounds and nonaqueous phase liquids. (c) 1992 John Wiley & Sons Inc.  相似文献   

5.
Monoglyceride esters of fatty acids occur naturally and encompass a broad spectrum of antimicrobial activity. Monocaprylate is generally regarded as safe (GRAS) and can function both as an emulsifier and as a preservative in food. However, knowledge about its mode of action is lacking. The aim of this study was therefore to elucidate the mechanism behind monocaprylate's antimicrobial effect. The cause of cell death in Escherichia coli, Staphylococcus xylosus, and Zygosaccharomyces bailii was investigated by examining monocaprylate's effect on cell structure, membrane integrity, and its interaction with model membranes. Changes in cell structure were visible by atomic force microscopy (AFM), and propidium iodide staining showed membrane disruption, indicating the membrane as a site of action. This indication was confirmed by measuring calcein leakage from membrane vesicles exposed to monocaprylate. AFM imaging of supported lipid bilayers visualized the integration of monocaprylate into the liquid disordered, and not the solid ordered, phase of the membrane. The integration of monocaprylate was confirmed by quartz crystal microbalance measurements, showing an abrupt increase in mass and hydration of the membrane after exposure to monocaprylate above a threshold concentration. We hypothesize that monocaprylate destabilizes membranes by increasing membrane fluidity and the number of phase boundary defects. The sensitivity of cells to monocaprylate will therefore depend on the lipid composition, fluidity, and curvature of the membrane.  相似文献   

6.
呼吸链底物和抑制剂对线粒体内膜流动性的影响   总被引:4,自引:0,他引:4  
用DPH和ANS标记大鼠肝线粒体内膜,以稳态荧光偏振法,研究了呼吸链底物和抑制剂对内膜流动性的影响。1.苹果酸+谷氨酸、琥珀酸分别为底物,均能引起内膜流动性增加。2.琥珀酸对含心磷脂的脂质体的膜流动性无影响。3.在鱼藤酮存在的条件下,苹果酸+谷氨酸对内膜流动性的增加作用消失,但琥珀酸的作用仍然存在。有氰化钾时则琥珀酸的作用消失。4.不论外加底物存在与否,鱼藤酮使内膜的流动性下降,而氰化钾则使之增加。抗霉素A亦可使内膜的流动性增加。上述结果表明:线粒体内膜流动性与其功能密切相关。电子沿呼吸链传递使线粒体内膜流动性增加,这种变化可能与呼吸链成分的氧化还原态有关。  相似文献   

7.
Knowledge of the partition process of environmentally significant molecules between biological membranes and their surroundings is of vital importance to explain their activity and toxicity, as well as phenomena like absorption, distribution and metabolism. In this research effort, we have studied membrane interactions of three surfactants: t-octylphenoxypolyethoxyethanol (Triton X-100), cetyltrimethylammonium chloride (CTAC) and dodecylbenzene sulphonate (SDBS). Unilamellar liposomes (LUVs) of egg yolk phosphatidylcholine (EPC) were used as membrane models. The partition coefficient, a fundamental parameter in assessing the behaviour of xenobiotic compounds, was determined for SDBS and Triton X-100 by derivative spectrophotometry and fluorescence quenching. The effect of these surfactants upon the physico-chemical characteristics (fluidity, diameter and surface charge) of the liposome membrane was also determined. Results show that all the three surfactants cause an increase in fluidity of the liposome membrane, although for low surfactant concentrations uncharacteristic membrane rigidity was observed, probably due to a change in lipid packing density.  相似文献   

8.
C18饱和脂肪酸和胺可增加DPH标记肌浆网(SR)的荧光偏振度,而C18单不饱和脂肪酸。胺和醇则使其偏振度下降。加入MgATP,可除去单不饱和脂肪胺引起的DPH标记的荧光偏振度下降,并使之高于未加脂肪胺的对照水平。饱和酸及相应胺可使标记于膜脂中层和深层的TAS和12AS的荧光偏振度上升,不饱和酸及相应胺和醇仅使12AS荧光偏振下降。说明脂肪族类两亲物对SR膜流动性的影响与脂肪链饱和程度有关。饱和者主要使膜中、深层流动性下降.不饱和者主要使膜深层流动性升高。  相似文献   

9.
The effect of cetirizine on plasma membrane fluidity and heterogeneity of human eosinophils, neutrophils, platelets and lymphocytes was investigated using a fluorescence technique. Membrane fluidity and heterogeneity were studied by measuring the steady-state fluorescence anisotropy and fluorescence decay of 1-(4- trimethylammonium-phenyl)-6-phenyl-1, 3, 5-hexatriene (TMA-DPH) incorporated in the membrane. The results demonstrate that cetirizine (1 mug/ml) induced a significant increase in the Hpid order in the exterior part of the membrane and a decrease in membrane heterogeneity in eosinophils, neutrophils and platelets. Moreover, cetirizine blocked the PAF induced changes in membrane fluidity in these cells. Cetirizine did not influence significantly the plasma membrane of lymphocytes. These data may partially explain the effect ofcetirizine on inflammatory cell activities.  相似文献   

