首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytological and histological studies of seeds from three facultative apomictic Citrus cultivars show that adventive embryos develop, as a rule, from the first few cell layers of the nucellus adjacent to the embryo sac in the micropylar half and occasionally from the chalazal end. The adventive embryos initiated in nucellar tissue away from the embryo sac and most of those initiated from the chalazal end of the nucellus do not develop beyond the one-celled stage. When two or more embryos are developing in the same seed, the successful development of a given embryo depends on its location in relation to access to nutrients from the endosperm. The presence of a zygote and triploid endosperm in seeds with adventive embryos, the abortion of seed when endosperm degenerates, and the lack of seed set without pollination indicate that pollination and fertilization are essential for in vivo adventive embryogenesis.  相似文献   

2.
Anatomical studies of unfertilized undeveloped seeds from open- and control-pollinated fruits of ten facultative apomictic Citrus cultivars were carried out with the aid of light and epifluorescence microscopes. With or without pollination, adventive embryos autonomously developed at all positions in the nucellus in all cultivars. The adventive embryos initiated at the chalazal end of the nucellus were more vigorous than those initiated at the micropylar end. Because of the lack of endosperm and poor seed development, however, all adventive embryos within the unfertilized seeds terminated their development at the globular or early cotyledonary stages and were unable to germinate under natural conditions. The capability of unfertilized seeds to develop varied from species to species. Growth of the adventive embryos was dependent on nucellus size, but the growth rate of adventive embryos relative to nucellus size was different in different species. Neither pollination, fertilization nor subsequent zygote and endosperm development further stimulated adventive embryo initiation. Conversely, pollination and subsequent fertilization of other seeds in the same fruit slightly, but significantly, suppressed adventive embryo growth in the unfertilized seeds. These facts concerning adventive embryogenesis in unfertilized seeds indicate that neither pollination nor fertilization is essential for in vivo adventive embryogenesis and that normal endosperm is necessary for perfect development of adventive embryos initiated only in the micropylar half of the nucellus.  相似文献   

3.
水蔗草兼性无融合生殖胚胎学研究   总被引:4,自引:0,他引:4  
对水蔗草 (ApludamuticaL .)的生殖方式进行研究 ,结果表明水蔗草进行兼性无融合生殖。胚囊发育分为两种类型 ,即有性生殖的蓼型和无孢子生殖的大黍型。无融合生殖胚囊频率为 6 0 .74%。在大孢子母细胞发育至四分体后 ,珠孔端的 3个大孢子解体。合点端的大孢子未解体时 ,邻近大孢子的 1个珠心细胞开始特化 ,形成无融合生殖的原始细胞 ,由该原始细胞发育形成有 1个卵细胞、1个助细胞和 2个极核的四核胚囊。  相似文献   

4.
对水蔗草(Apluda mutica L.)的生殖方式进行研究,结果表明水蔗草进行兼性无融合生殖.胚囊发育分为两种类型,即有性生殖的蓼型和无孢子生殖的大黍型.无融合生殖胚囊频率为60.74%.在大孢子母细胞发育至四分体后,珠孔端的3个大孢子解体.合点端的大孢子未解体时,邻近大孢子的1个珠心细胞开始特化,形成无融合生殖的原始细胞,由该原始细胞发育形成有1个卵细胞、1个助细胞和2个极核的四核胚囊.  相似文献   

5.
Apomixis represents an alteration of classical sexual plant reproduction to produce seeds that have essentially clonal embryos. In this report, hickory (Carya cathayensis Sarg.), which is an important oil tree, is identified as a new apomictic species. The ovary has a chamber containing one ovule that is unitegmic and orthotropous. Embryological investigations indicated that the developmental pattern of embryo sac formation is typical polygonum-type. Zygote embryos were not found during numerous histological investigations, and the embryo originated from nucellar cells. Nucellar embryo initials were found both at the micropylar and chalazal ends of the embryo sac, but the mature embryo developed only at the nucellar beak region. The mass of the nucellar embryo initial at the nucellar beak region developed into a nucellar embryo or split into two nucellar proembryos. The later development of the nucellar embryo was similar to the zygotic embryo and progressed from globular embryo to heart-shape embryo and to cotyledon embryo.  相似文献   

