首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The mature male gametophyte of Ginkgo biloba can be divided into two regions: a large saccate structure that is suspended within the fertilization chamber above the archegonia, and a pervasive, highly branched haustorial system that ramifies through the intercellular air spaces of the apex of the nucellus. This morphology appears to differ in many ways from the simpler more typical male gametophytes of most other groups of seed plants. Growth and development of the male gametophyte of Ginkgo biloba were studied using computer reconstruction techniques to generate images of the gametophyte from data derived from serial sections through the ovule. These investigations reveal that morphological development of the male gametophyte of Ginkgo biloba is divided into three distinct phases: 1) Germination, characterized by an initial brief period of diffuse growth. This phenomenon has not been described for any other seed plant male gametophyte; 2) Initiation of tip growth and the formation of a tubular body, as typifies all seed plant male gametophytes. In Ginkgo, this is accompanied by a high degree of branching, giving rise to an extensively branched haustorial system; 3) Late swelling of the proximal unbranched portion of the gametophyte resulting in formation of the saccate structure that is characteristic of the mature gametophyte. This process appears to be very similar to late development in cycad male gametophytes. Thus, despite the seemingly anomalous morphology of the mature male gametophyte of Ginkgo biloba, specific patterns of growth and development are in many ways similar to growth processes expressed by the male gametophytes of some or all major groups of seed plants.  相似文献   

2.
Zamia furfuracea, a cycad of Mexican origin, in cultivation is pollinated by the snout weevil, Rhopalotria mollis, also of Mexican origin. This weevil apparently is host specific, swarming upon male cones of the cycad, where mating, feeding, and oviposition occur. Sporophylls of male cones are rich in starch; those of female cones are poor in starch, and weevils feed upon male cones and are visitors to but not feeders upon or within female cones. Pollen transport to female cones occurs during such visitation. All stages of metamorphosis of R. mollis occur within male cones; larvae feed exclusively on parenchyma of microsporophylls, pupate within stalks of microsporophylls, and emerge as adults from the outer ends of microsporophylls. They do not feed on pollen and do not damage microsporangia or pollen. Toward the end of the breeding season of the weevil (and the cycad), some larvae enter diapause in thick-walled pupal cases within microsporangial stalks of pollen-spent cones. These remain in diapause until the next reproductive season of the cycad.  相似文献   

3.
The role of the male gametophyte in the early history of seed plants remains an underappreciated but critical part of the evolution of a suite of characters that ultimately came to define seed plants. Recent paleobotanical discoveries and studies of extant primitive seed plant male gametophytes, when coupled with phylogenetic analyses of seed plants, provide insight into many hey events that occurred during the early evolution of seed plants. These discoveries are changing our ideas concerning the multiple origins of the sulcus (pollen grain germinal aperture) and pollen tube, the structural and physiological relationships of the male gametophyte with the host sporophyte tissues in primitive seed plants, and the evolution of siphonogamy (conduction of non-motile sperm via a pollen tube) from a zooidogamous (swimming sperm) condition.  相似文献   

4.
JOHRI  B. M. 《Annals of botany》1992,70(5):471-475
In angiosperms, the pollen tube is siphonogamous and its mainfunction is to carry the male gametes for double fertilization.In some taxa, as in Cucurbitaceae, the tube branches after enteringthe ovule, prior to fertilization. The tube may even swell andform a bulla. During post-fertilization development of the ovule,a portion of the tube may persist in the micropyle, or in theembryo sac, or in both, sometimes even in the micropyle of themature seed. Haustorial function has been presumed in a numberof taxa. In Grevillea, following fertilization, the pollen tube branchesat the micropyle, and the branches grow intercellularly intothe ovarian tissue where further branching occurs. A haustorialrole of the pollen tube is presumed from circumstantial evidence.In gymnosperms (for example, Cycas, Zamia and Ginkgo) the pollentube is nonsiphonogamous, arises from the distal (upper) poleof pollen grain, and grows laterally in the apical region ofthe nucellus. The tube branches in Cycas and Ginkgo but remainsunbranched in Zamia. These pollen tube branches are enucleate,and are not concerned with the transport of male gametes forfertilization. However, the haustorial role has been well documented.In Podocarpus, the pollen tube is siphonogamous and arises fromthe proximal (lower) pole of pollen grain. After traversingthe nucellus, the tube forms a bulla at the point of contactwith the female gametophyte, and several branches originatefrom the bulla. The pollen tube branches grow along the innersurface of the nucellus and the outer surface of the femalegametophyte. The haustorial role of the pollen tube branchesis uncertain. Procedures for convincingly demonstrating thehaustorial role of pollen tubes are discussed. Angiosperms, gymnosperms, pollen tube, bulla, fertilization, haustorial role  相似文献   