10.
Purdy PH  Fox MH  Graham JK 《Cryobiology》2005,51(1):102-112
Cell plasma membrane fluidity is affected by membrane lipid and protein composition as well as temperature. Altering the cholesterol content of a membrane can change membrane fluidity at different temperatures and this may affect cell survival during cryopreservation. In these experiments, we examined the effect that adding cholesterol to the membranes of Chinese hamster ovary cells (CHO) and bull sperm had on cell plasma membrane fluidity and cell survival when cells were cooled to 5 degrees C or were cryopreserved. Cells were treated with 0, 1.5 or 5.0mg cholesterol-loaded cyclodextrin (CLC), stained with N-((4-(6-phenyl-1,3,5-hexatrienyl)phenyl)propyl)trimethylammonium-p-toluenesulfonate (TMAP-DPH) to evaluate membrane fluidity and with propidium iodide to evaluate cell viability, prior to analysis by flow cytometry at 23, 5 degrees C, and after cryopreservation. CHO cells exhibited a single cell population with all cells having similar membrane fluidity. Membrane fluidity did not change when temperature had been reduced and then returned to 23 degrees C (P<0.05), however, adding cholesterol to the cells induced membranes to become more rigid (P<0.05). Bull sperm samples consisted of two cell subpopulations, one having relatively higher membrane fluidity than the other, regardless of cholesterol treatment or temperature. In addition, cells possessing the highest membrane fluidity did not survive cooling or cryopreservation efficiently. CLC treatment did not significantly alter membrane fluidity after temperature changes, but did maintain higher percentages of spermatozoa surviving cooling to 5 degrees C and cryopreservation (P<0.05). In conclusion, adding cholesterol to cell resulted in detectable membrane fluidity changes in CHO cells and increased survival of bull sperm after cooling to 5 degrees C and after cryopreservation.  相似文献   

11.
1. We have examined the interaction of tertiary amine local anesthetics with the bovine hippocampal serotonin1A (5-HT1A) receptor, an important member of the G-protein-coupled receptor superfamily. 2. The local anesthetics inhibit specific agonist and antagonist binding to the 5-HT1A receptor at a clinically relevant concentration range of the anesthetics. This is accompanied by a concomitant reduction in the binding affinity of the 5-HT1A receptor to the agonist. Interestingly, the extent of G-protein coupling of the receptor is reduced in the presence of the local anesthetics. 3. Fluorescence polarization measurements using depth-dependent fluorescent probes show that procaine and lidocaine do not show any significant change in membrane fluidity. On the other hand, tetracaine and dibucaine were found to alter fluidity of the membrane as indicated by a fluorescent probe which monitors the headgroup region of the membrane. 4. The local anesthetics showed inhibition of agonist binding to the 5-HT1A receptor in membranes depleted of cholesterol more or less to the same extent as that of control membranes in all cases. This suggests that the inhibition in ligand binding to the 5-HT1A receptor brought about by local anesthetics is independent of the membrane cholesterol content. 5. Our results on the effects of the local anesthetics on the ligand binding and G-protein coupling of the 5-HT1A receptor support the possibility that G-protein-coupled receptors could be involved in the action of local anesthetics.  相似文献   

12.
The antioxidative activity of two series of amphiphilic compounds from a group of quaternary ammonium salts has been investigated. They were so-called bifunctional surfactants synthesized to be used as common pesticides or as antioxidants. The latter application was to be ensured by providing the compounds studied with an antioxidant group. Studies on antioxidative possibilities of those compounds were performed on pig erythrocytes. Due to their hydrophobic parts, they anchor in the erythrocyte membrane and influence the degree of lipid oxidation in the erythrocyte membrane subjected to UV radiation. It was found that compounds of both series decreased the oxidation of the membrane lipids. The inhibition of this oxidation increased with the length of their hydrophobic chains up to fourteen carbon atoms. The compounds of the longest hydrophobic chains showed a somewhat weaker antioxidative activity. Of the two series studied compounds were more effective having bromide ions as counterions. The corresponding compounds of a second series (chlorides) protected erythrocyte significantly weaker against oxidation. The effect of the compounds on fluidity of the erythrocyte membrane has been studied in order to explain the oxidation results. Change in fluidity of the erythrocyte ghost membranes was found also dependent on length of the hydrophobic part of the compounds and was more pronounced in the case of bromide surfactants. The final conclusion is that the compounds studied can be succesfully used as antioxidant agents of good efficacy.  相似文献   