6.
采用田间去雄套袋、花粉活性与花粉管萌发观测等交配系统实验,辅以染色体分析、胚囊发育观察以及流式细胞仪检测,对丹东蒲公英(Taraxacum antungense)生殖特性进行系统研究。结果表明,去雄套袋情况下,结籽率高达96%,由此证明交配系统具有极高的无融合发生率;自花授粉不能萌发,花粉活性仅为20.6%,异花授粉虽可萌发,但生长缓慢,花粉在到达子房前,花粉管已停止生长并消失;二分体时期,合子端大孢子发育为功能性大孢子,珠孔端大孢子退化消失,经蓼型发育,形成7细胞8核,卵细胞继续发育形成原胚,中央细胞形成胚乳,其它细胞退化消失,花未开放前,已形成球形胚。此外,丹东蒲公英为三倍体。流式细胞仪检测结果表明,丹东蒲公英为专性无融合生殖,胚乳自主发育。综合以上研究结果,说明丹东蒲公英具专性无融合生殖特性。  相似文献   

7.
Summary Facultative heterochromatin occurs not only in certain animals in connection with sex determination but also in members of at least one plant genus,Gagea (Liliaceae s. str.), but here in the course of embryo sac development, fertilization, and endosperm formation. The present contribution intends to provide undebatable photographic and cytometric evidence, previously not available, for the events in the course of which three whole genomes in the pentaploid endosperm nuclei ofGagea lutea become heterochroma-tinized. In this plant, embryo sac formation usually follows the Fritillaria type, i.e., the embryo sac is tetrasporic, and a 1 + 3 position of the spore nuclei is followed by a mitosis in which the three chalazal spindles fuse and two triploid nuclei are formed. A triploid chalazal polar nucleus is derived from one of these, which contributes to the pentaploid endosperm. These nuclei in the chalazal part of the embryo sac show stronger condensation compared with the micropylar ones. The pycnosis of the triploid polar nucleus is maintained and even enhanced during endosperm proliferation, while the micropylar polar nucleus and the sperm nucleus maintain their euchromatic condition. The origin of the heterochromatic masses in the endosperm nuclei from the three chalazal genomes of the central cell is unambiguously evident from the distribution of heterochromatic chromosomes in the first endosperm mitosis and the following interphase. DNA content measurements confirm a 3 2 relationship of heterochromatic and euchromatic chromosome sets, which is usually maintained up to the cellularized endosperm. Pycnotic nuclei in the chalazal part of megagametophytes are characteristic of several embryo sac types, but only forGagea spp. it is documented that such nuclei can take part in fertilization and endosperm formation.Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

8.
矮生菜豆胚囊的营养   总被引:1,自引:0,他引:1  
  相似文献   

9.
水稻胚囊超微结构的研究   总被引:10,自引:2,他引:8  
水稻(Oryza sativa L.)胚囊成熟时,卵细胞的合点端无细胞壁,核居细胞中部,细胞器集中在核周围,液泡分散于细胞周边区域。助细胞珠孔端有丝状器,合点端无壁,核位于细胞中部贴壁处,细胞器主要分布在珠孔端,液泡主要分布在合点端。开花前不久,一个助细胞退化。中央细胞为大液泡所占,两个极核靠近卵器而部分融合,细胞器集中在极核周围和靠近卵器处,与珠心相接的胚囊壁上有发达的内突。反足细胞多个形成群体,其增殖主要依靠无丝分裂与壁的自由生长,反足细胞含丰富活跃的细胞器,与珠心相接的壁上有发达的内突。开花后6小时双受精已完成,合子和两个助细胞合点端均形成完整壁。合子中开始形成多聚核糖体、液泡减小。退化助细胞含花粉管释放的物质,其合点端迴抱合子。极核已分裂成数个胚乳游离核,中央细胞中细胞器呈活化状态。反足细胞仍在继续增殖。讨论了卵细胞的极性、助细胞的退化、卵器与中央细胞间界壁的变化、反足细胞的分裂特点等问题。  相似文献   

10.
Summary Endosperm of the nuclear type initially develops into a large multinucleate syncytium that lines the central cell. This seemingly simple wall-less cytoplasm can, however, be highly differentiated. In developing seeds of members of the family Brassicaceae the curved postfertilization embryo sac comprises three chambers or developmental domains. The syncytium fills the micropylar chamber around the embryo, spreads as a thin peripheral layer surrounding a large central vacuole in the central chamber, and is organized into individual nodules and a large multinucleate cyst in the chalazal tip. Later in development, after the endosperm has cellularized in the micropylar and central chambers, the chalazal endosperm cyst remains syncytial and shows considerable internal differentiation. The chalazal endosperm cyst consists of a domelike apical region that is separated from the cellularized endosperm by a remnant of the central vacuole and a basal haustorial portion which penetrates the chalazal proliferative tissue atop the vascular supply. In the shallow chalazal depression ofArabidopsis thaliana, the cyst is mushroom-shaped with short tentacle-like processes penetrating the maternal tissues. The long narrow chalazal channel ofLepidium irginicum is filled by an elongate stalklike portion of the cyst. In both, the dome contains a labyrinth of endoplasmic reticulum, dictyosomes with associated vesicles, nuclei, and plastids. The basal portions, which lack the larger organelles, exhibit extensive wall ingrowths and contain parallel arrays of microtubules. The highly specialized ultrastructure of the chalazal endosperm cyst and its intimate association with degrading chalazal proliferative cells suggest an important role in loading of maternal resources into the developing seed.  相似文献   