5.
Through the process known as programmed cell death (PCD), nucelli of Pinus densiflora serve as the transmitting tissue for growth of the pollen tube. We sought to clarify the processes of degradation of nucellar cell components and their transport to the pollen tube during PCD in response to pollen tube penetration of such nucelli. Stimulated by pollination, synthesis of large amounts of starch grains occurred in cells in a wide region of the nucellus, but as the pollen tube penetrated the nucellus, starch grains were degraded in amyloplasts of nucellar cells. In cells undergoing PCD, electron-dense vacuoles with high membrane contrast appeared, assumed a variety of autophagic structures, expanded, and ultimately collapsed and disappeared. Vesicles and electron-dense amorphous materials were released inside the thickened walls of cells undergoing PCD, and those vesicles and materials reaching the pollen tube after passing through the extracellular matrix were taken into the tube by endocytosis. These results show that in PCD of nucellar cells, intracellular materials are degraded in amyloplasts and vacuoles, and some of the degraded material is supplied to the pollen tube by vesicular transport to support tube growth.  相似文献   

6.
Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) ovules were used to study the method of pollen tube formation and penetration of the nucellus, the movement of the body cell down the pollen tube and development of the archegonia. No pollination drop forms but nucellar tip cells produce a minute secretion that may initiate pollen tube formation. Pollen tubes penetrate the nucellus causing degeneration of nucellar cells in contact with the pollen tube tip. The body cell becomes highly lobed and the tube cytoplasm forms thin sheets between the lobes. This may be the mechanism by which the large body cell is pulled down the narrow pollen tube. Body cell plastids and mitochondria remain unaltered during pollen tube growth, whereas tube cell organelles show signs of degeneration. The pollen tube penetrates the megaspore wall and settles in the archegonial chamber. During pollen elongation and pollen tube growth the egg matured. Egg cell plastids were transformed into large inclusions which filled the periphery of the egg while mitochondria migrated to the perinuclear zone. The neck cells, ventral canal cell and archegonial jacket cells are described. The significance of the body cell and egg cell ultrastructure is discussed in light of recent restriction fragment length polymorphism studies of plastid and mitochondrial inheritance in the Pinaceae.  相似文献   

7.
Growth and development of conifer pollen tubes   总被引:1,自引:0,他引:1  
Conifer pollen tubes are an important but underused experimental system in plant biology. They represent a major evolutionary step in male gametophyte development as an intermediate form between the haustorial pollen tubes of cycads and Ginkgo and the structurally reduced and faster growing pollen tubes of flowering plants. Conifer pollen grains are available in large quantities, most can be stored for several years, and they grow very well in culture. The study of pollen tube growth and development furthers our understanding of conifer reproduction and contributes towards our ability to improve on their productivity. This review covers taxonomy and morphology to cell, developmental, and molecular biology. It explores recent advances in research on conifer pollen and pollen tubes in vivo, focusing on pollen wall structure, male gametophyte development within the pollen wall, pollination mechanisms, pollen tube growth and development, and programmed cell death. It also explores recent research in vitro, including the cellular mechanisms underlying pollen tube elongation, in vitro fertilization, genetic transformation and gene expression, and pine pollen tube proteomics. With the ongoing sequencing of the Pinus taeda genome in several labs, we expect the use of conifer pollen tubes as an experimental system to increase in the next decade.  相似文献   

8.
Microtubules in dividing root cells of the gymnosperms Pinus radiata (conifer) and Zamia furfuracea (cycad) were examined using immunofluorescence techniques. Root tip squashes were prepared to visualize the 3-dimensional organization of microtubules in intact cells while sections of methacrylate embedded roots revealed microtubules in situ. Both species were characterized by well developed preprophase bands (PPB) of microtubules and highly focused spindle poles at prophase and anaphase. The metaphase spindle and telophase phragmoplast appeared typical of flowering plants.  相似文献   