13.
In this study the membrane fluidity of fibroblasts under different pharmacological treatment was investigated. Two drugs, hydralazine and procainamide, were used to treat the immortalized mouse NIH 3T3 and hamster B14 fibroblasts. Membrane lipid dynamics was measured by fluorescence spectroscopy and electron spin resonance techniques. Two kinds of fluorescent probes (TMA-DPH and 12-(9-anthroyloxy)-stearic acid (12-AS)) and two spin labels (5-doxylstearic acid (5-DS) and 12-doxylstearic acid (12-DS)) were used to monitor fluidity in the upper polar and in the hydrophobic core regions of the lipid bilayer. The drugs influenced the membrane hydrophobic core, of which hydralazine induced fluidization and procainamide increased the rigidity. The membrane fluidity at the surface of the lipid bilayer was not modified by the drugs which indicates that both drugs intercalated mainly into the inner core of the cell membrane.  相似文献   

14.
Weanling male Wistar rats were deprived of dietary and light sources of vitamin D for 11-18 weeks along with age-matched diet vitamin D-repleted controls to evaluate the role of lipid fluidity in the stimulatory effect of calcitriol on Ca transport. The "static" component of fluidity of proximal small intestine brush border membrane, as assessed by steady-state fluorescence techniques using the fluorophore 1,6-diphenyl-1,3,5-hexatriene, was similar between these two groups. In contrast, the "dynamic" component of fluidity, as assessed by DL-2-(9-anthroyl)-stearic acid and DL-12-(9-anthroyl)-stearic acid, was decreased in membranes of D-deprived animals. Lipid composition was analyzed to evaluate the potential mechanism mediating these fluidity changes. In vitamin D-deprived rats, linoleic (18:2) and arachidonic (20:4) acids of the phosphatidylcholine and phosphatidylethanolamine fractions of the membrane were decreased, whereas palmitic (16:0) and stearic (18:0) acids were increased in the phosphatidylethanolamine fraction of the membrane. These associated fatty acyl alterations could explain, at least in part, the differences in membrane fluidity between D-repleted and D-deprived rats. Membrane fluidity, lipid composition, and duodenal Ca transport were also analyzed 1, 2, and 5 h after the acute administration of 1-25-dihydroxycholecalciferol to D-deprived animals. In D-deprived rats, within 1-2 h, this hormone restored to levels of vitamin D-repleted controls the dynamic component of fluidity and concentrations of the same membrane phospholipid fatty acids. Since these changes temporally precede detectable increases in Ca absorption (demonstrable only during the 5th h), these data support the hypothesis that alterations in membrane fluidity and lipid composition may play an important role in the stimulation of intestinal calcium transport by calcitriol.  相似文献   

15.
ESR spectra were recorded from rat epididymal adipocyte ghosts labeled with the 5-nitroxide stearic acid spin probe, I(12,3). Polarity-corrected and approximate order parameters, that are sensitive to the flexibility of the incorporated label, were used to evaluate the membrane lipid fluidity. Addition of CaCl2 a 37 degrees C decreased the fluidity, as indicated by positive increases in the order parameters. The ordering effect of Ca2+ was concentration-dependent, reached saturation at approx. 3--4 mM, and was completely reversed by excess EGTA. Previous studies indicated that low- and high-affinity sites on adipocyte plasma membranes are able to bind 45Ca2+, and our results suggest that Ca2+-induced alterations in the lipid fluidity involve cation binding to low-affinity sites. The cellular movements of Ca2+ and, in particular, the binding of Ca2+ to the plasma membrane may play important roles in insulin's action on fat cell function. The possibility that insulin directly alters the membrane fluidity was tested by adding hormone to freshly-prepared I(12,3)-labeled adipocyte ghosts. Insulin, at concentrations (10(-6) M) that enhance glucose uptake into intact adipocytes, did not affect the fluidity of ghosts suspended in buffers with or without Ca2+. The fluidities of I(12,3)-labeled rat adipocyte ghosts or human erythrocyte ghosts were also unaffected by various forms of human growth hormone.  相似文献   

16.
Electron spin resonance (ESR) spin label methods were used to study membrane fluidity of Chinese hamster ovary (CHO) cells grown on microcarriers and in suspension using 5-doxylstearic acid spin label as a probe. CHO cells grown on microcarriers had a more rigid cell membrane compared to CHO cells grown in suspension culture. CHO cells removed from the surface of the microcarriers by either trypsinization, EDTA treatment or osmotic shock had a membrane fluidity similar to that of CHO cells grown in suspension culture. Conversely, when the cells grown in suspension culture were attached and flattened on the surface of the microcarriers the fluidity decreased. Moreover, membrane fluidity of CHO cells grown on microcarriers changed as a function of the population density, whereas that of the cells in suspension did not. This implies that cell adhesion and/or cell-cell interactions influence the fluidity of the cell surface membrane.  相似文献   