11.
采用透射电镜技术对大车前(Plantago major L.)胚乳发育的超微结构进行了研究。结果表明:(1)大车前为细胞型胚乳;初生胚乳核经一次横分裂产生1个珠孔室细胞和1个合点室细胞;珠孔室两次纵向分裂一次横向分裂形成2层8个细胞,位于上层的4个细胞发育为4个珠孔吸器,位于下层的4个细胞发育为胚乳本体;合点室细胞进行一次核分裂,发育为两核的合点吸器。(2)珠孔吸器呈管状插入珠被组织,珠孔端细胞壁加厚呈现少量分支并具有壁内突,壁内突周围细胞质里分布着大量线粒体、粗面内质网、高尔基体、质体等,细胞核与核仁明显,细胞质浓厚,代谢活动旺盛;球胚期,珠孔吸器的体积呈现最大值,珠孔吸器周围的珠被组织均被水解,形成明显的空腔。珠孔吸器从珠被组织吸收并转运营养物质至胚乳本体,参与胚乳的构建与营养物质的贮藏。球胚后期,珠孔吸器逐渐退化。(3)4个胚乳本体原始细胞具旺盛的分生能力,经不断的平周与垂周分裂增加胚乳细胞数目,使胚乳本体呈现圆球体状,并将胚包围其中;珠孔吸器、合点吸器以及珠被绒毡层吸收转运的营养物质贮存在胚乳本体;球胚后期,随着胚柄的退化,胚体周围的胚乳细胞被水解,为发育的胚所利用。(4)合点吸器的2个细胞核与核仁巨大,线粒体、质体、高尔基体、内质网主要绕核分布,液泡化明显;胚体与胚乳本体的体积增大,逐渐将合点吸器向胚珠合点部位挤压,合点吸器周围的合点组织逐渐被水解,形成巨大空腔。合点吸器自珠心组织吸收并转运营养物质至胚乳本体,参与胚乳的结构构建与营养物质的贮藏。球胚后期,合点吸器逐渐失去功能,呈现退化状态。  相似文献   

12.
Endosperm development was studied in normally setting flowersand pods of soybean from anthesis to a pod length of 10–20mm. The free-nuclear stage following double fertilization istypified by loss of starch and increasing vacuolation. The cytoplasmprovides evidence of extensive metabolic activity. Wall ingrowths,already present at the micropylar end of the embryo sac wallprior to fertilization, develop along the lateral wall of thecentral cell as well as at the chalazal endosperm haustorium.Endosperm cellularization begins when the embryo has developeda distinct globular embryo proper and suspensor. Cellularizationstarts at the micropylar end of the embryo sac as a series ofantidinal walls projecting into the endosperm cytoplasm fromthe wall of the central cell. The free, growing ends of thesewalls are associated with vesicles, microtubules, and endoplasrnicreticulum. Pendinal walls that complete the compartmentalizalionof portions of the endosperm cytoplasm are initiated as cellplates formed during continued mitosis of the endosperm nuclei.Endosperm cell walls are traversed by plasmodesmata. This studywill provide a basis for comparison with endosperin from soybeanflowers programmed to abscise. Glycine max, soybean, endosperm, ovules  相似文献   

13.
The ovule is anatropous and bitegmic. The nuceIlar cells have disorganized except the chalazal proliferating tissue. The curved embryo sac comprises an egg apparatus and a central cell with two palar nuclei and wall ingrowths on its micropylar lateral wall. The antipodal cells disappear. Embryo development is of the Onagrad type. The filament suspensor grows to a length of 785 μm and degenerats at tarpedo embryo stage. The basal cell produces wall ingrowths on the micropylar end wall and lateral wall. The cells of mature embryo contain many globular protein bodies, 2.5–7.5 μm in diameter, composed of high concentration of protein and phytin, insoluble polysaccharide and lipid. The cells, except procambium, also contain many small starch grains. Some secretory cavities scattered in the ground tissue have liquidlike granules composed of protein, ploysacchaide and lipid. Endosperm development follows the nuclear pattern. At the late heart embryo stage, the endosperm around the embryo and the upper suspensor and the peripheral endosperm of the basal region of the U-shaped embryo sac becomes cellular. The endosperm at micropylar and chalazal ends remains free nuclear phase until the late bended cotyledon stage. Wall ingrowths at both micropylar and chalazal end wall and lateral wall of the embryo sac become more massive during endosperm development. Wall ingrowths also occur on the outer walls of the outer layer endosperm cells at both ends and lateral region of the embryo sac. When the embryo matures, many layers of chalazal endosperm ceils including 2–4 layers of transfer cells, a few of micropylar endosperm cells and 1–5 layers of peripheral endosperm cells are present. The nutrients of the embryo and endosperm at different stages of development are also discussed.  相似文献   