9.
Ovular morphology was examined ultrastructurally inPseudotsuga menziesii to determine the effects of the ovule on pollen development. Vesicles containing lipid-like substances traverse cell walls of the inner epidemis of the integument and release their contents at the integument surface to form the integumentary membrane. A major aqueous secretion from the integument into the micropylar canal is proposed to occur by the movement of the integumentary membrane and its invaginations towards the center of the micropylar canal. The cellular degeneration of the nucellar apex results from the breakdown of vacuoles. After this degeneration, electron-dense substances move from the prothallial cells of the female gametophyte towards the nucellus, and many morphological changes in the nucellus, prothallial cells, and micropylar canal take place simultaneously. We interpret these changes to result from another major secretion from the prothallial cells. Egg cytoplasm appears to disorganize for a short time. Simultaneously, substantial amounts of electron dense-substances in the prothallial cells and lipid-like substances in surface cell walls of the female gametophyte move towards the nucellus as components of the third major secretion.  相似文献   

10.
In ovules of Pinus densiflora, pollen tubes elongate and branch into the nucellar tissue in the direction of the female gametophyte. After pollination, nucellar cells located around the pollen grain and tube die off. We showed here that the nuclei of the nucellar cells were stained by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick end labeling). The number of TUNEL-positive cells increased during pollen tube growth. The tips of pollen tube branches protruded into the nucellar cells to form a convex–concave junction. At this junction, the cell membrane of nucellar cells was separated from the cell wall and the protoplast shrank. Small vesicles and amorphous materials were released from the protoplast into the space between the cell membrane and wall. Vacuoles were collapsed, chromatin was condensed, and mitochondria and plastids were deteriorated in the shrunken protoplast. Agarose gel analysis of DNA isolated from the ovules showed a DNA ladder, suggesting that the nuclear DNA had undergone internucleosomal cleavage. These results suggest that nucellar cells undergo programmed cell death in response to pollen tube penetration with some features resembling apoptosis and other features peculiar to nucellar cells. Received: April 13, 2001 / Accepted: December 10, 2001  相似文献   

11.
Light microscopic observations were made on 22 ovules from fertile plants and 108 ovules from sterile plants of the cv. KS synaptic mutant, a highly male-sterile, female-sterile line of soybean [Glycine max (L.) Merr.] (2n = 2x = 40). Ovules of fertile siblings contained normal embryo sacs and embryos. Ovules from sterile plants contained various irregularities. The most consistent abnormality was the failure of the embryo sac to attain normal size. Small megasporocytes of irregular shape were seen; only one megasporocyte of normal shape and size was noted. No linear tetrads were found. However, two ovules contained nonlinear triads. A range from zero to 28 cells and nuclei, of various sizes, were identifiable in small megagametophytes and embryo sacs. Degeneration of these nuclei and cells was noted as early as the four-nucleate gametophyte stage. Other ovules contained degenerated nucellar centers without embryo sacs. Two ovules appeared to be normal. Late postpollination stages were marked by shrunken nucellus and integuments. The presence of pollen tube traces, endosperm, and aborting embryos in ovules of hand-pollinated flowers from sterile plants suggested that no incompatibility was involved. Degeneration of the gametophyte and embryo sac contents at many developmental stages indicated a wide array of effects, possibly resulting from meiotic irregularities similar to those seen in microsporogenesis of this mutant.  相似文献   

12.
Summary There is evidence that male gametophyte selection is a widespread phenomenon in higher plants. The pollen tube growth rate is one of the main components of gametophyte selective value; genetic variability for this trait, due to the effect of single genes or to quantitative variation, has been described in maize. However, indication of gametophytic selection has been indirectly obtained; its effect was revealed by the positive relation observed between gametophyte competitive ability and sporophyte metrical traits.This paper considers the results of selection applied to gametophyte populations produced from single plants. The competitive ability of the lines was evaluated in comparison with that of a standard line by means of the pollen mixture technique. Sporophytic traits were measured in the hybrid progeny obtained by crossing selected S3 and S4 families with an unrelated single cross and an inbred line. Gametophyte selection produced inbred lines with high gametophyte competitive ability. In view of the selection procedure adopted, this result was interpreted as an indication of haploid expression of genes involved in the control of pollen tube growth. Moreover, this gametophytic trait was positively correlated with sporophytic traits (seedling weight, kernel weight and root tip growth in vitro), indicating that both groups of characters have a common genetic basis.  相似文献   