17.
Abstract: Some reports have suggested that dantrolene interacts directly with the membrane bilayer. We investigated effects of dantrolene on changes in membrane properties induced by compound 48/80 (C48/80), a membrane stimulator. The addition of C48/80 for 1 min elicited a rapid, dose-dependent Ca2+ influx, which was reduced to 14% by the absence of external Ca2+. Dantrolene inhibited the C48/80-induced increase in Ca2+ permeability of plasma membranes in a concentration-dependent manner (0.33–10 µ M , IC50 value was 5 µ M ). We next examined C48/80-induced changes in structural and dynamic membrane properties by electron spin resonance (ESR). The ratio h 0/ h −1 was determined to evaluate membrane fluidity. C48/80 increased the membrane fluidity in a concentration-dependent manner (0.1–0.56 mg/ml). Dantrolene (10 µ M ) itself did not change the membrane fluidity, but it significantly reduced the C48/80-induced increase in membrane fluidity (0.56 mg/ml). Moreover, the C48/80-induced increase in fluidity was dependent on extracellular Ca2+. We conclude that dantrolene protects neuroblastoma cell plasma membrane from C48/80-induced membrane perturbation, which causes Ca2+ influx and an increase in membrane fluidity. These findings strongly suggest that dantrolene directly stabilizes the neuronal plasma membrane.  相似文献   

18.
Membrane effects of ionizing radiation and hyperthermia   总被引:2,自引:0,他引:2  
Results of numerous studies demonstrate that membranes are important sites of cell damage by both ionizing radiation and hyperthermia. Modification of membrane properties (mainly lipid fluidity) affects the cellular responses to radiation and hyperthermia but former concepts that membrane rigidification sensitizes cells to radiation while membrane fluidization potentiates hyperthermic damage have now been seriously challenged. It seems that the effects of membrane fluidity on cell responses to hyperthermia and radiation are due to an indirect influence on functional membrane proteins. The major role of lipid peroxidation in radiation damage to membranes has also been questioned. The existing evidence makes it unlikely that the interaction between radiation and hyperthermia is determined by the action of both agents on the same membrane components.  相似文献   

19.
The biodegradation of polycyclic aromatic hydrocarbons (PAH) often is limited by low water solubility and dissolution rate. Nonionic surfactants and sodium dodecyl sulfate increased the concentration of PAH in the water phase because of solubilization. The degradation of PAH was inhibited by sodium dodecyl sulfate because this surfactant was preferred as a growth substrate. Growth of mixed cultures with phenanthrene and fluoranthene solubilized by a nonionic surfactant prior to inoculation was exponential, indicating a high bioavailability of the solubilized hydrocarbons. Nonionic surfactants of the alkylethoxylate type and the alkylphenolethoxylate type with an average ethoxylate chain length of 9 to 12 monomers were toxic to a PAH-degrading Mycobacterium sp. and to several PAH-degrading mixed cultures. Toxicity of the surfactants decreased with increasing hydrophilicity, i.e., with increasing ethoxylate chain length. Nontoxic surfactants enhanced the degradation of fluorene, phenanthrene, anthracene, fluoranthene, and pyrene.  相似文献   

20.
Two possible reasons for the structural alterations of cell membranes caused by free radicals are lipid peroxidation and an increase in the intracellular calcium ion concentration. To characterize the alterations in membrane molecular dynamics caused by oxygen-derived free radicals and calcium, human erythrocytes were spin-labeled with 5-doxyl stearic acid, and alterations in membrane fluidity were quantified by electron spin resonance oxidase (0.07 U/mL) decreased membrane fluidity, and the addition of superoxide dismutase and catalase inhibited the effect on membrane fluidity of the hypoxanthine-xanthine oxidase system. Hydrogen peroxide (0.1 and 1 nM) also decreased membrane fluidity and caused alterations to erythrocyte morphology. In addition, a decrease in membrane fluidity was observed in erythrocytes incubated with 2.8 mM CaCl2. On the other hand, incubation of erythrocytes with calcium-free solution decreased the changes in membrane fluidity caused by hydrogen peroxide.

These results suggest that changes in membrane fluidity are directly due to lipid peroxidation and are indirectly the result of increased intracellular calcium concentration. We support the hypothesis that alterations of the biophysical properties of membranes caused by free radicals play an important role in cell injury, and that the accumulation of calcium amplifies the damge to membranes weakened by free radicals.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号