14.
The structure of embryo sac before and after fertilization, embryo and endosperm development and transfer cell distribution in Phaseolus radiatus were investigated using light and transmission electron microscopy. The synergids with distinct filiform apparatus have a chalazal vacuole, numerous mitochondria and ribosomes. A cell wall exists only around the micropylar half of the synergids. The egg cell has a chalazally located nucleus, a large micropylar vacuole and several small vacuoles. Mitochondria and plasrids with starch grains are abundant. No cell wall is present at its chalazal end. There are no plasma membranes between the egg and central cell in several places. The zygote has a complete cell wall, abundant mitochondria and plastids containing starch grains. Both degenerated and persistent synergids migh.t serve as a nutrient supplement to proembryo. The wall ingrowths occur in the central cell, basal cell, inner integumentary cells, suspensor cells and endosperm cells. These transfer cells may contribute to embryo nutrition at different developmental stages of embryo.  相似文献   

15.
Pistacia atlantica, P. palaestina, P. lentiscus and P. saportae , were found to have great similarity in their embryology and fruit development. The anatropous, pendulous and crassinucellate ovule was initially unitegmic; later, the integument split close to the micropyle, forming a partial second integument. After anthesis there was a development of a hypostase and an obturator. The development of the Polygonum-type embryo sac followed division of a megaspore mother cell, giving a tetrad or triad of megaspores. The functional megaspore was the chalazal one. The ovary developed into a mature pericarp after anthesis, even when pollination was prevented, and before the zygote divided. Therefore, the fruit can be parthenocarpic. The ovule started to grow after initiation of embryo development until it filled the cavity within the pericarp. The zygotes were dormant for 4–18 weeks after pollination. In P. saportae reproduction became arrested during the development of the embryo sac; only very few abnormal embryos were found. No fixed pattern of embryo development could be discerned. The endosperm was initially nuclear, becoming cellular when the embryo started to develop. The seed coat was derived from the integument and the remnants of the nucellus.  相似文献   

16.
Salicylhydroxamic acid (SHAM) stimulated germination of photosensitive lettuce (Lactuca sativa L. cv Waldmann's Green) seeds in darkness. To determine whether SHAM acts on the embryo or the endosperm, we investigated separately effects of SHAM on growth potential of isolated embryos as well as on endosperm strength. Embryo growth potential was quantified by incubating decoated embryos in various concentrations of osmoticum and measuring subsequent radicle elongation. Growth potential of embryos isolated from seeds pretreated with 4 millimolar SHAM was equal to that of untreated controls. Rupture strength of endosperm tissue excised from seeds pretreated with SHAM was 33% less than that of controls in the micropylar region. To determine if the embryo must be in contact with the endosperm for SHAM to weaken the endosperm, some endosperms were incubated with SHAM only after dissection from seeds. Rupture strength of SHAM-treated, isolated endosperms in the micropylar region was 25% less than that of untreated controls. There was no difference in rupture strength in the cotyledonary region of endosperm isolated from seeds treated with SHAM in buffer or buffer alone. SHAM therefore stimulates germination not by enhancing embryo growth potential, but by weakening the micropylar region of the endosperm enclosing the embryo.  相似文献   

17.
赤苎无融合生殖细胞胚胎学研究   总被引:2,自引:1,他引:1  
对赤苎(Boehmeria silvestrii (Pamp.)W.T.Wang)细胞胚胎学研究表明,其生殖模式属无融合生殖的二倍体孢子生殖(diplospory),但其未减数胚囊的发育途径不同于已报道的类型。大孢子母细胞的减数分裂I在到达终变期时停滞,染色体呈单价体状态并维持较长的时间。在尚未到达以核膜、核仁消失,纺锤体出现为特征的中期I前,大孢子母细胞由终变期直接“跳”入间期,从而始终保持了二倍体水平。减数分裂Ⅱ正常进行并产生二倍体二分孢子。珠孔端孢子退化,合点端孢子经3次分裂形成包括1个卵细胞、2个助细胞、2个极核和3个反足细胞的八核胚囊。胚和胚乳分别起源于卵和次生核未受精的自发分裂。胚乳属核型,其发育早于胚。  相似文献   