13.
The development of the placenta in the anthocerote Phaeoceros laevis (L.) Prosk. was studied by transmission electron microscopy. By the time the sporophyte emerges from the involucre, a conspicuous placental region is formed by the intrusive growth of sporophyte foot haustorial cells into the adjacent gametophyte vaginula tissue. The separation of gametophyte cells by haustorial cells and their incorporation into the placenta are preceded by the loosening and swelling of their walls and the formation of a periplasmic space. This process causes the disruption of the plasmodesmata, and may eventually result in the complete isolation and consequent degeneration of the cells. Crystals are commonly observed in the vacuoles of gametophyte placental cells. Crystals become more abundant during cytoplasmic degeneration, and are released in the placental lacunae that result from the complete dissolution of gametophyte cells. During the subsequent phase of capsule elongation, the gametophyte placental cells that retain the symplastic connection with the adjoining gametophyte parenchyma develop a wall labyrinth typical of transfer cells. Obliteration of the wall labyrinth by deposition of lightly staining wall material is observed later in sporophyte development, in concomitance with capsule dehiscence. Crystals are negative to the periodic acid/thiocarbohydrazide/silver proteinate test for carbohydrates whilst they are completely digested by pepsin or protease, denoting protein composition.Abbreviation PATAg periodic acid/thiocarbohydrazide/silver proteinate  相似文献   

14.
In ovules of Pinus densiflora, pollen tubes elongate and branch into the nucellar tissue in the direction of the female gametophyte. After pollination, nucellar cells located around the pollen grain and tube die off. We showed here that the nuclei of the nucellar cells were stained by TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick end labeling). The number of TUNEL-positive cells increased during pollen tube growth. The tips of pollen tube branches protruded into the nucellar cells to form a convex-concave junction. At this junction, the cell membrane of nucellar cells was separated from the cell wall and the protoplast shrank. Small vesicles and amorphous materials were released from the protoplast into the space between the cell membrane and wall. Vacuoles were collapsed, chromatin was condensed, and mitochondria and plastids were deteriorated in the shrunken protoplast. Agarose gel analysis of DNA isolated from the ovules showed a DNA ladder, suggesting that the nuclear DNA had undergone internucleosomal cleavage. These results suggest that nucellar cells undergo programmed cell death in response to pollen tube penetration with some features resembling apoptosis and other features peculiar to nucellar cells.  相似文献   

15.
The nucellar beak is a proboscis-like outgrowth of the nucellus at the micropylar end, being the obligatory path for the pollen tube entering the ovule. Among the few angiosperm families with nucellar beak, Cucurbitaceae is remarkable because the pollen tube may develop at least two types of growth within the nucellar beak: tubular and ampulliform. Wondering about the possibility that Cucurbitaceae ovules may express some histological variation that could be related to pollen tube growth within the nucellar beak, we performed a compared anatomical and histochemical study of the nucellar beak and the pollen tube growth of ten species of Cucurbitaceae. Results show that Cucurbitaceae ovules are diverse in size and proportions (of integuments, nucellar body, and nucellar beak), and they have at least four types of nucellar beak histology: pectic-tracked, secretory-like, amylaceous, and mixed. Amylaceous and mixed nucellar beaks are related to the ampulliform growth of the pollen tube, which could have appeared independently in most derived tribes of Cucurbitaceae, although information about nucellar beak structure in the basal tribes is still needed. In addition, the understanding of the relation between amylaceous nucellar beaks and the ampulliform growth of the pollen tube, whose function is still to be discovered, might open the possibility of a unique model of pollen tube-ovule co-evolution in angiosperms.  相似文献   