18.
Since apomixis has a close correlation with polyploidy and sterility, a number of autotriploids with no sexual reproductivity were induced and apomictic germplasm were screened in Oryza sativa L. As a result, an autotriploid line, named TAR, was cytoembryologically identified which possessed apomictic property, with an average seed-set rate of 10% per panicle. Karyotype analysis proved that all the progeny seeds of TAR carried 36 chromosomes in the generations tested. Priliminary cytological observations revealed that all the ovaries of TAR had embryo sac differentiation, 33% of which developed into normal megagametophyte, 9% with previous embryogenesis prior to anthesis, and about 58% differentiated abnormally, i.e. disordered polarization, absent female generative unit and more than 2 polar nuclei. In TAR, the frequencies of chromosome configuration of 12 Ⅲ, 11 Ⅱ + 1 Ⅱ +1 Ⅰ. L0Ⅲ +2Ⅱ +2 Ⅰ, 9Ⅲ+3Ⅱ +3 Ⅰ, 8Ⅲ+4Ⅱ +4 Ⅰ and 7Ⅲ+5 Ⅱ +5 Ⅰ were ll%, 17%, 15%, 26%, 20% and 11% respectively at metaphase Ⅰ . While in the check line T-15 of autotriploid only 7 % of the ovaries observed had embryo sac development, and the progenies of this triploid line were aneuploids with chromosome number of 25~27. In T-15, the frequencies of chromosome configuration of 12 Ⅲ, 11Ⅲ +1 Ⅱ +1 Ⅰ, 10 Ⅲ +2 Ⅱ +2 Ⅰ , 9Ⅲ+3 Ⅱ +3 Ⅰ and 8 Ⅲ+4 Ⅱ +4 Ⅰ were 24%, 16%, 36%, 17% and 7% respectively at metaphse Ⅰ . The above observations indicated that some megaspore mother cell in TAR might undergo apomeiosis and where it gave rise to unreduced embryo sac, the unreduced eggs or synergids developed into embryos without fertilization and polar nuclei produced endosperm by pseudogamy.  相似文献   

19.
Apomixis represents an alteration of classical sexual plant reproduction to produce seeds with essentially clonal embryos, stimulating wide interest from biologists and plant breeders for its ability to fix heterosis. Eulaliopsis binata (Poaceae), is identified here as a new apomictic species. Embryological investigation indicates that the developmental pattern of embryo sac formation in E. binata represents gametophytic apospory, the embryo originating from an unreduced cell, without fertilization and the mode of endosperm development was autonomous. Sexual embryo sacs were found with a frequency of 1–4% depending on the biotype. The DNA content of nuclei (C-value) in mature seeds was screened by flow cytometry (FCSS) and demonstrated that the endosperm was derived autonomously without fertilization and the three biotypes of E. binata showed varying degrees of apomixis. The Wide-leaf type showed obligate apomixis whereas the Slender-leaf and the Red-haulm type displayed facultative apomixis. In addition, adventitious embryos were observed on the wall of ovary, integument and nucellus cells, indicating that E. binata produces embryos via a mixture of apospory and adventitious embryony.  相似文献   

20.
Summary Triploid hybrid Citrus plants were regenerated by somatic embryogenesis in vitro from endosperm derived calli. A sequence of media formulations was used to induce and support proliferation of primary callus from endosperm, to induce embryogenesis from primary callus, and to allow embryo development leading to viable plantlets. Calli were induced from cellular endosperm of Citrus sinensis (sweet orange), C. Xparadisi (grapefruit), and C. grandis (pummelo) excised 12–14 weeks post-anthesis. Induction of embryogenesis from sweet orange and pummelo primary calli required gibberellic acid and double mineral nutrient concentrations. Embryogenesis was not induced from grapefruit calli in these experiments. Only sweet orange embryos developed sufficiently to allow plant regeneration. Triploid axillary buds were minigrafted onto etiolated diploid rootstock seedlings in vitro in order to transfer triploid regenerants to soil and the external environment. Triploidy (2n = 3x = 27) was observed consistently in all phases of regeneration and in recovered plants. These results demonstrate that triploid hybrid plant recovery from Citrus endosperm can overcome barriers to sexual hybridization resulting from apomixis.Florida Agricultural Experiment Station Journal Series No. R-00627  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号