16.
Arabidopsis has three cytokinin receptors genes: CRE1, AHK2 and AHK3. Availability of plants that are homozygous mutant for these three genes indicates that cytokinin receptors in the haploid cells are dispensable for the development of male and female gametophytes. The triple mutants form a few flowers but never set seed, indicating that reproductive growth is impaired. We investigated which reproductive processes are affected in the triple mutants. Anthers of mutant plants contained fewer pollen grains and did not dehisce. Pollen in the anthers completed the formation of the one vegetative nucleus and the two sperm nuclei, as seen in wild type. The majority of the ovules were abnormal: 78% lacked the embryo sac, 10% carried a female gametophyte that terminated its development before completing three rounds of nuclear division, and about 12% completed three rounds of nuclear division but the gametophytes were smaller than those of the wild type. Reciprocal crosses between the wild type and the triple mutants indicated that pollen from mutant plants did not germinate on wild-type stigmas, and wild-type pollen did not germinate on mutant stigmas. These results suggest that cytokinin receptors in the sporophyte are indispensable for anther dehiscence, pollen maturation, induction of pollen germination by the stigma and female gametophyte formation and maturation.Key words: cytokinin, cytokinin receptor, female gametophyte, male gametophyte, stigma  相似文献   

17.
Pollen grains and whole plants of 11 cultivars of oilseed brassicas (B. juncea,B. campestris,B. carinata) were screened for salt tolerance. Whereas pollen germination percentage in sitting drop cultures served as a reliable index of pollen tolerance to NaCl, pollen-tube growth did not. Seed yield in plants of the same 11 cultivars raised in artificially salinized soils also proved to be a good index of whole plant tolerance to soil salinity. A close correspondence between pollen (gametophyte) and whole plant (sporophyte) responses to salinity was discovered. Our studies show that tolerance to salt is yet another trait expressed in both the sporophyte and gametophyte.On study leave from the National Bureau of Plant Genetic Resources, New Delhi  相似文献   

18.
Two sperm cells are required to achieve double fertilization in flowering plants (angiosperms). In contrast to animals and lower plants such as mosses and ferns, sperm cells of flowering plants (angiosperms) are immobile and are transported to the female gametes (egg and central cell) via the pollen tube. The two sperm cells arise from the generative pollen cell either within the pollen grain or after germination inside the pollen tube. While pollen tube growth and sperm behavior has been intensively investigated in model plant species such as tobacco and lily, little is know about sperm dynamics and behavior during pollen germination, tube growth and sperm release in grasses. In the March issue of Journal of Experimental Botany, we have reported about the sporophytic and gametophytic control of pollen tube germination, growth and guidance in maize.1 Five progamic phases were distinguished involving various prezygotic crossing barriers before sperm cell delivery inside the female gametophyte takes place. Using live cell imaging and a generative cell-specific promoter driving α-tubulin-YFP expression in the male germline, we report here the formation of the male germline inside the pollen grain and the sperm behaviour during pollen germination and their movement dynamics during tube growth in maize.Key words: male gametophyte, generative cell, sperm, pollen tube, tubulin, fertilization, maize  相似文献   

19.
Summary In the young ovule of Welwitschia mirabilis the nucellar apex is dome shaped and starch begins to accumulate near the female gametophyte. With the degeneration of the cells of the nucellar apex, a pollen chamber is formed, which contains the micropylar fluid. Starch storage increases considerably in the upper part of the nucellus. Pollen drop emission is not a rhythmic process, and pollination does not produce the rapid withdrawal of droplets. The micropylar drop consists almost entirely of sugars, uronic acids and a very small amount of free amino acids and enzymes. The mechanism of micropylar drop secretion and its probable role in the process of pollination is discussed.This work was supported by a grant from MURST 40%  相似文献   

20.
Hu XS  Li B 《Heredity》2003,90(2):162-168
We have extended Wright's model of migration load to hermaphrodite plants showing variation at a single locus with two alleles. The model incorporates independent migration of seeds and pollen grains, the selection at both the haploid gametophyte and the diploid sporophyte stages, and a mixed mating system. The analytical relations between migration load and migration rate of seeds and pollen grains are explicitly formulated. The results show that under certain conditions, seed flow can have a more effect on migration load than pollen flow. Pollen selection at the gametophyte stage cannot substantially affect the migration load at the sporophyte stage. Selection at the diploid sporophyte stage is critical in determining the migration load of pollen grains. The relative migration loads of pollen versus seeds can be approximately estimated in predominantly outcrossing populations by the ratio of pollen flow to twice the seed flow, when the selection coefficient (s(T)) is greater than, or approximately equal to, the migration rate (m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号